首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes of major terrestrial ecosystems in China since 1960   总被引:10,自引:1,他引:9  
Daily temperature and precipitation data since 1960 are selected from 735 weather stations that are scattered over China. After comparatively analyzing relative interpolation methods, gradient-plus-inverse distance squared (GIDS) is selected to create temperature surfaces and Kriging interpolation method is selected to create precipitation surfaces. Digital elevation model of China is combined into Holdridge Life Zone (HLZ) model on the basis of simulating relationships between temperature and elevation in different regions of China. HLZ model is operated on the created temperature and precipitation surfaces in ARC/INFO environment. Spatial pattern of major terrestrial ecosystems in China and its change in the four decades of 1960s, 1970s, 1980s and 1990s are analyzed in terms of results from operating HLZ model. The results show that HLZ spatial pattern in China has had a great change since 1960. For instance, nival area and subtropical thorn woodland had a rapid decrease on an average and they might disappear in 159 years and 96 years, respectively, if their areas would decrease at present rate. Alpine dry tundra and cool temperate scrub continuously increased in the four decades and the decadal increase rates are, respectively, 13.1% and 3.4%. HLZ patch connectivity has a continuous increase trend and HLZ diversity has a continuous decrease trend on the average. Warm temperate thorn steppe, subtropical wet forest and cool temperate wet forest shifted 1781.45 km, 1208.14 km and 977.43 km in the four decades, respectively. These HLZ types are more sensitive to climate change than other ones. These changes reflect the great effects of climate change on terrestrial ecosystems in China.  相似文献   

2.
Land use has a large impact on ecosystem functioning, though evidences of these impacts at the regional scale are scarce. The objective of this paper was to analyze the impacts of agricultural land use on ecosystem functioning (radiation interception and carbon uptake) in temperate areas of North and South America. From land cover maps generated using high-resolution satellite images we selected sites dominated by row crops (RC), small grain crops (SG), pastures (PA), and rangelands (RA) in the Central Plains of USA and the Pampas of Argentina. These two regions share climatic characteristics and the agricultural conditions (crop types) are also very similar. Both areas were originally dominated by temperate grasslands. In these sites we extracted the temporal series of the normalized difference vegetation index (NDVI) from the NOAA satellites for the period 1989–1998 and calculated the mean seasonal NDVI curve for each site. Additionally, we calculated the mean annual NDVI, the maximum NDVI, the date of the year when the max NDVI was recorded and the interannual variability of these three attributes. We compared the mean values of each NDVI-derived attribute between land cover types and between continents. The NDVI seasonal patterns for each land cover type were roughly similar between the Central Plains and the Pampas during the growing season. The largest differences were observed during the winter and spring, when the NDVI of all land cover types in the Central Plains remained at lower values than in the Pampas. This was probably caused by the high annual thermal amplitude in the Central Plains that results in a much more restricted growing season. As a result of these differences in the shape of the NDVI curve, the mean annual NDVI in the Central Plains was lower than in the Pampas for all land cover types but the maximum NDVI did not differ importantly. In both regions, row crops delayed the date of the NDVI peak, small grain crops advanced it and pastures did not change it importantly, compared with rangelands. The interannual variability of the NDVI attributes was higher for small grains than for row crops in both regions. However, small grains crops were consistently more variable between years in the Central Plains than in the Pampas. The opposite occurred with pastures and rangelands, which were more variable in the Pampas than in the Central Plains. This paper confirms and generalizes previous findings that showed important imprints of land use on ecosystem functioning in temperate ecosystems. Our results support the idea that the changes in land cover that have occurred in the Central Plains and the Pampas leaded to similar changes in the way that ecosystems absorb solar radiation and in the patterns of carbon uptake.  相似文献   

3.
Geo-ecological spatial pattern analysis of the island of Fogo (Cape Verde)   总被引:1,自引:0,他引:1  
With its small-scale climatic, floristic and geo-ecological differentiation, the island of Fogo is an optimal research area for understanding semi-arid island ecosystems in the marginal tropics. Because of the high variability in precipitation, the archipelago of Cape Verde has a potentially high ecological vulnerability, which is caused mainly by population growth, intensification of agricultural land use and increasing tourism.In this context, a geo-ecological spatial pattern analysis has been conducted for Fogo, including several types of geo-ecological layers like vegetation, elevation, aspect, soil and geology. The different kinds of spatial patterns that are detected can be used as a first tool to display distinctive levels of ecological vulnerability. These levels could constitute a base for sustainable land use planning and the redevelopment of agricultural strategies.  相似文献   

