首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic fields are observed everywhere in the universe. In this review, we concentrate on the observational aspects of the magnetic fields of Galactic and extragalactic objects. Readers can follow the milestones in the observations of cosmic magnetic fields obtained from the most important tracers of magnetic fields, namely, the star-light polarization, the Zeeman effect, the rotation measures (RMs, hereafter) of extragalactic radio sources, the pulsar RMs, radio polarization observations, as well as the newly implemented sub-mm and mm polarization capabilities. The magnetic field of the Galaxy was first discovered in 1949 by optical polarization observations. The local magnetic fields within one or two kpc have been well delineated by starlight polarization data. The polarization observations of diffuse Galactic radio background emission in 1962 confirmed unequivocally the existence of a Galactic magnetic field. The bulk of the present information about the magnetic fields in the Galaxy comes from anal  相似文献   

2.
Future radio observations with the Square Kilometre Array (SKA) and its precursors will be sensitive to trace spiral galaxies and their magnetic field configurations up to redshift z ≈ 3. We suggest an evolutionary model for the magnetic configuration in star‐forming disk galaxies and simulate the magnetic field distribution, the total and polarized synchrotron emission, and the Faraday rotation measures for disk galaxies at z ≲ 3. Since details of dynamo action in young galaxies are quite uncertain, we model the dynamo action heuristically relying only on well‐established ideas of the form and evolution of magnetic fields produced by the mean‐field dynamo in a thin disk. We assume a small‐scale seed field which is then amplified by the small‐scale turbulent dynamo up to energy equipartition with kinetic energy of turbulence. The large‐scale galactic dynamo starts from seed fields of 100 pc and an averaged regular field strength of 0.02 μG, which then evolves to a “spotty” magnetic field configuration in about 0.8 Gyr with scales of about one kpc and an averaged regular field strength of 0.6 μG. The evolution of these magnetic spots is simulated under the influence of star formation, dynamo action, stretching by differential rotation of the disk, and turbulent diffusion. The evolution of the regular magnetic field in a disk of a spiral galaxy, as well as the expected total intensity, linear polarization and Faraday rotation are simulated in the rest frame of a galaxy at 5GHz and 150 MHz and in the rest frame of the observer at 150 MHz. We present the corresponding maps for several epochs after disk formation. Dynamo theory predicts the generation of large‐scale coherent field patterns (“modes”). The timescale of this process is comparable to that of the galaxy age. Many galaxies are expected not to host fully coherent fields at the present epoch, especially those which suffered from major mergers or interactions with other galaxies. A comparison of our predictions with existing observations of spiral galaxies is given and discussed (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Radio galaxies are known to inflate lobes of hot relativistic plasmas into the intergalactic medium. Here we present hydrodynamical and magnetohydrodynamical simulations of these hot plasma bubbles in FR II objects. We focus on the later stages of their evolution after the jet has died down and after the bow shock that surrounded the lobes at earlier stages has vanished. We investigate the evolution of the plasma bubbles as they become subject to Rayleigh–Taylor instabilities. From our simulations we calculate the radio and X-ray emissivities of the bubbles and discuss their appearance in observations. Finally, we investigate the influence of large-scale magnetic fields on the evolution of the bubbles. The issues of re-acceleration and diffusion of relativistic particles are briefly discussed.  相似文献   

4.
We have observed a small sample of powerful double radio sources (radio galaxies and quasars) at frequencies around 90 GHz with the Berkeley Illinois Maryland Association (BIMA) millimetre array, with the intention of constraining the resolved high-frequency spectra of radio galaxies. When combined with other sources we have previously observed and with data from the BIMA archive, these observations allow us for the first time to make general statements about the high-frequency behaviour of compact components of radio galaxies – cores, jets and hotspots. We find that cores in our sample remain flat-spectrum up to 90 GHz; jets in some of our targets are detected at 90 GHz for the first time in our new observations and hotspots are found to be almost universal, but show a wide range of spectral properties. Emission from the extended lobes of radio galaxies is detected in a few cases and shows rough consistency with the expectations from standard spectral ageing models, though our ability to probe this in detail is limited by the sensitivity of BIMA. We briefly discuss the prospects for radio galaxy astrophysics with Atacama Large Millimeter Array.  相似文献   

