首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The limitations of pulp chemistry measurements in the flotation of a platinum group mineral (PGM) bearing Merensky ore were demonstrated in Part 1 of this article. In this paper the importance of the contribution of the froth structure due to changing froth stability is analysed using the batch flotation data. The effects of mild steel (MS) and stainless steel (SS) milling media and the addition of copper sulphate on the flotation performance of the sulphide minerals in Merensky ore have been evaluated in relation to the changes in stability of the froth phase. The effects of pulp chemistry and froth stability on the flotation of sulphide minerals were distinguished by using two different rate constants (kt and kw). The rate constant (kw) calculated as a function of cumulative water recovery was used to describe characteristics of froth phase and kt was calculated as a function of flotation time. The results revealed that the type of grinding media and copper sulphate addition had an interactive effect on the froth stability. While mild steel (MS) milling increased the froth stability due to the presence of hydrophilic iron hydroxides and colloidal metallic iron, the addition of copper sulphate reduced the stability, especially with stainless steel (SS) milling. Copper sulphate addition had a dual role in the flotation of Merensky ore in that it caused destabilisation of the froth zone as well as activation of selected sulphide minerals. The dominant effect was found to depend on the type of milling media and floatability of the mineral in question and this work has demonstrated the importance of using a combination of measurements to evaluate flotation performance holistically.  相似文献   

2.
The effects of oxidation potential (Eh) and zinc sulphate on the separation of chalcopyrite from pyrite were investigated at pH 9.0. The flotation recovery of these minerals is Eh dependent with maximum separation obtained at 275 mV SHE. Zinc sulphate addition improved this mineral separation at an Eh value of 275 mV by selectively depressing pyrite flotation. A different result was obtained at lower Eh values where zinc sulphate addition improved chalcopyrite flotation but had no or little effect on pyrite flotation. These opposite effects of zinc sulphate on mineral flotation were reconciled by examining the surface species of these minerals. The selective depression of pyrite flotation by zinc sulphate was also confirmed in the flotation of two copper ores.  相似文献   

3.
The separation efficiency and selectivity of flotation are directly proportional to recoveries of the mineral species in the feed due to true flotation and entrainment. In this study, effects of the hydrodynamic conditions on true flotation and entrainment were investigated by using a fractional factorial experimental design. A method previously described in the literature was applied to determine the contributions of true flotation and entrainment in flotation of a complex sulphide ore. In order to apply the method, the kinetic flotation tests were conducted under various hydrodynamic conditions defined by some physical variables. Some of these tests were conducted in the presence and absence of a collector to evaluate the self-induced floatability. The selectivity index of the mineral species for entrainment was seen to be suitable evaluation of the non-selectivity and efficiency of the entrainment. Furthermore, the results of the size-by-size analysis of the froth products indicated that the presence of the self-induced hydrophobic particles in the feed is as important as the presence of very fine particles for accurate estimation of true flotation and entrainment in flotation of a complex sulphide ore. In addition, the estimated results for entrainment in flotation of the complex sulphide ore can be misleading. Therefore, a new approach would be necessary to determine the contributions of true flotation and entrainment in flotation of a complex sulphide ore.  相似文献   

4.
Potato starch and dextrins resulting from thermolysis of potato starch in the absence of reagents and presence of -amino acids are promising depressants for separation of lead and copper minerals present in the Polish industrial copper concentrates. The polysaccharides were used for differential xanthate flotation of the final industrial concentrates produced by flotation with sulfhydryl collectors in the absence of depressants. The polysaccharides depressed galena and provided froth concentrate rich in chalcocite and other copper minerals as well as cell product containing lead minerals. The best results of separation were obtained in the presence of plain dextrin prepared by a thermal degradation of potato starch. The industrial concentrate containing 18.5% Cu and 5.5% Pb was divided into a froth product containing 38.1% Cu with 77% recovery of copper and a cell product assaying 7.3% Pb with 83% recovery of lead. It was accomplished using 2500 g/t of dextrin, 50g/t of potassium ethyl xanthate, and 50 g/t of frother (α-terpineol). The pH of flotation was 8.0–8.2.  相似文献   

