共查询到5条相似文献,搜索用时 0 毫秒
1.
In geological imaging spectrometry (i.e., hyperspectral remote sensing), surface compositional information (e.g., mineralogy and subsequently chemistry) is obtained by statistical comparison (by means of spectral matching algorithms) of known field- or library spectra to unknown image spectra. Though these algorithms are readily used, little emphasis has been given to comparison of the performance of the various spectral matching algorithms. Four spectral measures are presented: three that calculate the angle (spectral angle measure, SAM), the vector distance (Euclidean distance measure, ED) or the vector cross-correlation (spectral correlation measure, SCM), between a known reference and unknown target spectrum and a fourth measure that measures the discrepancy of probability distributions between two pixel vectors (the spectral information divergence, SID). The performance of these spectral similarity measures is compared using synthetic hyperspectral and real (i.e., Airborne Visible Infrared Imaging Spectrometer, AVIRIS) hyperspectral data of a (artificial or real) hydrothermal alteration system characterised by the minerals alunite, kaolinite, montmorillonite and quartz. Two statistics are used to assess the performance of the spectral similarity measures: the probability of spectral discrimination (PSD) and the power of spectral discrimination (PWSD). The first relates to the ability of the selected set of spectral endmembers to map a target spectrum, whereas the second expresses the capability of a spectral measure to separate two classes relative to a reference class. Analysis of the synthetic data set (i.e., simulated alteration zones with crisp boundaries at 1–2 nm spectral resolution) shows that (1) the SID outperforms the classical empirical spectral matching techniques (SAM, SCM and ED), (2) that SCM (SID, SAM and ED do not) exploits the overall shape of the reflectance curve and hence its outcomes are (positively and negatively) affected by the spectral range selected, (3) SAM and ED give nearly similar results and (4) for the same reason as in (2), the SCM is also more sensitive (again in positive and negative sense) to the spectral noise added. Results from the study of AVIRIS data show that SAM yields more spectral confusion (i.e., class overlap) than SID and SCM. In turn, SID is more effective in mapping the four target minerals than SCM as it clearly outperforms SCM when the target mineral coincides with the mineral phase on the ground. 相似文献
2.
Since the collapse of the Soviet Union, the crop cultivation structure in the Aral Sea Basin has changed dramatically, and these changes are worth studying. However, historical crop remote sensing mapping at the watershed scale remains challenging, especially crop misclassification at the cropland edge due to mixed pixels. Therefore, we proposed a field segmentation approach to constrain field edges based on time-series Sentinel-2 remote sensing images and the Google Earth Engine platform and then employed the random forest algorithm to perform crop classification based on time series Landsat/Sentinel-2 images and crop phenology information to produce historical crop maps in the Aral Sea Basin from the 1990s onward. The results showed that the intersection over union between the extracted field edges and in situ-measured field size data was 0.65. The overall accuracy of crop mapping was 95.2% in 2019. Then, we extended our method to historical mapping over the 1991–2015 period with accuracies ranging from 82.8% to 91.3%. Moreover, our method applied to historical mapping works well in terms of accuracy and policy matching. These findings indicate that our method can accurately distinguish cropland edges to reduce classification errors due to mixed pixels. This method is promising for solving the cropland edge problem for historical crop mapping in the Aral Sea Basin and can potentially provide a reference for historical crop classification in other watersheds of the world. 相似文献
3.
Over the past decades, Spartina alterniflora, one of the top exotic invasive plants in China, has expanded throughout coastal China. In the Yellow River Delta (YRD), the rapid expansion of S. alterniflora has caused serious negative ecological effects. Current studies have concentrated primarily on mapping the distribution of S. alterniflora with medium-resolution satellite imagery at the regional or landscape scale, which have a limited capability in early detection and monitoring of the invasive process at the patch scale. In this study, we proposed a framework for monitoring the early stage invasion of S. alterniflora patches in the YRD using multiyear multisource high-spatial-resolution satellite imagery with various ground sampling distances (WorldView-2, SPOT-6, GaoFen-1, GaoFen-2, and GaoFen-6 from 2012 to 2019). First, we proposed to use deep-learning-based image super-resolution models to enhance all images to submeter (0.5 m) resolution. Then, we adopted stepwise evolution analysis-based image segmentation and object-based classification rules to detect and delineate S. alterniflora patches from the super-resolved imagery. By investigating Super-Resolution Convolutional Neural Networks (SRCNN) and Fast Super-Resolution Convolutional Neural Networks (FSRCNN) and comparing these methods with the conventional bicubic interpolation method for image resolution enhancement, we concluded that FSRCNN was superior in constructing spectral and structural details from the 1 m/1.5 m/2 m resolution images to 0.5 m resolution. FSRCNN, in particular, was more effective and efficient in discerning and estimating the size of small S. alterniflora patches (<50 m2). Using our method, 76 of 83 field-measured small patches were accurately detected and the delineated S. alterniflora patch perimeters agreed well with the field-measured patch perimeters (root mean square error [RMSE] = 8.29 m, mean absolute percentage error [MAPE] = 23.46 %). The invasion process showed fast expansion from 2012 to 2015 and slow growth from 2016 to 2019. We observed that the landward limits of S. alterniflora patches were influenced by elevation and vicinity to tidal creeks. 相似文献
4.
The Geoscience Laser Altimeter System (GLAS) aboard Ice, Cloud and land Elevation Satellite (ICESat) is a spaceborne LiDAR sensor. It is the first LiDAR instrument which can digitize the backscattered waveform and offer near global coverage. Among others, scientific objectives of the mission include precise measurement of vegetation canopy heights. Existing approaches of waveform processing for canopy height estimation suggest Gaussian decomposition of the waveform which has the limitation to properly characterize significant peaks and results in discrepant information. Moreover, in most cases, Digital Terrain Models (DTMs) are required for canopy height estimation. This paper presents a new automated method of GLAS waveform processing for extracting vegetation canopy height in the absence of a DTM. Canopy heights retrieved from GLAS waveforms were validated with field measured heights. The newly proposed method was able to explain 79% of variation in canopy heights with an RMSE of 3.18 m, in the study area. The unexplained variation in canopy heights retrieved from GLAS data can be due to errors introduced by footprint eccentricity, decay of energy between emitted and received signals, uncertainty in the field measurements and limited number of sampled footprints.Results achieved with the newly proposed method were encouraging and demonstrated its potential of processing full-waveform LiDAR data for estimating forest canopy height. The study also had implications on future full-waveform spaceborne missions and their utility in vegetation studies. 相似文献
5.
This paper presents an improved Dark Dense Vegetation (DDV) method for retrieving 500 m-resolution aerosol optical depth (AOT) based on MOD04-C005 arithmetic with the Moderate Resolution Imaging Spectroradiometer (MODIS) from the National Aeronautics and Space Administration (NASA). The improvements include change of the movement pattern of retrieval window, selection of a more suitable aerosol type, and storage of the look-up table. The method is then applied to obtain the AOT over the Pearl River Delta region (PRD). By comparing the results with the co-temporal ground sunphotometer observations in 2010, the correlation coefficient is found to be 0.794 with RMSE 0.139 and their variations remain consistent. Contrasts between model values in 2008 and MODIS AOT products in the same date also reveal a high accuracy of the improved DDV method. We also performed sensitivity tests to analyze the impacts of several parameters on apparent reflectance at different bands, and the results show that apparent reflectance is much more sensitive to surface reflectance and AOT than to elevation. 相似文献