5.
Spiral galaxies host dynamically important magnetic fields which can affect gas flows in the disks and halos. Total magnetic fields in spiral galaxies are strongest (up to 30 μG) in the spiral arms where they are mostly turbulent or tangled. Polarized synchrotron emission shows that the resolved regular fields are generally strongest in the interarm regions (up to 15 μG). Faraday rotation measures of radio polarization vectors in the disks of several spiral galaxies reveal large-scale patterns which are signatures of coherent fields generated by a mean-field dynamo. Magnetic fields are also observed in radio halos around edge-on galaxies at heights of a few kpc above the disk. Cosmic-ray driven galactic winds transport gas and magnetic fields from the disk into the halo. The halo scale height and the electron lifetime allow to estimate the wind speed. The magnetic energy density is larger than the thermal energy density, but smaller than the kinetic energy density of the outflow. There is no observation yet of a halo with a large-scale coherent dynamo pattern. A global wind outflow may prevent the operation of a dynamo in the halo. Halo regions with high degrees of radio polarization at very large distances from the disk are excellent tracers of interaction between galaxies or ram pressure of the intergalactic medium. The observed extent of radio halos is limited by energy losses of the cosmic-ray electrons. Future low-frequency radio telescopes like LOFAR and the SKA will allow to trace halo outflows and their interaction with the intergalactic medium to much larger distances.  相似文献   

6.
We present new 1.6-GHz (18-cm) MERLIN maps of 15 Seyfert galaxies, with angular resolutions typically 0.1 to 0.3 arcsec. These and previous observations are used to investigate the properties of 19 of the 24 CfA Seyfert galaxies brighter than 2 mJy at 8.4 GHz. This is the first time a significant fraction of the CfA sample has been mapped at this frequency with subarcsecond resolution, and our observations provide the highest resolution radio maps available for several sources. We use our observations to measure the two-point spectral indices of compact radio components, and we investigate the correlation between infrared and radio emission shown by Seyfert galaxies.
Our results can be summarized as follows. Resolved structures as small as 20 pc are found in three previously unresolved radio sources, and only four sources show single, unresolved radio components. The mean 1.6 to 8.4 GHz spectral index of 31 radio components is         , and approximately 25 per cent of the components have a spectral index flatter than     . The spectral index distributions of type 1 and type 2 Seyferts are statistically indistinguishable. The cores of multiple-component sources tend to have flatter radio spectra than secondary components. The low-resolution infrared ( IRAS ) emission from Seyfert galaxies is usually dominated by kiloparsec-scale, extranuclear emission regions.  相似文献   

7.
8.
Large-scale magnetic fields in galaxies are thought to be generated by a turbulent dynamo. However, the same turbulence also leads to a small-scale dynamo which generates magnetic noise at a more rapid rate. The efficiency of the large-scale dynamo depends on how this noise saturates. We examine this issue, taking into account ambipolar drift, which obtains in a galaxy with significant neutral gas. We argue as follows.
(i) The small-scale dynamo generated field does not fill the volume, but is concentrated into intermittent rope-like structures. The flux ropes are curved on the turbulent eddy scales. Their thickness is set by the diffusive scale determined by the effective ambipolar diffusion.
(ii) For a largely neutral galactic gas, the small-scale dynamo saturates, as a result of inefficient random stretching, when the peak field in a flux rope has grown to a few times the equipartition value.
(iii) The average energy density in the saturated small-scale field is subequipartition, since it does not fill the volume.
(iv) Such fields neither drain significant energy from the turbulence nor convert eddy motion of the turbulence on the outer scale into wave-like motion. The diffusive effects needed for the large-scale dynamo operation are then preserved until the large-scale field itself grows to near equipartition levels.  相似文献   

9.
We report on ROSAT HRI observations of the nearby powerful radio galaxies 3C 33 and 111, which both have detected optical hotspots. We find nuclear X-ray sources in both objects, but no X-ray emission from the hotspots. This confirms the presence of a high-energy cut-off in the spectrum of synchrotron-emitting electrons. Since these electrons necessarily scatter the synchrotron photons by the inverse Compton process, our upper limits on the X-ray fluxes of the hotspots allow us to set lower limits of a few nanotesla on their magnetic flux density, close to or greater than the fields implied by equipartition of energy between radiating particles and magnetic field.  相似文献   