4.
Environmental change in the Sahel–Sudan zone of West Africa has been a major issue in development debates over the last decades. Using remote sensing based land cover change analysis, archival data, national and international statistical data, and household interviews, we analyze the drivers of environmental change in Eastern Saloum in Central East Senegal as well as the local perceptions of these changes and adaptation. Being part of the ground nut basin, Eastern Saloum has witnessed rapid environmental degradation caused by the conversion of forest and savanna areas to agricultural land during the last 20–30 years and by a combination of decline in precipitation, soil degradation, a diversity of policies with little concern for the environment, fluctuating markets and population pressure. Farmers perceive the environmental change mainly as land degradation and poor soil fertility, though recent extensification of agriculture counters this effect and has led to increased vegetation cover in marginal areas. They identified erratic climate, agricultural policies, insufficient food production and desire to increase income as the main drivers of change in the area. We conclude that while climate variability has influenced environmental change in the area, various types of State interventions in agriculture and global market fluctuations appear to have been the main underlying causes of environmental degradation.  相似文献   

5.
6.
The anticipated change of climatic conditions within the next decades is thought to have far reaching consequences for agricultural cropping systems. The success of crop production in China, the world's most populous country, will also have effects on the global food supply. More than 30% of the cropping area in China is irrigated producing the major part of the agricultural production. To model the effects of climate change on irrigation requirements for crop production in China a high-resolution (0.25°, monthly time series for temperature, precipitation and potential evapotranspiration) gridded climate data set that specifically allows for the effects of topography on climate was integrated with digital soil data in a GIS. Observed long-term trends of monthly means as well as trends of interannual variations were combined for climate scenarios for the year 2030 with average conditions as well as ‘best case’ and ‘worst case’ scenarios.Regional cropping calendars with allowance for multiple cropping systems and the adaptation of the begin and length of the growing season to climatic variations were incorporated in the FAO water balance model to calculate irrigation amounts to obtain maximum yields for the period 1951–1990 and the climate scenarios.During the period 1951–1990 irrigation demand displayed a considerable variation both in temporal and spatial respects. Future scenarios indicate a varied pattern of generally increasing irrigation demand and an enlargement of the subtropical cropping zone rather than a general northward drift of all zones as predicted by GCM models. The effects of interannual variability appear to have likely more impact on future cropping conditions than the anticipated poleward migration of cropping zones.  相似文献   

7.
Potential impacts of human-induced land cover change on East Asia monsoon   总被引:10,自引:0,他引:10  
As one major performance of anthropogenic activities, human-induced land use and land cover changes in East Asia have been one of the largest regions in the world. In the past 3000 years, more than 60% of the region has been affected by conversion of various categories of natural vegetation into farmland, conversion of grassland into semidesert and widespread land degradation. Such human-induced land cover changes result in significant changes of surface dynamic parameters, such as albedo, surface roughness, leaf area index and fractional vegetation coverage, etc.The results of a pair of numerical experiments in this paper have shown that by altering the complex exchanges of water and energy from surface to atmosphere, the changes in land cover have brought about significant changes to the East Asian monsoon. These include weakening of the summer monsoon and enhancement of winter monsoon over the region and a commensurate increase in anomalous northerly flow. These changes result in the reduction of all components of surface water balance such as precipitation, runoff, and soil water content. The consequent diminution of northward and inland moisture transfer may be a significant factor in explaining the decreasing of atmospheric and soil humidity and thus the trend in aridification observed in many parts of the region, particularly over Northern China during last 3000 years.The variation of East Asia monsoon presented here is the result of land cover changes only. It is very likely that the anthropogenic modification of monsoon system would have been occurred in the long history of civilization.  相似文献   

