首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arsenopyrite (FeAsS) and enargite (Cu3AsS4) fractured in a nitrogen atmosphere were characterised after acidic (pH 1.8), oxidative dissolution in both the presence and absence of the acidophilic microorganism Leptospirillum ferrooxidans. Dissolution was monitored through analysis of the coexisting aqueous solution using inductively coupled plasma atomic emission spectroscopy and coupled ion chromatography-inductively coupled plasma mass spectrometry, and chemical changes at the mineral surface observed using X-ray photoelectron spectroscopy and environmental scanning electron microscopy (ESEM). Biologically mediated oxidation of arsenopyrite and enargite (2.5 g in 25 ml) was seen to proceed to a greater extent than abiotic oxidation, although arsenopyrite oxidation was significantly greater than enargite oxidation. These dissolution reactions were associated with the release of ∼917 and ∼180 ppm of arsenic into solution. The formation of Fe(III)-oxyhydroxides, ferric sulphate and arsenate was observed for arsenopyrite, thiosulphate and an unknown arsenic oxide for enargite. ESEM revealed an extensive coating of an extracellular polymeric substance associated with the L. ferrooxidans cells on the arsenopyrite surface and bacterial leach pits suggest a direct biological oxidation mechanism, although a combination of indirect and direct bioleaching cannot be ruled out. Although the relative oxidation rates of enargite were greater in the presence of L. ferrooxidans, cells were not in contact with the surface suggesting an indirect biological oxidation mechanism. Cells of L. ferrooxidans appear able to withstand several hundreds of ppm of As(III) and As(V).  相似文献   

2.
The leaching kinetics of chalcopyrite (CuFeS2) concentrate in sulfuric acid leach media with and without the initial addition of Fe3+ under carefully controlled solution conditions (Eh 750 mV SHE, pH 1) at various temperatures from 55 to 85 °C were measured. Kinetic analyses by (i) apparent rate (not surface area normalised), and rate dependence using (ii) a shrinking core model and (iii) a shrinking core model in conjunction with Fe3+ activity, were performed to estimate the activation energies (Ea) for Cu and Fe dissolution.The Ea values determined for Cu and Fe leaching in the absence of added Fe3+ are within experimental error, 80 ± 10 kJ mol−1 and 84 ± 10 kJ mol−1, respectively (type iii analyses Ea are quoted unless stated otherwise), and are indicative of a chemical reaction controlled process. On addition of Fe3+ the initial Cu leach rate (up to 10 h) was increased and Cu was released to solution preferentially over Fe, with the Ea value of 21 ± 5 kJ mol−1 (type ii analysis) suggestive of a transport controlled rate determining process. However, the rate of leaching rapidly decreased until it was consistently slower than for the equivalent leaches where Fe3+ was not added. The resulting Ea value for this leach regime of 83 ± 10 kJ mol−1 is within experimental error of that determined in the absence of added Fe3+. In contrast to Cu release, Fe release to solution was consistent with a chemical reaction controlled leach rate throughout. The Fe release Ea of 76 ± 10 kJ mol−1 is also within experimental error of that determined in the absence of added Fe3+. Where type (ii) and (iii) analyses were both successfully carried out (in all cases except for Cu leaching with added Fe3+, <10 h) the Ea derived are within experimental error. However, the type (iii) analyses of the leaches in the presence of added Fe3+ (>10 h), as compared to in the absence of added Fe3+, returned a considerably smaller pre-exponential factors for both Cu and Fe leach analyses commensurate with the considerably slower leach rate, suggestive of a more applicable kinetic analysis.XPS examination of leached chalcopyrite showed that the surface concentration of polysulfide and sulfate was significantly increased when Fe3+ was added to the leach liquor. Complementary SEM analysis revealed the surface features of chalcopyrite, most likely due to the nature of the polysulfide formed, are subtly different with greater surface roughness upon leaching in the absence of added Fe3+ as compared to a continuous smooth surface layer formed in the presence of added Fe3+. These observations suggest that the effect of Fe3+ addition on the rate of leaching is not due to the change in the chemical reaction controlled mechanism but due to a change in the available surface area for reaction.  相似文献   

