首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A raw lignitic coal from Soma, Turkey was investigated to determine its potential as an adsorbent for phenol removal from wastewaters. Kinetic batch tests demonstrated that phenol could be completely removed from solution given sufficient solids loading and reaction time. The adsorption capacity of 10 mg/g obtained with the lignite is low compared to those achievable with activated carbons (around 300 mg/g). However, when normalized for the surface area, the adsorption capacity was much larger for the lignite (1.3 mg/m2) than that generally observed with activated carbons (0.05–0.3 mg/m2). Hydrogen-bonding of the phenolic –OH with the oxygen sites on the lignite surface is the most likely mechanism for adsorption. Though water molecules also have affinity for the same oxygen sites, lateral benzene ring interactions make phenol adsorption energetically more favorable. Since phenol molecules adsorbed in this fashion would project their benzene rings into solution, formation of a second layer through the action of the dispersive π–π interactions between the benzene rings is very likely. Residual water quality with respect to major elements and heavy metals was within acceptable limits defined by the ASTM standards. Dissolution of organic matter from the lignite was also observed to be negligible.  相似文献   

2.
Granular activated carbon produced from palm kernel shell was used as adsorbent to remove copper, nickel and lead ions from a synthesized industrial wastewater.Laboratory experimental investigation was carried out to identify the effect of pH and contact time on adsorption of lead, copper and nickel from the mixed metals solution. Equilibrium adsorption experiments at ambient room temperature were carried out and fitted to Langmuir and Freundlich models. Results showed that pH 5 was the most suitable, while the maximum adsorbent capacity was at a dosage of 1 g/L, recording a sorption capacity of 1.337 mg/g for lead, 1.581 mg/g for copper and 0.130 mg/g for nickel. The percentage metal removal approached equilibrium within 30 min for lead, 75 min for copper and nickel, with lead recording 100 %, copper 97 % and nickel 55 % removal, having a trend of Pb2+ > Cu2+ > Ni2+. Langmuir model had higher R2 values of 0.977, 0.817 and 0.978 for copper, nickel and lead respectively, which fitted the equilibrium adsorption process more than Freundlich model for the three metals.  相似文献   

3.
The experimental conditions for preparation of pomegranate peel carbon and Fe(III) modified pomegranate peel carbon were studied. The effects of main experimental parameters on carbon preparation such as carbonization time, carbonization temperature and Fe(III) impregnation ratio in pomegranate peel were investigated. The prepared carbons in various conditions were characterized by consideration of the production yield, ash content, iodine number, pH of zero point charge and their ability for adsorption of methylene blue. After preparation of carbons, their efficiency for removal of Cd2+ species from aqueous solution was investigated. The effect of experimental parameters such as Cd2+ initial concentration, pH of solution and contact time was studied by batch adsorption experiments. The fitting of experimental data in thermodynamic isotherms matched the linear results with Langmuir and Freundlich isotherms. The adsorption capacity for Cd2+ species on Fe(III) modified pomegranate peel carbon was 22.72 mg/g and the adsorption kinetic presented the pseudo-second-order kinetic model.  相似文献   

4.
In this research, spent coffee grains were modified with citric acid solutions (0.1 and 0.6 M) to increase the quantity of carboxylic groups improving its metal adsorption capacity. Added functional groups on modified and non-modified spent coffee grains were identified and quantified by attenuated total reflection Fourier transform infrared analyses and potentiometric titrations, respectively. These adsorbents were used for the removal of lead (II) and copper (II) from aqueous solutions at 30 °C and different pH in batch systems. In addition, adsorption–desorption experiments were conducted to evaluate the possibility of re-using the modified adsorbent. Potentiometric titrations data reveal that the quantity of carboxylic groups was increased from 0.47 to 2.2 mmol/g when spent coffee grains were modified with 0.1 and 0.6 M citric acid. Spent coffee grains treated with 0.6 M citric acid, achieved a maximum adsorption capacity of 0.77 and 1.53 mmol/g for lead (II) and copper (II), respectively, whereas non-modified spent coffee grains only reached 0.24 and 0.19 mmol/g for lead (II) and copper (II), respectively. Desorption of lead (II) and copper (II) achieved around 70 % using 0.1 N HCl for non-modified and modified spent coffee grains with 0.6 M citric acid. It is suggested that lead (II) and copper (II) species were adsorbed mainly on the carboxylic groups of modified spent coffee grains and these metals may be exchanged for hydrogen and calcium (II) ions during adsorption on non-modified spent coffee grains. Finally, the adsorption equilibrium was reached after 400 min for modified spent coffee grains with 0.6 M citric acid. Modified spent coffee grains are a promising option for removing metal cations from aqueous solutions due to its low cost and high adsorption capacity (about 10 times higher than the activated carbons).  相似文献   