8.
This study aimed to disclose impacts of environment changes on hydrologic regimes in the Hei River Watershed, Shaanxi Province in China. We investigated the effects of the man-made landscape (Jingpen Reservoir) on the rainstorm–flood processes using a proposed Kinematic Wave model, simulated impacts of land use and cover changes on surface runoff generation and river flow characteristics at monthly, seasonal, and annual scales through designed scenarios of different combinations of land use and cover and climate conditions on basis of the SWAT model, evaluated the climate change and human activities effects on water balance from 1954 to 2001. Through these investigations, the following results were achieved. Firstly, it showed that the man-made landscape (the Jingpen Reservoir) had altered the rainstorm–flood process, the flood wave damped right after it flowed out the Jingpen Reservoir. Secondly, changes of land use and cover led to river flow redistribution, soil moisture and recharge fluctuations. Evapotranspiration increased 12.9%, river flow discharge decreased 17.7%, runoff generation process accelerated 1.31 times in 2000 than in 1986, and water resources of the total watershed decreased 7.7% in 2000 compared to the land use and cover scenario in 1986. Finally, the interaction between climate change and human activities led to the total water resource decreased by 10.6% in 2000 compared to that in 1986 in the Hei River Watershed.  相似文献   

9.
In this study, we report on the validation of process-based forest growth and carbon and nitrogen model of TRIPLEX against observed data, and the use of the model to investigate the potential impacts and interaction of climate change and increasing atmospheric CO2 on forest net primary productivity (NPP) and carbon budgets in northeast of China. The model validation results show that the simulated tree total volume, NPP, total biomass and soil carbon are consistent with observed data across the Northeast of China, demonstrating that the improved TRIPLEX model is able to simulate forest growth and carbon dynamics of the boreal and temperate forest ecosystems at regional scale. The climate change would increase forest NPP and biomass carbon but decrease overall soil carbon under all three climate change scenarios. The combined effects of climate change and CO2 fertilization on the increase of NPP were estimated to be 10–12% for 2030s and 28–37% in 2090s. The simulated effects of CO2 fertilization significantly offset the soil carbon loss due to climate change alone. Overall, future climate change and increasing atmospheric CO2 would have a significant impact on the forest ecosystems of Northeastern China.  相似文献   

10.
The possible response of life zones in China under global climate change   总被引:5,自引:0,他引:5  
The response of natural vegetation to climate change is of global concern. In this research, an aggregated Holdridge Life Zone System was used to study the possible response of life zones in China under doubled atmospheric CO2 concentration with the input climatic parameters at 0.5×0.5° resolution of longitude and latitude from NCAR regional climate model 2 (RegCM2) coupled with the CSIRO global climate model. The results indicate that the latitudinal distribution of life zones would become irregular because of the complicated climate change. In particular, new life zones, such as subtropical desert (SD), tropical desert (TDE) and tropical thorn woodland (TTW), would appear. Subtropical evergreen broadleaved forest (SEBF), tropical rainforest and monsoon forest (TRF), SD, TDE and TTW zones would appear in the northeastern China. Cool-temperate mixed coniferous and broadleaved forest (CMC) and warm-temperate deciduous broadleaved forest (WDBF) zones would appear at latitudes 25–35°N. The temperate desert (TD) in the western China would become Tibetan high-cold plateau (THP), SEBF, WDBF and temperate steppe (TS), and a large part of THP would be replaced by TRF, TDE, SEBF, TS and TTW. The relative area (distribution area/total terrestrial area) of CMC, TRF, TDE and TTW zone would increase about 3%, 21%, 3% and 6%, respectively. However, the relative area of SEBF, TS, TD and THP would decrease about 5%, 3%, 19% and 4%, respectively. In all, the relative area of forests (CCF, CMC, WDBF, SEBF, TRF) would increase about 15%, but the relative area of desert (TD, SD, TDE, and TTW) and THP would decrease about 9% and 4%, respectively. Therefore, responses of different life zones in China to climate change would be dramatic, and nationwide corridors should be considered for the conservation of migrating species under climate change.  相似文献   

11.
Based on the Global Land Cover Characteristics Database (GLCCD) generated by the U.S. Geological Survey (USGS) and University of Nebraska-Lincoln (UNL), a new land cover dataset within a domain of 14.1–49.6°N, 84.6–140.5°E is extracted. This dataset is used to identify the achievements of constructing 3N (Northeast, North and Northwest of China) Shelterbelt in North China and to update the lower boundary conditions of the mesoscale model (MM5), a widely used mesoscale meteorological model. The model is then used to simulate the regional climate effects of the 3N Shelterbelt, the largest forestation engineering in the world. The simulation shows that the construction of the 3N Shelterbelt and the corresponding land use and land cover (LULC) variations in China have changed the roughness length in the cited model domain significantly. Consequently, the surface layer wind speed, air temperature, humidity, and the precipitation are all changed. As compared with the control run without the 3N Shelterbelt, the regional climate in North China is improved shown by the decreased wind speed, increased air humidity and precipitation. The paper also stresses that, in meteorological or climatic simulations, the lower boundary conditions related to the land cover has to be updated frequently by the satellite observed database since the LULC vary fast due to the increasing world population and human activities, this is especially true in developing countries like China.  相似文献   