3.
In this study, changes in surface area, morphology and leachability of antimony from mechanically activated berthierite—FeSb2S4, boulangerite—Pb5Sb4S11 and franckeite—FePb5Sn3Sb2S14 by a high-energy planetary mill were investigated. It appears that a selective extraction of antimony from these complex sulphosalts in alkaline solution of sodium sulphide is positively affected by mechanical activation. The influence of milling on mineral particle size and shape was studied by scanning electron microscopy. The temperature dependencies of berthierite alkaline leaching were investigated in an interval of 323–363 K. Resulting experimental activation energies E a were 0.11 and 6.78 kJ mol−1 for mechanically activated berthierite due to a break of Arrhenius plot. The values E a are characteristic for a process controlled by diffusion as the rate-controlling step of leaching reaction.  相似文献   

4.
Copper isotope fractionation in acid mine drainage   总被引:4,自引:0,他引:4  
We measured the Cu isotopic composition of primary minerals and stream water affected by acid mine drainage in a mineralized watershed (Colorado, USA). The δ65Cu values (based on 65Cu/63Cu) of enargite (δ65Cu = −0.01 ± 0.10‰; 2σ) and chalcopyrite (δ65Cu = 0.16 ± 0.10‰) are within the range of reported values for terrestrial primary Cu sulfides (−1‰ < δ65Cu < 1‰). These mineral samples show lower δ65Cu values than stream waters (1.38‰ ? δ65Cu ? 1.69‰). The average isotopic fractionation (Δaq-min = δ65Cuaq − δ65Cumin, where the latter is measured on mineral samples from the field system), equals 1.43 ± 0.14‰ and 1.60 ± 0.14‰ for chalcopyrite and enargite, respectively. To interpret this field survey, we leached chalcopyrite and enargite in batch experiments and found that, as in the field, the leachate is enriched in 65Cu relative to chalcopyrite (1.37 ± 0.14‰) and enargite (0.98 ± 0.14‰) when microorganisms are absent. Leaching of minerals in the presence of Acidithiobacillus ferrooxidans results in smaller average fractionation in the opposite direction for chalcopyrite (Δaq-mino=-0.57±0.14, where mino refers to the starting mineral) and no apparent fractionation for enargite (Δaq-mino=0.14±0.14). Abiotic fractionation is attributed to preferential oxidation of 65Cu+ at the interface of the isotopically homogeneous mineral and the surface oxidized layer, followed by solubilization. When microorganisms are present, the abiotic fractionation is most likely not seen due to preferential association of 65Cuaq with A. ferrooxidans cells and related precipitates. In the biotic experiments, Cu was observed under TEM to occur in precipitates around bacteria and in intracellular polyphosphate granules. Thus, the values of δ65Cu in the field and laboratory systems are presumably determined by the balance of Cu released abiotically and Cu that interacts with cells and related precipitates. Such isotopic signatures resulting from Cu sulfide dissolution should be useful for acid mine drainage remediation and ore prospecting purposes.  相似文献   

5.
Increasing attention is being focused on the rapid rise of CO2 levels in the atmosphere, which many believe to be the major contributing factor to global climate change. Sequestering CO2 in deep geological formations has been proposed as a long-term solution to help stabilize CO2 levels. However, before such technology can be developed and implemented, a basic understanding of H2O–CO2 systems and the chemical interactions of these fluids with the host formation must be obtained. Important issues concerning mineral stability, reaction rates, and carbonate formation are all controlled or at least significantly impacted by the kinetics of rock–water reactions in mildly acidic, CO2-saturated solutions. Basalt has recently been identified as a potentially important host formation for geological sequestration. Dissolution kinetics of the Columbia River Basalt (CRB) were measured for a range of temperatures (25–90 °C) under mildly acidic to neutral pH conditions using the single-pass flow-through test method. Under anaerobic conditions, the normalized dissolution rates for CRB decrease with increasing pH (3 ? pH ? 7) with a slope, η, of −0.15 ± 0.01. Activation energy, Ea, has been estimated at 32.0 ± 2.4 kJ mol−1. Dissolution kinetics measurements like these are essential for modeling the rate at which CO2-saturated fluids react with basalt and ultimately drive conversion rates to carbonate minerals in situ.  相似文献   