5.
Laboratory scale leaching tests were carried out in different experimental conditions, with monitoring of gold and silver recovery, the concentration of cyanide used in leaching, solution pH, and precious metal adsorption onto clay. Evidence for the adsorption or re-precipitation of gold from cyanide solutions onto clay minerals is conclusive and indicates that adsorption contributes to the total gold loss from conventional cyanidation. The loss is related to the type of clay, and appears to be affected by the extent of time cyanidation. It was observed that silver adsorption capacity was above 80% and that the degree of adsorption for gold oscillated between 1.68% and 7.49%, depending on the type and characteristics of the evaluated clay.  相似文献   

6.
The effects of varying operating conditions on metals removal from aqueous solution using a novel nano-size composite adsorbent are reported in this paper. Characterization of the composite adsorbent material showed successful production of carbon nanotubes on granular activated carbon using 1 % nickel as catalyst. In the laboratory adsorption experiment, initial mixed metals concentration of 2.0 mg/L Cu2+, 1.5 mg/L Pb2+ and 0.8 mg/L Ni2+ were synthesized based on metals concentration from samples collected from a semiconductor industry effluent. The effects of operation conditions on metals removal using composite adsorbent were investigated. Experimental conditions resulting in optimal metals adsorption were observed at pH 5, 1 g/L dosage and 60 min contact time. It was noted that the percentage of metals removal at the equilibrium condition varied for each metal, with lead recording 99 %, copper 61 % and nickel 20 %, giving metal affinity trend of Pb2+ > Cu2+ > Ni2+ on the adsorbent. Langmuir’s adsorption isotherm model gave a higher R2 value of 0.93, 0.89 and 0.986 for copper, nickel and lead, respectively, over that of Freundlich model during the adsorption process of the three metals in matrix solution.  相似文献   

7.
This work describes a laboratory study concerning the adsorption of isopropylxanthate ions onto modified zeolites particles. The separation of the loaded carrier and their removal, from aqueous solutions, was conducted by flocculation followed by dissolved air flotation, DAF. The zeolite employed was a natural sample (approximately 48% clinoptilolite and 30% mordenite) which was previously treated with sodium ions (activation) and modified with copper ions (Cu–Z) before the xanthate ions uptake. Adsorption capacities (qm) for Cu–Z were 0.34 meq g− 1 for the powdered form, and 1.12 meq g− 1 for the floc form. The adsorption capacity for the floc form appears to involve an enhanced electrostatic adsorption due to the positive sites on the floc surface. In all cases, the isopropylxanthate concentration in the treated water was found to be negligible (< 0.04 mg L− 1). The flotation technique showed to be a fast process, requires a low recycle ratio (20%) in air saturated water, and the treated water ended up with a very low residual turbidity (6.8 NTU). It is believed that this adsorption–flotation technique, here named adsorptive particulate flotation, using activated and modified natural zeolite has a high potential as an alternative for pollutants removal (copper and isopropylxanthate ions) from waste mining effluents.  相似文献   