12.
The large uncertainties in estimates of cropland area in China may have significant implications for major cross-cutting themes of global environmental change—food production and trade, water resources, and the carbon and nitrogen cycles. Many earlier studies have indicated significant under-reporting of cropland area in China from official agricultural census statistics datasets. Space-borne remote sensing analyses provide an alternative and independent approach for estimating cropland area in China. In this study, we report estimates of cropland area from the National Land Cover Dataset (NLCD-96) at the 1:100,000 scale, which was generated by a multi-year National Land Cover Project in China through visual interpretation and digitization of Landsat TM images acquired mostly in 1995 and 1996. We compared the NLCD-96 dataset to another land cover dataset at 1-km spatial resolution (the IGBP DIScover dataset version 2.0), which was generated from monthly Advanced Very High Resolution Radiometer (AVHRR)-derived Normalized Difference Vegetation Index (NDVI) from April, 1992 to March, 1993. The data comparison highlighted the limitation and uncertainty of cropland area estimates from the DIScover dataset.  相似文献   

13.
Iceland is facing severe land degradation in many parts of the country. This study aims to increase the understanding of the complex interactions and interconnectivity between the critical factors that help maintain the land degradation processes in sub-arctic environments. A holistic approach in the form of a causal loop diagram (CLD) is applied for diagnosing the influencing factors. To further study the relationship between vegetation cover and its degradation, a dynamic model that uses a long-term temperature data as the main indicator function is constructed to simulate potential vegetation cover during the Holocene. The results depict an oscillating vegetation cover. Gradual degradation in potential vegetation cover begins ca. 3000 BP and accelerates greatly after ca. 2500 BP. From the time of the Norse settlement in the latter halve of the 9th century to present time, the simulated vegetation cover retreats ca. 25% in relation to climatic cooling.  相似文献   

14.
Most general circulation models (GCMs) project that climate will be warmer in the 21st century, especially in high latitudes. Climate warming will induce permafrost degradation, which would have great impacts on hydrology, ecosystems and soil biogeochemistry, and could destabilize the foundations of infrastructure. In this study, we simulated transient changes of permafrost distribution in Canada in the 21st century using a process-based permafrost model driven by six GCM-generated climate scenarios. The results show that the area underlain by permafrost in Canada would be reduced by 16.0–19.7% from the 1990s to the 2090s. This estimate was smaller than equilibrium projections because the ground thermal regime was in disequilibrium at the end of the 21st century and permafrost degradation would continue. The simulation shows significant permafrost thaw from the top: On average for the area where permafrost exists in all the years during 1990–2100, active-layer thickness increased by 0.3–0.7 m (or 41–104%), the depth to permafrost table increased by 1.9–5.0 m, and the area with taliks increased exponentially. Permafrost was also thawed from the bottom in southern regions.  相似文献   

15.
The generation and development of dust storms are controlled by land surface conditions and atmospheric circulations. The latter, in turn, is influenced by the global ice–snow cover. In this study, we examine the relationship between the characteristics of dust storm activities in north China and the changes of global climate patterns. In particular, we are interested in whether Arctic ice–snow cover is related to the dust storm frequencies and intensities in north China. Our analysis, based on the monthly data for the period from 1954 to 1994, shows that this is indeed the case. This result suggests that the Arctic ice–snow cover can be used for the long-term prediction of dust storm activities in north China, and dust storm activities also serve as an indicator of global climate change.  相似文献   