6.
7.
8.
To aid our research in geographical forensic provenancing and food authentication we have developed high resolution prediction maps of the annual mean deuterium and oxygen-18 composition of modern precipitation. The maps have a spatial resolution of 10′ (∼ 20 × 20 km at the equator) and cover the global land surface excluding the Antarctic. To achieve this, the relation between various temperature related variables and the isotopic composition of modern precipitation was explored using a combination of high resolution climate maps and global isotope records from the GNIP database. This revealed that the isotopic composition of precipitation is somewhat better correlated to the temperature during the coldest – often driest – period of year than the temperatures during the warmest – often wettest – period of year (especially below 0 °C). Although the reason for this effect is not directly clear, the temperature during the coldest quarter is used as ancillary variable in simple kriging with varying local means (SKlm). In SKlm, only the residual isotope values from the regression with Tcq are kriging interpolated, which are then added to the predicted isotope map based on Tcq. Because the ancillary variable explains the bulk of the isotopic variation (R2 = 0.79–0.85), the deuterium and oxygen-18 maps mainly reflect the large scale global temperature pattern. More local isotope effects are accounted for by the interpolation of the residual values. This study furthermore shows that surface temperature better explains the global isotopic variation compared to a combination of latitude and altitude (R2 = 0.68–0.69). Yet, at very low temperatures (< − 40 °C) our maps might underestimate the true isotope signal. The new isotope maps and the maps of the 95% confidence intervals can be downloaded from www.waterisotopes.org.  相似文献   

9.
Diffusion parameters for HTO, 36Cl, and 125I were determined on Upper Toarcian argillite samples from the Tournemire Underground Research Laboratory (Aveyron, France) using the through diffusion technique. The direction of diffusion was parallel to the bedding plane. The purpose of the present study was 3-fold; it was intended (i) to confirm the I interaction with Upper Toarcian argillite and to verify the effects of initial I concentration on this affinity, as previously observed by means of radial diffusion experiments, (ii) to highlight any discrepancy between Cl and I diffusivity, and (iii) to investigate the effect of an increase of the ionic strength of the solution on the anionic tracers’ diffusive behaviour. The results show that the effective diffusion coefficient (De) and diffusion accessible porosity (εa) values obtained with an ionic strength (I.S.) synthetic pore water of 0.01 eq L−1 are: De = 2.35–2.50 × 10−11 m2 s−1 and εa = 12.0–15.0% for HTO, and De = 14.5–15.5 × 10−13 m2 s−1 and εa = 2.5–2.9% for 36Cl. Because of anionic exclusion effects, anions diffuse slower and exhibit smaller diffusion accessible porosities than HTO, taken as a water tracer. The associated effective diffusion coefficient (De) and rock capacity factor (α) obtained for 125I are: De = 7.00–8.60 × 10−13 m2 s−1 and α = 4.3–7.2%. Such values make it possible to calculate low 125I distribution ratios (0.0057 < RD < 0.0192 mL g−1) which confirm the trend indicating that the 125I rock capacity factor increases with the decrease of the initial I concentration. Additional through-diffusion experiments were carried out with a higher ionic strength synthetic pore water (I.S. = 0.11 eq L−1). No evolution of HTO diffusion parameters was observed. The anionic tracers’ effective diffusion coefficient increased by a factor of two but no clear evolution of their accessible porosity was observed. Such a paradox could be related to the particularly small mean pore size of the Upper Toarcian argillite of Tournemire. The most significant finding of this study is the large discrepancy (factor of two) between the values of the effective diffusion coefficient for 125I and 36Cl. Whatever the ionic strength of the synthetic solution used, 125I exhibited De values two times lower than those of 36Cl. A detailed explanation for this difference cannot be given at present even if a hypothesis based on ion-pairing or on steric-exclusion cannot be excluded. This makes questionable the assumption usually made for quantifying 125I sorption and postulating that 36Cl and 125I would diffuse in the same porosity. In other terms, at Tournemire, 125I sorption could be more pronounced than previously indicated.  相似文献   