8.
The carbon–alumina composite pellet was developed for the adsorption of acid fuchsin from its aqueous solution. The composite pellet was characterized using Brunauer–Emmett–Teller method, scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy. The adsorption capacity of commercial alumina, commercial activated carbon and the prepared composite pellet was investigated against acid fuchsin, and the adsorption capacity was found to be increased in the order of alumina < carbon–alumina composite pellet < activated carbon. Although the adsorption capacity of carbon–alumina composite pellets was less than that of activated carbon, the use of the pelletized form of the present adsorbent was proven to be advantageous for the use in the packed-bed column. The experimental data were fitted to Langmuir, Freundlich and Temkin adsorption isotherms, and the equilibrium behavior was well explained by Langmuir isotherm. Besides, the kinetic behavior was well predicted by pseudo-second-order kinetics. The effects of inlet dye concentration (10–20 mg/L), feed flowrate (5–15 mL/min) and bed height (2.54–7.62 cm) on the breakthrough characteristics were investigated using a fixed-bed column. The maximum removal capacity in the column study was found to be 343.87 mg/L with an initial dye concentration and flowrate of 20 and 10 mL/min according to Bohart–Adams model. The breakthrough behavior was also effectively described by the Yoon–Nelson and Clark models.  相似文献   

9.
New bio-adsorbent carbon materials were synthesized from the leaves and veins of Mucuna pruriens and Manihot esculenta plants, which are locally available in abundance. The synthesized carbons were activated using 0.01N HNO3. Surface area of the activated carbons from M. pruriens and M. esculenta plants was found to be quite high, i.e., 918 and 865 m2/g, respectively. Scanning electron microscopy analysis of the carbons reflects complex disorganized surface structures of different open pore sizes, shapes and dimensions. These properties of the newly synthesized activated carbons led to the development of a sand-supported carbon column, for its possible use in the removal of coliform bacteria and Escherichia coli (E. Coli) from raw water samples. The removal percentage of E. coli was found to be 100% with both the types of carbon adsorbents, as confirmed from the McCardy most probable number table. Similarly, the removal percentage of coliform bacteria was found to be 99 and 98.7% by M. pruriens and M. esculenta carbon columns, respectively. These activated carbons synthesized from locally available plants possess the characteristics of good low-cost adsorbents which can be easily used for the removal of bacteria from water by adsorption method.  相似文献   

10.
This work aimed to investigate the adsorption characteristics, both kinetically and thermodynamically, of Cu(II) and Pb(II) removal from aqueous solutions onto mixed-waste activated carbon, as well as to study the competitive behavior found in mixed heavy metal solution systems. This study shows that activated carbon prepared from mixed waste is an effective adsorbent for the removal of Cu(II) and Pb(II) from aqueous solutions, with the aim of detoxifying industrial effluents before their safe disposal onto water surfaces. The adsorption process was characterized in terms of kinetic and thermodynamic studies. In addition, the influence of presence of Cu(II) and Pb(II) in a competitive system was investigated. The results showed that the maximum adsorption capacities were gained at a pH of 6 with a contact time of 180 min, a metal solution concentration of 300 ppm, and an adsorbent dose of 0.3 g/L. The adsorption process was found to follow a pseudo-first-order kinetic model. Thermodynamic parameters such as ΔG o, ΔH o, and ΔS o showed that the sorption process was spontaneous and endothermic in nature. A competitive study demonstrated the applicability of mixed-waste activated carbon to adsorb Cu(II) and Pb(II) from a solution of mixed metals. In addition, the adsorption capacity was found to be as effective as other adsorbents reported in the literature. The developed adsorptive removal procedure was applied for treatment of real wastewater samples and showed high removal efficiency.  相似文献   