16.
The global climate–vegetation model HadSM3_TRIFFID has been used to estimate the equilibrium states of climate and vegetation with pre-industrial and last glacial boundary conditions. The present study focuses on the evaluation of the terrestrial biosphere component (TRIFFID) and its response to changes in climate and CO2 concentration. We also show how, by means of a diagnosis of the distribution of plant functional types according to climate parameters (soil temperature, winter temperature, growing-degree days, precipitation), it is possible to get better insights into the strengths and weaknesses of the biosphere model by reference to field knowledge of ecosystems.The model exhibits profound changes between the vegetation distribution at the Last Glacial Maximum and today that are generally consistent with palaeoclimate data, such as the disappearance of the Siberian boreal forest (taiga), an increase in shrub cover in Europe and an increase of the subtropical desert area. The effective equatorial and sub-tropical tree area is reduced by 18%. There is also an increase in cover of wooded species in North-Western Africa and in Mexico. The analysis of bioclimatic relationships turns out to be an efficient method to infer the contributions of different climatic factors to vegetation changes, both at high latitudes, where the position of the boreal treeline appears in this model to be more directly constrained by the water stress than by summer temperature, and in semi-humid areas where the contributions of temperature and precipitation changes may partly compensate each other. Our study also confirms the major contribution of the decrease in CO2 to environmental changes and carbon storage through its selective impact on gross primary productivity of C3 and C4 plants and a reduction by 25% of water-use efficiency. Specifically, the reduction in CO2 concentration increases the amount of precipitation necessary to sustain at least 20% of grass fraction by 50 mm/year; the corresponding threshold for trees is increased by about 150 mm/year. As a consequence, a reduction in CO2 concentration considerably widens the climatic range where grasses and shrubs dominate.  相似文献   

17.
The effect of climate change on carbon in Canadian peatlands   总被引:3,自引:0,他引:3  
Peatlands, which are dominant features of the Canadian landscape, cover approximately 1.136 million km2, or 12% of the land area. Most of the peatlands (97%) occur in the Boreal Wetland Region (64%) and Subarctic Wetland Region (33%). Because of the large area they cover and their high organic carbon content, these peatlands contain approximately 147 Gt soil carbon, which is about 56% of the organic carbon stored in all Canadian soils.A model for estimating peatland sensitivity to climate warming was used to determine both the sensitivity ratings of various peatland areas and the associated organic carbon masses. Calculations show that approximately 60% of the total area of Canadian peatlands and 51% of the organic carbon mass in all Canadian peatlands is expected to be severely to extremely severely affected by climate change.The increase in average annual air temperature of 3–5 °C over land and 5–7 °C over the oceans predicted for northern Canada by the end of this century would result in the degradation of frozen peatlands in the Subarctic and northern Boreal wetland regions and severe drying in the southern Boreal Wetland Region. In addition, flooding of coastal peatlands is expected because of the predicted rise in sea levels. As a result of these changes, a large part of the carbon in the peatlands expected to be severely and extremely severely affected by climate change could be released into the atmosphere as carbon dioxide (CO2) and methane (CH4), which will further increase climate warming.  相似文献   

18.
The western Guizhou and eastern Yunnan area of southwest China commands a unique and significant position globally in the study of Permian–Triassic boundary (PTB) events as it contains well and continuously exposed PTB sections of marine, non-marine and marginal-marine origin in the same area. By using a range of high-resolution stratigraphic methods including biostratigraphy, eventostratigraphy, chronostratigraphy and chemostratigraphy, not only are the non-marine PTB sections correlated with their marine counterparts in the study area with high-resolution, the non-marine PTB sections of the study area can also be aligned with the PTB Global Stratotype Section and Point (GSSP) at Meishan in eastern China. Plant megafossils (“megaplants”) in the study area indicate a major loss in abundance and diversity across the PTB, and no coal beds and/or seams have been found in the non-marine Lower Triassic although they are very common in the non-marine Upper Permian. The megaplants, however, did not disappear consistently across the whole area, with some elements of the Late Permian Cathaysian Gigantopteris flora surviving the PTB mass extinction and locally even extending up to the Lower Triassic. Palynomorphs exhibit a similar temporal pattern characterized by a protracted stepwise decrease from fern-dominated spores in the Late Permian to pteridosperm and gymnosperm-dominated pollen in the Early Triassic, which was however punctuated by an accelerated loss in both abundance and diversity across the PTB. Contemporaneous with the PTB crisis in the study area was the peculiar prevalence and dominance of some fungi and/or algae species.The temporal patterns of megaplants and palynomorphs across the PTB in the study area are consistent with the regional trends of plant changes in South China, which also show a long-term decrease in species diversity from the Late Permian Wuchiapingian through the Changhsingian to the earliest Triassic, with about 48% and 77% losses of species occurring respectively in the end-Wuchiapingian and end-Changhsingian. Such consistent patterns, at both local and regional scales, contradict the hypothesis of a regional isochronous extinction of vegetation across the PTB, and hence call into question the notion that the end-Permian mass extinction was a one-hit disaster. Instead, the data from the study area and South China appears more consistent with a scenario that invokes climate change as the main driver for the observed land vegetation changes across the PTB in South China.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号