10.
We present an investigation of the relationships between the radio properties of a giant radio galaxy MRC B0319−454 and the surrounding galaxy distribution with the aim of examining the influence of intergalactic gas and gravity associated with the large-scale structure on the evolution in the radio morphology. Our new radio continuum observations of the radio source, with high surface brightness sensitivity, images the asymmetries in the megaparsec-scale radio structure in total intensity and polarization. We compare these with the three-dimensional galaxy distribution derived from galaxy redshift surveys. Galaxy density gradients are observed along and perpendicular to the radio axis: the large-scale structure is consistent with a model wherein the galaxies trace the ambient intergalactic gas and the evolution of the radio structures are ram-pressure limited by this associated gas. Additionally, we have modelled the off-axis evolution of the south-west radio lobe as deflection of a buoyant jet backflow by a transverse gravitational field: the model is plausible if entrainment is small. The case study presented here is a demonstration that giant radio galaxies may be useful probes of the warm-hot intergalactic medium believed to be associated with moderately over dense galaxy distributions.  相似文献   

11.
In previous papers we have discussed high-resolution observations of a large sample of powerful radio galaxies with z  < 0.3. Jets are detected in up to 80 per cent of the sample, and radio cores in nearly all the objects; in addition, we are able to resolve the hotspots in most sources. In this paper we present measurements of the radio properties of these components.   The prominences of the jets detected do not appear to be a function of radio luminosity, providing the clearest evidence yet that the reported low detection rate of jets in radio galaxies has been an artefact of low-sensitivity observations. We find a positive correlation between the total source length and core prominence in the narrow-line radio galaxies. We have found evidence for a relationship between hotspot size and total source size, but few other significant relationships between hotspot properties and those of the jets or lobes. We compare our measurements with those of Bridle et al., based on observations of a sample of quasars, and argue that the results are consistent with a modification of the unified model in which the broad-line radio galaxies are the low-luminosity counterparts of quasars, although the situation is complicated by contamination with low-excitation radio galaxies which appear to have radio properties different from the high-excitation objects. We discuss the classes of empirical model that can be fitted to the data set.  相似文献   

12.
We probe the relationship between star formation rate (SFR) and radio synchrotron luminosity in galaxies at  0 < z < 2  within the northern Spitzer Wide-area Infrared Extragalactic survey (SWIRE) fields, in order to investigate some of the assumptions that go into calculating the star formation history of the Universe from deep radio observations. We present new 610-MHz Giant Metrewave Radio Telescope (GMRT) observations of the European Large-Area ISO Survey-North 2 (ELAIS-N2) field, and using this data, along with previous GMRT surveys carried out in the ELAIS-N1 (North 1) and Lockman Hole regions, we construct a sample of galaxies which have redshift and SFR information available from the SWIRE survey. We test whether the local relationship between SFR and radio luminosity is applicable to   z = 2  galaxies, and look for evolution in this relationship with both redshift and SFR in order to examine whether the physical processes which lead to synchrotron radiation have remained the same since the peak of star formation in the Universe. We find that the local calibration between radio luminosity and star formation can be successfully applied to radio-selected high-redshift, high-SFR galaxies, although we identify a small number of sources where this may not be the case; these sources show evidence for inaccurate estimations of their SFR, but there may also be some contribution from physical effects such as the recent onset of starburst activity, or suppression of the radio luminosity within these galaxies.  相似文献   