10.
Mineralogical, geochemical and microbial characterization of tailings solids from the Greens Creek Mine, Juneau, Alaska, was performed to evaluate mechanisms controlling aqueous geochemistry of near-neutral pH pore water and drainage. Core samples of the tailings were collected from five boreholes ranging from 7 to 26 m in depth. The majority of the 51 samples (77%) were collected from the vadose zone, which can extend >18 m below the tailings surface. Mineralogical investigation indicates that the occurrence of sulfide minerals follows the general order: pyrite [FeS2] >> sphalerite [(Zn,Fe)S] > galena [PbS], tetrahedrite [(Fe,Zn,Cu,Ag)12Sb4S13] > arsenopyrite [FeAsS] and chalcopyrite [CuFeS2]. Pyrite constitutes <20 to >35 wt.% of the tailings mineral assemblage, whereas dolomite [CaMg(CO3)2] and calcite [CaCO3] are present at ?30 and 3 wt.%, respectively. The solid-phase geochemistry generally reflects the mineral assemblage. The presence of additional trace elements, including Cd, Cr, Co, Mo, Ni, Se and Tl, is attributed to substitution into sulfide phases. Results of acid–base accounting (ABA) underestimated both acid-generating potential (AP) and neutralization potential (NP). Recalculation of AP and NP based on solid-phase geochemistry and quantitative mineralogy yielded more representative results. Neutrophilic S-oxidizing bacteria (nSOB) and SO4-reducing bacteria (SRB) are present with populations up to 107 and 105 cells g−1, respectively. Acidophilic S-oxidizing bacteria (aSOB) and iron-reducing bacteria (IRB) were generally less abundant. Primary influences on aqueous geochemistry are sulfide oxidation and carbonate dissolution at the tailings surface, gypsum precipitation–dissolution reactions, as well as Fe reduction below the zone of sulfide oxidation. Pore-water pH values generally ranged from 6.5 to 7.5 near the tailings surface, and from approximately 7–8 below the oxidation zone. Elevated concentrations of dissolved SO4, S2O3, Fe, Zn, As, Sb and Tl persisted under these conditions.  相似文献   

11.
We have used a direct imaging technique, in situ atomic force microscopy (AFM), to observe the dissolution of the basal biotite surface by oxalic acid over a range of temperatures close to ambient conditions, using a specially designed AFM liquid cell and non-invasive intermittent contact mode of operation. From the 3-dimensional nanometre-resolution data sets, we observe a process characterised by the slow formation of shallow etch pits in the (0 0 1) surface and fast growth of etch pits from the resulting steps, which represent proxies for the {h k 0} surface. Measurements of dissolution rates as a function of temperature allow a determination of an apparent activation energy (Ea,app) for the process, via mass-loss calculations from image analysis. We obtain a value of Ea,app = 49 ± 2 kJ mol−1, which is consistent with separate calculations based on planar area etch pit growth, and measurements of etch pit perimeters, indicating that this value of Ea,app is representative of {h k 0} surface dissolution. The measurement of etch pit perimeters also enables an estimation of apparent activation energy as a function of step density indicating substantially higher apparent activation energy, up to Ea,app = 140 kJ mol−1, on extrapolation towards a pristine surface with no defects. We suggest that this higher value of Ea,app represents the slow formation of etch pits into the (0 0 1) surface.  相似文献   

12.
This paper documents arsenic concentrations in 157 groundwater samples from the island of Ischia and the Phlegrean Fields, two of the most active volcano-hosted hydrothermal systems from the Campanian Volcanic Province (Southern Italy), in an attempt to identify the environmental conditions and mineral-solution reactions governing arsenic aqueous cycling. On Ischia and in the Phlegrean Fields, groundwaters range in composition from NaCl brines, which we interpret as the surface discharge of deep reservoir fluids, to shallow-depth circulating fluids, the latter ranging from acid-sulphate steam-heated to hypothermal, cold, bicarbonate groundwaters. Arsenic concentrations range from 1.6 to 6900 μg·l− 1 and from 2.6 to 3800 μg·l− 1 in the Phlegrean Fields and on Ischia, respectively. They increase with increasing water temperature and chlorine contents, and in the sequence bicarbonate groundwaters < steam-heated groundwaters < NaCl brines. According to thermochemical modeling, we propose that high As concentrations in NaCl brines form after prolonged water-rock interactions at reservoir T, fO2 and fH2S conditions, and under the buffering action of an arsenopyrite + pyrite + pyrrhotite rock assemblage. On their ascent toward the surface, NaCl brines become diluted by As-depleted meteoric-derived bicarbonate groundwaters, giving rise to hybrid water types with intermediate to low As contents. Steam-heated groundwaters give their intermediate to high As concentrations to extensive rock leaching promoted by interaction with As-bearing hydrothermal steam.  相似文献   