11.
Multi-walled carbon nanotubes were used successfully for the removal of Copper(II), Lead(II), Cadmium(II), and Zinc(II) from aqueous solution. The results showed that the % adsorption increased by raising the solution temperature due to the endothermic nature of the adsorption process. The kinetics of Cadmium(II), Lead(II), Copper(II), and Zinc(II) adsorption on Multi-walled carbon nanotubes were analyzed using the fraction power function model, Lagergren pseudo-first-order, pseudo-second-order, and Elovich models, and the results showed that the adsorption of heavy metal ions was a pseudo-second-order process, and the adsorption capacity increased with increasing solution temperature. The binding of the metal ions by the carbon nanotubes was evaluated from the adsorption capacities and was found to follow the following order: Copper(II) > Lead(II) > Zinc(II) > Cadmium(II). The thermodynamics parameters were calculated, and the results showed that the values of the free energies were negative for all metals ions, which indicated the spontaneity of the adsorption process, and this spontaneity increased by raising the solution temperature. The change in entropy values were positives, indicating the increase in randomness due to the physical adsorption of heavy metal ions from the aqueous solution to the carbon nanotubes’ surface. Although the enthalpy values were positive for all metal ions, the free energies were negative, and the adsorption was spontaneous, which indicates that the heavy metal adsorption of Multi-walled carbon nanotubes was an entropy-driving process.  相似文献   

12.
The carbon molecular sieves (CMSs) prepared by carbonaceous materials as precursors are effective in CO2/N2 separation. However, selectivity of these materials is too low, since hydrocarbon cracking for developing the desired microporosity in carbonaceous materials has not been done effectively. Hence, in this study, cobalt and nickel impregnation on the precursor was conducted to introduce catalysts for hydrocarbon cracking. Cobalt and nickel impregnation, carbonization under N2 atmosphere, and chemical vapor deposition (CVD) by benzene were conducted on the extruded mixtures of activated carbon and coal tar pitch under different conditions to prepare CMSs. The best CMS prepared by carbon deposition on the cobalt-impregnated samples exhibited CO2 adsorption capacity of 54.79 mg/g and uptake ratio of 28.9 at 0 °C and 1 bar. In terms of CO2 adsorption capacity and uptake ratio, CMSs prepared by carbon deposition on non-impregnated and cobalt-impregnated samples presented the best results, respectively. As benzene concentration and CVD time increased, equilibrium adsorption capacity of CO2 decreased, and uptake ratio increased. Cobalt was found to be the best catalyst for benzene cracking in the CVD process.  相似文献   

13.
Beidellite, a low-cost, locally available and natural mineral was used as an adsorbent for the removal of lead and cadmium ions from aqueous solutions in batch experiments. The kinetics of adsorption process was tested for the pseudo first-order, pseudo second-order reaction and intra-particle diffusion models. The rate constants of adsorption for all these kinetic models were calculated. Comparison amongst the models showed that the sorption kinetics was best described by the pseudo second-order model. Langmuir and Freundlich isotherm models were applied to the experimental equilibrium data for different temperatures. The adsorption capacities (Q°) of beidellite for lead and cadmium ions were calculated from the Langmuir isotherm. It was found that adsorption capacity was in the range of 83.3–86.9 for lead and 42–45.6 mg/g for cadmium at different temperatures. Thermodynamic studies showed that the metal uptake reaction by beidellite was endothermic in nature. Binary metal adsorption studies were also conducted to investigate the interactions and competitive effects in binary adsorption process. Based on the optimum parameters found, beidellite can be used as adsorbent for metal removal processes.  相似文献   

14.
Activated carbons have been proven to be effective adsorbents for the removal of Pb (II) and Zn (II) dissolved in aqueous media. The study of adsorption of Pb (II) and Zn (II) on two different size fractions from a composite coal sample of Maghara coal mine, C63 (63–125 μm) and C250 (125–250 μm) is presented in this paper. C63 and C250 were treated in water solutions of 50 mM lead and zinc acetates. X-ray photoelectron spectroscopy (XPS) was used to characterize the starting and treated coal surfaces. The high surface area and surface functional groups (carboxy and phenolic) enable activated bituminous coal of Maghara to act as efficient adsorbents for removing dissolved Pb (II) and Zn (II) in alkaline medium.  相似文献   