5.
四川杨柳坪低品位镍矿工艺矿物学特征   总被引:2,自引:1,他引:1  
四川杨柳坪镍矿石属于低品位镍矿资源,其矿石中镍的品位为0.45%,主要以硫化物形式存在(磁黄铁矿、镍黄铁矿)。镍黄铁矿和磁黄铁矿中镍的占有率在90%以上。主要矿物的工艺嵌布粒度统计分析表明,在较细粒级0.040 mm以下粒级及0.020 mm以下级分别有10%~15%及3.5%~5.5%的含量分布,因此选矿分选过程中,将有部分嵌布粒度较细的硫化物矿物难于解离,由于硫化物的磨矿解离度不高,且主要的硫化物彼此间的连体较多,选矿采用以磁黄铁矿为主的硫化物集合体作为回收单位较为适宜。此外,研究区硫化物矿物的物性较脆,磨矿过程中应防止其过粉碎。  相似文献   

6.
Laboratory batch flotation tests were carried out on a deslimed (+6 μm) sulfiderich cassiterite ore, an ultrafine fraction (?6 μm) of a cassiterite ore and a bituminous coal. Chemical conditions were kept constant but the water recovery was varied by changing the height of the froth column and the rate and depth of froth removed. The recovery of the floatable mineral in each system was then found to be linearly related to the weight of water recovered. The intercept of the regression line on the mineral recovery axis, where the water recovery is zero, was interpreted as the recovery due to true flotation. The entrainment contribution was proportional to the slope of the line. In this way the contributions of entrainment and true flotation to overall recovery were separated.  相似文献   

7.
Both froth flotation and centrifugal concentration were used to pre-concentrate the oil sands froth treatment tailings prior to the recovery of heavy minerals (titanium and zirconium minerals). Over 90% of the heavy minerals were recovered into a bulk flotation concentrate that was about 50% of the feed mass at 85 °C without any reagents. The same recoveries were obtained at 50 °C with the addition of NaOH and/or sodium oleate. However, the flotation concentrate also recovered over 90% of the residual bitumen and much of the clays/slimes. Subsequent treatment of the flotation concentrate such as dewatering and bitumen removal would be difficult due to these residual bitumen and clays. On the other hand, a SB40 centrifugal concentrator recovered over 85% of the heavy minerals but less than 30% of the residual bitumen. With improved liberation the recovery of the residual bitumen into the concentrate could be further reduced. The particle sizes of the SB40 concentrates were also larger than the flotation concentrates, making subsequent processing much easier.  相似文献   

8.
A laboratory flotation column using Venturi aerators and a vacuum system to remove froth was used to investigate the contribution of gas flow, pulp flow, cell volume and froth retention time on the ink removal efficiency and on cellulose fibres and mineral fillers loss. The increase in the gas flow from 4 to 8 L/min gave a general rise of particle transport from the pulp slurry to the froth with an ensuing strong increase in ink removal, from 75% to 85%, and water and total loss, from 10% to 40% and 15% to 30%, respectively. Whereas, the increase of the cell volume from 14 to 24 L improved ink removal from 72% to 80% without considerably affecting flotation loss. The rise of the froth retention time in the flotation cell from 5 to 20 s before removal gave a general decrease in the flotation loss from 20% to 11% without a corresponding decrease in ink removal. This trend was interpreted as reflecting poor ink drainage through the froth. The increase of both pulp and froth retention time in the flotation cell appeared as the most favourable way to improve ink flotation selectivity. A mathematical model, describing particle removal during flotation in terms of true flotation, entrainment and drainage, was proposed and used to fit experimental data.  相似文献   