13.
Recent work [Shuster D. L., Flowers R. M. and Farley K. A. (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet. Sci. Lett.249(3-4), 148-161] revealing a correlation between radiogenic 4He concentration and He diffusivity in natural apatites suggests that helium migration is retarded by radiation-induced damage to the crystal structure. If so, the He diffusion kinetics of an apatite is an evolving function of time and the effective uranium concentration in a cooling sample, a fact which must be considered when interpreting apatite (U-Th)/He ages. Here we report the results of experiments designed to investigate and quantify this phenomenon by determining He diffusivities in apatites after systematically adding or removing radiation damage.Radiation damage was added to a suite of synthetic and natural apatites by exposure to between 1 and 100 h of neutron irradiation in a nuclear reactor. The samples were then irradiated with a 220 MeV proton beam and the resulting spallogenic 3He used as a diffusant in step-heating diffusion experiments. In every sample, irradiation increased the activation energy (Ea) and the frequency factor (Do/a2) of diffusion and yielded a higher He closure temperature (Tc) than the starting material. For example, 100 h in the reactor caused the He closure temperature to increase by as much as 36 °C. For a given neutron fluence the magnitude of increase in closure temperature scales negatively with the initial closure temperature. This is consistent with a logarithmic response in which the neutron damage is additive to the initial damage present. In detail, the irradiations introduce correlated increases in Ea and ln(Do/a2) that lie on the same array as found in natural apatites. This strongly suggests that neutron-induced damage mimics the damage produced by U and Th decay in natural apatites.To investigate the potential consequences of annealing of radiation damage, samples of Durango apatite were heated in vacuum to temperatures up to 550 °C for between 1 and 350 h. After this treatment the samples were step-heated using the remaining natural 4He as the diffusant. At temperatures above 290 °C a systematic change in Tc was observed, with values becoming lower with increasing temperature and time. For example, reduction of Tc from the starting value of 71 to ∼52 °C occurred in 1 h at 375 °C or 10 h at 330 °C. The observed variations in Tc are strongly correlated with the fission track length reduction predicted from the initial holding time and temperature. Furthermore, like the neutron irradiated apatites, these samples plot on the same Ea − ln(Do/a2) array as natural samples, suggesting that damage annealing is simply undoing the consequences of damage accumulation in terms of He diffusivity.Taken together these data provide unequivocal evidence that at these levels, radiation damage acts to retard He diffusion in apatite, and that thermal annealing reverses the process. The data provide support for the previously described radiation damage trapping kinetic model of Shuster et al. (2006) and can be used to define a model which fully accommodates damage production and annealing.  相似文献   

14.
Self-diffusion of sulfur in pyrite (FeS2) was characterized over the temperature range ∼500-725 °C (∼1 bar pressure) by immersing natural specimens in a bath of molten elemental 34S and characterizing the resulting diffusive-exchange profiles by Rutherford backscattering spectroscopy (RBS). The temperature dependence of the sulfur diffusivity (DS) conforms to D= Do exp(−Ea/RT), where the pre-exponential constant (Do) and the activation energy (Ea) are constrained as follows:
  相似文献   

15.
The interaction of aqueous As(III) with magnetite during its precipitation from aqueous solution at neutral pH has been studied as a function of initial As/Fe ratio. Arsenite is sequestered via surface adsorption and surface precipitation reactions, which in turn influence the crystal growth of magnetite. Sorption samples were characterized using EXAFS spectroscopy at the As K-edge in combination with HRTEM observations, energy dispersive X-ray analysis at the nanoscale, electron energy loss spectroscopy at the Fe L3-edge, and XRD-Rietveld analyses of reaction products. Our results show that As(III) forms predominantly tridentate hexanuclear As(III)O3 complexes (3C), where the As(III)O3 pyramids occupy vacant tetrahedral sites on {1 1 1} surfaces of magnetite particles. This is the first time such a tridentate surface complex has been observed for arsenic. This complex, with a dominant As-Fe distance of 3.53 ± 0.02 Å, occurs in all samples examined except the one with the highest As/Fe ratio (0.33). In addition, at the two highest As/Fe ratios (0.133 and 0.333) arsenite tends to form mononuclear edge-sharing As(III)O3 species (2E) within a highly soluble amorphous As(III)-Fe(III,II)-containing precipitate. At the two lowest As/Fe ratios (0.007 and 0.033), our results indicate the presence of additional As(III) species with a dominant As-Fe distance of 3.30 ± 0.02 Å, for which a possible structural model is proposed. The tridentate 3C As(III)O3 complexes on the {1 1 1} magnetite surface, together with this additional As(III) species, dramatically lower the solubility of arsenite in the anoxic model systems studied. They may thus play an important role in lowering arsenite solubility in putative magnetite-based water treatment processes, as well as in natural iron-rich anoxic media, especially during the reductive dissolution-precipitation of iron minerals in anoxic environments.  相似文献   