15.
Porous carbons are extensively applied in gas separation, water purification, catalytic reaction, and electrochemical processing, attributing to their high specific surface area, large pore volume, chemical inertness, and good mechanical and thermal stability. The templating method is widely used to synthesize porous carbons with the controlled pore structure. Among them, preparation of diatomite-templated carbons attracts increasing attention because the obtained carbon has unique developed macropores and exhibits the promising application in adsorption and support of large-sized molecules. Macroporous diatomite-templated carbons are prepared by using additive or inherent solid acid sites of diatomite as the catalyst. The obtained carbons showed tubular and pillared macroporous structures, and had a few mesopores and micropores. However, the carbons possessed the small specific surface area and micropore volume, and thus showed the low adsorption capacity of small-sized molecules, such as methylene blue (MB). In this case, enhancement of porosity, especially microporosity, is necessary.  相似文献   

16.
The effect of carbon or graphite coating on the adsorption of gold cyanide on pyrite was investigated with pure pyrite and a pyrite concentrate. In the carbon or graphite-contaminated pyrite systems carbon and graphite not only acted as gold sorbents, but also enhanced gold adsorption on pyrite. The carbon coating enhanced gold adsorption on pyrite to a larger extent, in comparison with the graphite coating. The carbon or graphite coating on pyrite reduced the negativity of the pyrite surfaces, and hence improved the physical adsorption of gold cyanide on pyrite. In addition, the highly conductive coating of carbon or graphite on pyrite could enhance electron transfer in the electrochemical reactions occurring in the chemical adsorption of gold and gold reduction on pyrite. The preg-robbing by pyrite or the graphite-coated pyrite was reduced and further eliminated at higher cyanide concentrations. However, gold adsorption on the carbon-coated pyrite could not be prevented even at higher cyanide concentrations due to gold adsorption on the carbon coating. In comparison with pure pyrite, the pyrite concentrate had a higher capacity adsorbing gold, due to the presence of carbonaceous matter in the pyrite concentrate. Fine grinding intensified the smearing of carbon or graphite on the mineral particles, resulting in a larger extent of enhancement in the preg-robbing of the concentrate by the carbon or graphite coating.A diagnostic elution of the preg-robbing pyrite samples indicated that the reduction of gold at the pyrite surfaces was the dominant mechanism for gold adsorption on pyrite, followed by physical and chemical adsorption. Surface topological studies by SEM/EDX showed that gold adsorbed at defect sites on pyrite surfaces. For the pyrite with a 5% carbon coating, gold was observed to adsorb not only at the defect sites, but also at the smooth surfaces with carbon present. For the pyrite with a 5% graphite coating, carbon was also found at the pyrite surfaces, but gold was only detected at the defect sites. XPS studies revealed that part of the gold physically and chemically adsorbed on pyrite or pyrite coated with carbon or graphite. Some gold cyanide was reduced at the pyrite surfaces, with the sulphide ions of pyrite being oxidised to elemental sulphur.  相似文献   

17.
The effect of carbon or graphite coating on the adsorption of gold cyanide on pyrite was investigated with pure pyrite and a pyrite concentrate. In the carbon or graphite contaminated pyrite systems carbon and graphite not only acted as gold sorbents, but also enhanced gold adsorption on pyrite. The carbon coating enhanced gold adsorption on pyrite to a larger extent, in comparison with the graphite coating. The carbon or graphite coating on pyrite reduced the negativity of the pyrite surfaces, and hence improved the physical adsorption of gold cyanide on pyrite. In addition, the highly conductive coating of carbon or graphite on pyrite could enhance electron transfer in the electrochemical reactions occurring in the chemical adsorption of gold and gold reduction on pyrite. The preg-robbing by pyrite or the graphite-coated pyrite was reduced and further eliminated at higher cyanide concentrations. However, gold adsorption on the carbon-coated pyrite could not be prevented even at higher cyanide concentrations due to gold adsorption on the carbon coating. In comparison with pure pyrite, the pyrite concentrate had a higher capacity adsorbing gold, due to the presence of carbonaceous matter in the pyrite concentrate. Fine grinding intensified the smearing of carbon or graphite on the mineral particles, resulting in a larger extent of enhancement in the preg-robbing of the concentrate by the carbon or graphite coating.A diagnostic elution of the preg-robbing pyrite samples indicated that the reduction of gold at the pyrite surfaces was the dominant mechanism for gold adsorption on pyrite, followed by physical and chemical adsorption. Surface topological studies by SEM/EDX showed that gold adsorbed at defect sites on pyrite surfaces. For the pyrite with a 5% carbon coating, gold was observed to adsorb not only at the defect sites, but also at the smooth surfaces with carbon present. For the pyrite with a 5% graphite coating, carbon was also found at the pyrite surfaces, but gold was only detected at the defect sites. XPS studies revealed that part of the gold physically and chemically adsorbed on pyrite or pyrite coated with carbon or graphite. Some gold cyanide was reduced at the pyrite surfaces, with the sulphide ions of pyrite being oxidised to elemental sulphur.  相似文献   