9.
巩鑫 《地质与勘探》2020,56(1):49-58
云南维西大宝山铜矿区位于青藏高原东南缘,哀牢山-金沙江构造带西北部雪龙山成矿带中,是典型的中低温热液矿床。矿区主要包括望香台及滑石板矿段,根据矿床、矿体特征及详尽的镜下观察,将矿石类型划分为氧化矿、硫化矿及混合矿。氧化矿主要包括孔雀石及蓝铜矿,多分布在望香台矿段中浅部,是辉铜矿次生氧化富集作用的结果,出露形式多以混合矿产出;硫化矿主要包括辉铜矿及黄铜矿,且独立组成不同的矿物组合类型,分别为望香台矿段、滑石板矿段的主要矿石矿物。不同的矿石组合类型所含矿物种类、矿石结构构造不尽相同。通过对不同样品进行化学分析测试,发现在硫化矿辉铜矿等矿物组合中,Cu品位越高,相应Ag品位越高,存在一定的线性关系;而在硫化矿黄铜矿矿体中,Ag含量与Cu品位无相应关系;混合矿(辉铜矿、孔雀石及蓝铜矿)中此类关系更加显著。此外,辉铜矿、孔雀石、蓝铜矿单矿物矿石及混合矿矿石中含有硫砷铜银矿、深红银矿、雌黄及雄黄等伴生矿物,而黄铜矿中矿物种类较为单一。综合矿区地质特征、矿体分布特征、矿物组合类型认为,矿区中辉铜矿、孔雀石、蓝铜矿等组合类型为含银矿物的主要载体。  相似文献   

10.
我国一些铜镍硫化物矿床主要金属矿物的特征   总被引:7,自引:0,他引:7  
镍、铜共生的铜镍硫化物矿床是镍矿也是铜矿的重要矿床类型。磁黄铁矿,镍黄铁矿、黄铜矿是这类矿床的主要金属矿物。它们的某些矿物学特征,特别是微量元素Co/Ni比值,与其他铜矿类型明显不同,这三种矿物组成不同于任何其他铜矿类型的典型矿物共生组合, 形成特殊的海绵损铁状、球滴状构造。  相似文献   

11.
黄松  丁俊华 《矿产与地质》1997,11(5):342-346
狮子山铜矿床中伴生金以矿物态为主,金矿物主要为银金矿和金银矿。根据金矿物的粒度、嵌布状态及载金矿物特征,结合金在选矿流程中的趋向分析,提出了应考虑采取在浮选前增加重选,并注意破碎同分级设备凹槽中滞留的单体金的回收来提高金回收率的建议。  相似文献   

12.
Mike Solomon   《Ore Geology Reviews》2008,33(3-4):329-351
The Ordovician Zn–Pb–Cu massive sulphide ore deposits of the Bathurst mining camp share many features with those of the Devonian/Carboniferous Iberian pyrite belt, particularly the tendency to large size (tonnage and metal content); shape, as far as can be determined after allowing for deformation; metal content, particularly Fe/Cu, Pb/Zn and Sn; mineral assemblages (pyrite + arsenopyrite ± pyrrhotite and lack or rarity of sulphates); sulphide textures (particularly framboidal pyrite); lack of chimney structures and rubble mounds; irregular metal or mineral zoning; and the low degree of zone refining compared to Hokuroku ores. The major differences between the provinces are the lack of vent complexes and the presence of Sn–Cu ores in the Iberian pyrite belt. There are also similarities in the geological setting of the two camps: both lie within continental terranes undergoing arc-continent and continent–continent collision, and in each case massive sulphide mineralisation followed ophiolite obduction; the ore deposits are associated with bimodal volcanic rocks derived from MORB and continental crust and marine shales; and mineralisation was locally accompanied or followed by deposition of iron formations.Fluid inclusion data from veins in stockworks from at least six of the Iberian massive sulphide deposits point to sulphide deposition having taken place in basins containing mostly spent saline, ore-forming fluids (brine pools), and it is suggested that most of the major features of the Bathurst deposits can be explained by similar processes. The proposed model is largely independent of ocean sulphate and O2 content, whereas low values of each are requisites for the current, spreading-plume model of sulphide deposition in the Bathurst camp.  相似文献   

13.
The flotation of chalcopyrite and sphalerite from copper and copper-zinc ores has been achieved without using thiol-type collectors. Typically, a sulfide ore sample is first treated with sodium sulfide either during grinding or during the preflotation conditioning period, and then the chalcopyrite is floated with frother alone. With a copper-zinc ore, sphalerite is subsequently floated from the chalcopyrite tailings by activating it with copper sulphate. Results of the collectorless flotation tests are comparable to those obtained by using thiol collectors. The mechanisms of selective collectorless flotation are discussed on the basis of differences in the solubilities of sulfide minerals.  相似文献   