16.
An Early Permian volcanic assemblage is well exposed in the central-western part of the Apuseni Mountains (Romania). The rocks are represented by rhyolites, basalts and subordinate andesites suggesting a bimodal volcanic activity that is intimately associated with a post-orogenic (Variscan) syn-sedimentary intra-basinal continental molasse sequences. The mafic and mafic-intermediate rocks belong to sub-alkaline tholeiitic series were separated in three groups (I–III) showing a high Th and Pb abundances, depletion in Nb, Ta and Sr, and slightly enriched in LREE patterns (LaN/YbN = 1.4–4.4). Isotopically, the rocks of Group I have the initial ratios 87Sr/86Sr(i) = 0.709351–0.707112, 143Nd/144Nd(i) = 0.512490–0.512588 and high positive ?Nd270 values from 3.9 to 5.80; the rocks of Group II present for the initial ratios values 87Sr/86Sr(i) = 0.709434–0.710092, 143Nd/144Nd(i) = 0.512231–0.512210 and for ?Nd270 the negative values from −1.17 to −1.56; the rocks of Group III display for the initial ratios the values 87Sr/86Sr(i) = 0.710751–0.709448, 143Nd/144Nd(i) = 0.512347–0.512411 and for ?Nd270 the positive values from 1.64 to 2.35. The rocks resembling continental tholeiites, suggest a mantle origin and were further affected by fractionation and crustal contamination. In addition, the REE geochemistry (1 > SmN/YbN < 2.5; 0.9 > LaN/SmN < 2.5) suggests that these rocks were generated by high percentage partial melting of a metasomatized mantle in the garnet peridotite facies. The felsic rocks are enriched in Cs, Rb Th and U and depleted in Nb, Ta, Sr, Eu, and Ti. The REE fractionation patterns show a strong negative Eu anomaly (Eu/Eu* = 0.23–0.40). The felsic rocks show the initial ratios the values: 87Sr/86Sr(i) = 0.704096–0.707805, 143Nd/144Nd(i) = 0.512012–0.512021 and for ?Nd270 the negative values from −5.27 to −5.44. They suggest to be generated within the lower crust during the emplacement of mantle-derived magmas that provided necessary heat to crustal partial melting.  相似文献   

17.
The effect of dry milling in a vibratory mill on the structural changes and microstructural characteristics of hematite using different methods was investigated. We have described the line profile analysis (LPA) to extract the size of coherently diffracting domains and the lattice strain of activated hematite in a vibratory mill. The Warren–Averbach and Williamson–Hall methods were used as the main tools for characterization. The changes in the particle size, surface area and new phase formation of hematite concentrate were also investigated. It was concluded that the breakage and agglomeration of particles take place mainly at lower and higher levels of specific energy input, respectively. The pores in agglomerates remain accessible for the nitrogen gas. Milling of hematite increased specific surface area up to 18.4 m2/g. The hematite milled under various levels of specific energy input did not undergo a significant reaction or phase transformation during milling. The Williamson–Hall method confirms its merit for a rapid overview of the line broadening effects and possible understanding of the main causes. The anisotropic character of line broadening for deformed hematite as a function of specific energy input was revealed. Higher level of specific energy input favors the generation of small crystallite size, higher microstrain, BET surface area, amorphization and line breadth. The Warren–Averbach method suggested that the nanocrystalline hematite with grain sizes of 73.5–12.2 nm was formed by mechanical treatment using different milling intensities in the vibratory mill. The root mean square strain (RMSS) at L = 10 nm varies between 1.7 × 10− 3 and 4.0 × 10− 3 depending on the level of energy input. Limits in the applicability of Williamson–Hall method and reliability of the results are discussed in detail.  相似文献   