18.
An activated carbon-impregnated cellulose filter was fabricated, and the capacity to remove dust and volatile organic compounds was evaluated in a laboratory. The adsorption capacities for benzene, toluene, ethyl benzene and m-xylene gases were compared by an adsorption isotherm test conducted as a preliminary test, showing that m-xylene and benzene were the most and least favorable for adsorption onto activated carbon, respectively. Cellulose filters were made with four levels of activated carbon contents, and dust removal was performed with all of the filters showing 99 % and higher efficiencies stable with a small variation during the experiment. Activated carbon content of 5 g in the unit filter area (125 g/m2) was found optimum for benzene, toluene, ethylbenzene and m-xylene removal, as it appeared that higher than 5 g activated carbon content was unnecessary for the improvement of its capacity. With increasing benzene, toluene, ethylbenzene and m-xylene loading, the highest removal rates were determined as 0.33–0.37 mg/cm2 s for as short as 0.0046 s of air filter residence time. The rapid removal was possible because of the high surface area of the activated carbon-impregnated cellulose filter provided by powdered activated carbon, which is distinguished from the granular form in conventional activated carbon towers. As fixed within a cellulose scaffolding structure, the powdered activated carbon performed excellent benzene, toluene, ethylbenzene, and m-xylene adsorption (98.9–100 %), and at the same time, particular matters were removed in average 99.7 % efficiency after being filtered through the cellulose filter sheet.  相似文献   

19.
At present, there is growing interest in using low cost, commercially available materials for the adsorption of heavy metals. The major advantages of adsorption technologies are its effectiveness in reducing the concentration of heavy metal ions to very low levels and the use of inexpensive adsorbent materials. In this review, agricultural and forest waste adsorbents were used to remove Pb2+ ions in wastewater treatment, and their technical feasibilities were reviewed in studies mainly from 2000 to 2010. They all were compared with each other by metal binding capacities, metal removal performances, sorbent dose, optimum pH, temperature, initial concentration and contact time. Although commercial activated carbon is widely used in wastewater treatment applications, it has high costs. The use of agricultural by-products as adsorbent material to purify heavy metal contaminated water has become increasingly popular through the past decade because they are less expensive, biodegradable, abundant and efficient. Instead of activated carbon, this study was focused on the inexpensive materials such as agricultural and forest waste. It was shown that these alternative adsorbents had sufficient binding capacity to remove Pb2+ ions from wastewater.  相似文献   

20.
The adsorption of hexamine onto powdered activated carbon from aqueous solutions was studied in a fixed bed system. Langmuir, Freundlich, Redlich–Peterson and Toth isotherm models were used to fit the experimental data and isotherm parameters were determined. The results revealed that the adsorption isotherm models fitted the data in the order of Langmuir > Toth > Redlich–Peterson > Freundlich. Lagergren pseudo-first order kinetic model was found to correlate well with the experimental data. The effects of solution pH, temperature, initial hexamine concentration and added salts concentration on the adsorption capacity and the rate of adsorption were studied. The results indicate that the rate of adsorption increases and then decreases as temperature of the hexamine solution increases, however, the adsorption capacity decreases. The addition of low concentration of salt significantly increases the adsorption capacity of activated carbon. The results showed that the activated carbon has potential for the adsorption of hexamine from industrial hexamine wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号