14.
Conventional and non-conventional flotation for mineral processing and for water (and wastewaters) treatment and reuse (or recycling) is rapidly broadening their applications in the mining field. Conventional flotation assisted with microbubbles (30–100 μm) finds application in the recovery of fine mineral particles (< 13 μm) and flotation with these fine bubbles is being used as a solid/liquid separation to remove pollutants. The injection of small bubbles to conventional coarse bubbles flotation cells usually leads to general improvements of the separation parameters, especially for the ultrafines (< 5 μm) ore particles. Results obtained are believed to occur by enhancing the capture of particles by bubbles, one of the main drawbacks in fine ore flotation. It is believed that by decreasing the bubble size distribution (through the injection of small bubbles), increases the bubble surface flux and the fines capture. DAF or dissolved air flotation with microbubbles, treating water, wastewater and domestic sewage is known for a number of years and is now gradually entering in the mining environmental area. This technology offers, in most cases, advantages over settling, filtration, precipitation, or adsorption onto natural and synthetic adsorbents. The targets are the removal of oils (emulsified or not), ions (heavy metals and anions) and the reuse or recirculation of the process waters. Advantages include better treated water quality, rapid start up, high rate operation, and a thicker sludge. New applications are found in the mining vehicles washing water treatment and reuse, AMD (acid mining drainage) neutralization and high rate solids/water separation by flotation with microbubbles. This work reviews some recent applications of the use of microbubbles to assist the recovery of very small mineral particles and for the removal of pollutants from mining wastewaters. Emphasis is given to the design features of innovative devices showing the potential of conventional and unconventional DAF flotation.  相似文献   

15.
银多金属矿床中黝铜矿族银硫盐矿物的特征及其意义   总被引:10,自引:0,他引:10  
在国内外几个不同成因类型的银多金属矿床内产出的黝铜矿族银硫盐矿物中,除朗达矿床见有砷黝铜矿和含银砷黝铜矿外,较普遍共同发育有黝铜矿、含银黝铜矿和银黝铜矿、而后两者是最主要或主要的工业银矿物之一。按国际矿物学协会新矿物及矿物命名委员会的矿物命名原则,黝铜矿族矿物所含的Fe、Zn、Hg、Cd、Mn等不可作为矿物种的命名元素。蔡家营矿床的含银黝铜矿和银黝铜矿以Fe、Zn含量近似而有别于其余矿床的富Fe贫  相似文献   

16.
The Talvivaara deposit contains 1550 Mt of ore averaging 0.22% Ni, 0.13% Cu, 0.49% Zn and 0.02% Co. The precursors of the host rocks were deposited 2.1–1.9 Ga ago in a stratified marine basin. Fractured talc-carbonate rocks delineate the eastern border of the deposit and serpentinites and talc-carbonate rocks occur along the rift-related sequence to the north and south of Talvivaara. Characteristic features are high concentrations of organic carbon and sulphur with median values of 7.6% and 8.2%, respectively. Organic carbon is graphitic at present and a variety of sulphide textures occur, representing multiphase evolution during diagenesis, tectonic deformation and medium-grade regional metamorphism. The main sulphides of the Talvivaara ore are pyrrhotite, pyrite, sphalerite, chalcopyrite and pentlandite. Sulphides occur both as fine-grained disseminations and coarse grains or aggregates. Chalcopyrite mainly occurs in joint surfaces and quartz-sulphide veins and pentlandite occur as inclusions in pyrrhotite. Alabandite (MnS) occurs in black shales and black metacarbonate rocks. The early low-T sulphide minerals were overprinted by later stage processes. No framboidal pyrite is any longer present, but spheroidal pyrite with a grain size of < 0.01 mm and containing up to 0.7% Ni occurs. During the deposition of the organic-rich mud the anoxic/euxinic bottom waters were enriched in Ni+, Cu+ and Zn2 +. Sulphur isotope δ34S values indicate mixing of sulphur derived from different processes or fractionation by sulphate reduction in a restricted basin. Both thermochemical and bacterial sulphate reductions were important for the generation of reduced sulphur.  相似文献   