18.
Tissue N contents and δ15N signatures in 175 epilithic mosses were investigated from urban to rural sites in Guiyang (SW China) to determine atmospheric N deposition. Moss N contents (0.85–2.97%) showed a significant decrease from the urban area (mean = 2.24 ± 0.32%, 0–5 km) to the rural area (mean = 1.27 ± 0.13%, 20–25 km), indicating that the level of N deposition decreased away from the urban environment, while slightly higher N contents re-occurred at sites beyond 30 km, suggesting higher N deposition in more remote rural areas. Moss δ15N ranged from −12.50‰ to −1.39‰ and showed a clear bimodal distribution (−12‰ to −6‰ and −5‰ to −2‰), suggesting that there are two main sources for N deposition in the Guiyang area. More negative δ15N (mean = −8.87 ± 1.65‰) of urban mosses mainly indicated NH3 released from excretory wastes and sewage, while the less negative δ15N (from −3.83 ± 0.82‰ to −2.48 ± 0.95‰) of rural mosses were mainly influenced by agricultural NH3. With more negative values in the urban area than in the rural area, the pattern of moss δ15N variation in Guiyang was found to be opposite to cities where N deposition is dominated by NOx–N. Therefore, NHx–N is the dominant N form deposited in the Guiyang area, which is supported by higher NHx–N than NOx–N in local atmospheric deposition. From the data showing that moss is responding to NHx–N/NOx–N in deposition it can be further demonstrated that the variation of moss δ15N from the Guiyang urban to rural area was more likely controlled by the ratio of urban-NHx/agriculture-NHx than the ratio of NHx–N/NOx–N. The results of this study have extended knowledge of atmospheric N sources in city areas, showing that urban sewage discharge could be important in cities co-generic to Guiyang.  相似文献   

19.
Sorption of Ni(II) onto chlorite surfaces was studied as a function of pH (5–10), ionic strength (0.01–0.5 M) and Ni concentration (10−8–10−6 M) in an Ar atmosphere using batch sorption with radioactive 63Ni as tracer. Such studies are important since Ni(II) is one of the major activation products in spent nuclear fuel and sorption data on minerals such as chlorite are lacking. The sorption of Ni(II) onto chlorite was dependent on pH but not ionic strength, which indicates that the process primarily comprises sorption by surface complexation. The maximum sorption was at pH ∼ 8 (Kd = ∼10−3 cm3/g). Desorption studies over a period of 1–2 weeks involving replacement of the aqueous solution indicated a low degree of desorption. The acid–base properties of the chlorite mineral were determined by titration and described using a non-electrostatic surface complexation model in FITEQL. A 2-pK NEM model and three surface complexes, Chl_OHNi2+, Chl_OHNi(OH)+ and Chl_OHNi(OH)2, gave the best fit to the sorption results using FITEQL. The high Kd values and low degree of desorption observed indicate that under expected groundwater conditions, a large fraction of Ni(II) that is potentially leachable from spent nuclear fuel may be prevented from migrating by sorption onto chlorite surfaces.  相似文献   

20.
The Pitzer’s interaction parameters, λN–M, involving the Mth cationic Al species Al3+ or AlOH2+ or AlO+ and the Nth neutral species SiO2(aq) (at temperatures of 25–300 °C) or CO2(aq) (at temperatures of 25–150 °C), have been evaluated through empirical linear relationships between λN–M and the surface electrostatic field of the ionic species of interest. These relationships have been obtained starting from the known λN–M for both SiO2(aq) and CO2(aq) with the main dissolved cations. The Pitzer’s interaction parameter thus estimated for the pair CO2(aq)–Al3+ at 25 °C, 0.327, is 20–40% higher than the corresponding values obtained from CO2 solubilities in concentrated solutions of AlCl3, 0.272 ± 0.010 (2σ), and Al2(SO4)3, 0.232 ± 0.002 (2σ), partly corroborating the empirical approach adopted in this study. To test the Pitzer’s interaction coefficients for cationic Al species with aqueous SiO2, the log K values of the kaolinite dissolution reaction have been computed starting from available experimental data at 23–25 °C and ionic strengths of 0.0001–0.12 mol/kg adopting, alternatively, the Pitzer’s equations and the Debye–Hückel equation. A satisfactory agreement has been found between the log K values obtained through these two approaches, with maximum deviations of 0.11–0.12 log units. This good convergence of results is encouraging as it represents a necessary condition to prove the reliability of the Pitzer’s interaction coefficients estimated in this work. These results are a first step to take into account specific interactions among solutes in concentrated electrolyte solutions, such as those hosted in sedimentary basins or geothermal waters, for instance through the Pitzer’s equations. However, experimental or field data at higher ionic strengths are absolutely necessary to validate the reliability of the Pitzer’s interaction coefficients determined in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号