17.
The importance of the cleaning action of the froth has been recognised. In order to observe the effect of various mechanisms on the gradients of mineral concentration in the froth, experiments were performed in a flotation cell using a deep froth phase where transverse motion of the froth was reduced to a minimum. The variables chosen for study include gas rate, baffling of the froth and product removal rate. The mineral studied comprised a mixed Cu, Zn and Fe sulphide with a siliceous gangue. A model based on counter-current plug-flow assumptions is advanced to describe some of the effects observed. A number of these effects are simulated using this model, leading to a better understanding of some of the processes occurring in the froth.  相似文献   

18.
The floatability of enargite (3Cu2S.As2S5) has been determined as a function of pulp potential to establish whether the flotation behaviour of the mineral differs sufficiently from that of other copper minerals thus offering the prospect of rejecting arsenic from the Tampakan ore by potential control during flotation.  相似文献   

19.
We carried out a detailed study of sulphide minerals, a ubiquitous mineral group in lower crustal mafic to peraluminous granulite xenoliths from the Diavik kimberlites, to assess their use in constraining the origin and tectonothermal evolution of the deep crust, and to obtain additional data on the composition of lower crust beneath ancient continents. Sulphides are overwhelmingly pyrrhotite with minor Ni (0.7-3.9 at.%), Co (0.1-0.7 at.%), and Cu contents (0.4-3.9 at.%). Sulphide modes in mafic granulites range from 0.14 to 0.55 vol%, translating into bulk rock S contents from ∼600 to 2000 ppm, similar to S contents in other mafic igneous rocks and indicating preservation of primary igneous S contents. In mafic granulites, Re and Os abundances in sulphides range from 42.5 to 726 ppb and 3.2 to 180 ppb, respectively, whereas those in peraluminous granulites are distinctly lower (36.1-282 ppb and 1.8-7.2 ppb, respectively), suggestive of Re and Os loss to fractionating sulphides in the more evolved precursors of these rocks.The significant within-sample variability of 187Os/188Os and correlation with 187Re/188Os indicates the preservation of primary Re-Os isotope systematics and time-integrated decay of the measured 187Re. Within the large uncertainties inherent in the nature of the samples and technique, sulphides in some granulites may record major tectonothermal events in the central Slave craton spanning several billion years of evolution. Multiple generations of sulphide can occur in a single sample. These data attest to the heterogeneous composition and complex history of the Slave craton lower crust.  相似文献   

20.
Summary The Aguablanca Ni-Cu-(PGE) magmatic sulphide deposit is associated with a magmatic breccia located in the northern part of the Aguablanca gabbro (SW, Iberia). Three types of ores are present: semi-massive, disseminated, and chalcopyrite-rich veined ore. The principal ore minerals are pyrrhotite, pentlandite and chalcopyrite. A relatively abundant platinum-group mineral (PGM) assemblage is present and includes merenskyite, melonite, michenerite, moncheite and sperrylite. Moreover, concentrations of base and precious metals and micro-PIXE analyses were obtained for the three ore-types. The mineralogy and the mantle-normalised chalcophile element profiles strongly suggest that semi-massive ore represents mss crystallisation, whereas the disseminated ore represents an unfractionated sulphide liquid and the chalcopyrite-rich veined ore a Cu-rich sulphide liquid. Palladium-bearing minerals occur commonly enclosed within sulphides, indicating a magmatic origin rather than hydrothermal. The occurrences and the composition of these minerals suggest that Pd was initially dissolved in the sulphides and subsequently exsolved at low temperatures to form bismutotellurides. Negative Pt and Au anomalies in the mantle-normalised chalcophile element profiles, a lack of Cu-S correlation and textural observations (such as sperrylite losing its euhedral shape when in contact with altered minerals) suggest partial remobilisation of Pt, Au and Cu by postmagmatic hydrothermal fluids after the sulphide crystallisation. Authors’ addresses: R. Pi?a, L. Ortega, R. Lunar, Departamento de Cristalografía y Mineralogía, Facultad de Geología, Universidad Complutense de Madrid, ES-28040 Madrid, Spain; F. Gervilla, Facultad de Ciencias, Instituto Andaluz de Ciencias de la Tierra, Universidad de Granada-CSIC, Avda. Fuentenueva, s/n, ES-18002 Granada, Spain  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号