13.
We present new XMM–Newton observations of the hot-gas environments of two low-power twin-jet radio galaxies, 3C 66B and 3C 449, showing direct evidence for the interactions between X-ray-emitting gas and radio plasma that are thought to determine the large-scale radio structure of these sources. The temperatures that we measure for the two environments are significantly higher than those predicted by standard luminosity–temperature relations for clusters and groups. We show that luminosity–temperature relations for radio-quiet and radio-loud X-ray groups differ, in the sense that radio-source heating may operate in most groups containing radio galaxies. If the radio lobes are expanding subsonically, we find minimum ages of  3 × 108 yr  for 3C 66B, and  5 × 108 yr  for 3C 449, older than the values obtained from spectral ageing, which would give the radio source sufficient time to heat the groups to the observed temperatures for plausible values of the jet power. The external pressures in the atmospheres of both radio galaxies are an order of magnitude higher than equipartition estimates of their radio-lobe pressures, confirming that the radio lobes either are out of equipartition or require a pressure contribution from non-radiating particles. Constraints from the level of X-ray emission we measure from the radio lobes allow us to conclude that a departure from equipartition must be in the direction of magnetic domination, and that the most plausible candidates for a particle contribution to lobe pressure are relativistic protons, an additional population of low-energy electrons, or entrained and heated thermal material.  相似文献   

14.
We present the results of multiwavelength observations of cores and hotspots, at L , C , X and U bands with the Very Large Array, of a matched sample of radio galaxies and quasars selected from the Molonglo Reference Catalogue . We use these observations to determine the spectra of cores and hotspots, and test the unified scheme for radio galaxies and quasars. Radio cores have been detected at all wavelengths in all of the quasars in our sample, whereas only ∼50 per cent of the galaxies have cores detected in at least one of the wavelengths . The degree of core prominence in this sample is consistent with the unified scheme for radio galaxies and quasars. A comparison of the distributions of the two-point spectral index of the cores in our sample of lobe-dominated quasars, with the distributions in a matched sample of core-dominated quasars, shows that the distributions for these two classes are significantly different, and this is consistent with the expectations of the unified scheme. The difference in the spectral indices of the two hotspots on opposite sides is also significantly larger for quasars than for radio galaxies, as is expected in the unified scheme. We also investigate the relationship between the spectral index of the hotspots and the redshift or luminosity for our sample of sources.  相似文献   

15.
我们从四个方面综述星系闭的射电研究进展。首先介绍了星系闭中的分立射电源,特别是cD星系研究的一些最新进展和结果。继而介绍了星系闭中射电晕的分类、目前的观测结果和理论解释。星闭中的磁场主要由射电研究得出,在本文中对此也作了适当的介绍和讨论。最后还简介了在星系闭射观测中发现的relic射电源。  相似文献   

16.
We combine Chandra and XMM–Newton X-ray data from our previous papers with new X-ray observations and with Spitzer mid-infrared (mid-IR) data in order to study the nature of the nuclei of radio galaxies and radio-loud quasars with   z < 1.0  from the 3CRR sample. The significant increase in sample size over our previous work, the reduction of bias in the sample as a result of new observations and the availability of more mid-IR data allow us to show conclusively that almost all objects classed as low-excitation radio galaxies in optical spectroscopic studies lack a radiatively efficient active nucleus. We show that the distribution of absorbing columns in the narrow-line radio galaxies differs from the population of X-ray-selected radio-quiet type 2 quasars and from that in local Seyfert 2s. We comment on the current evidence for the nature of the soft X-ray component in radio-galaxy nuclear spectra, concluding that a jet origin for this component is very hard to evade. Finally, we discuss the recently discovered 'fundamental plane' of black hole activity, showing that care must be taken when placing radio-loud active galactic nucleus (AGN) on such diagnostic diagrams.  相似文献   

17.
Different compositions of galaxy types in the field in comparison to galaxy clusters as described by the morphology–density relation in the local universe are interpreted as a result of transformation processes from late- to early-type galaxies. This interpretation is supported by the Butcher–Oemler effect. We investigate E+A galaxies as an intermediate state between late-type galaxies in low-density environments and early-type galaxies in high-density environment to constrain the possible transformation processes. For this purpose, we model a grid of post-starburst galaxies by inducing a burst and/or a halting of star formation on the normal evolution of spiral galaxies with our galaxy evolution code galev . From our models, we find that the common E+A criteria exclude a significant number of post-starburst galaxies, and propose that comparing their spectral energy distributions leads to a more sufficient method to investigate post-starburst galaxies. We predict that a higher number of E+A galaxies in the early universe cannot be ascribed solely to a higher number of starburst, but is a result of a lower metallicity and a higher burst strength due to more gas content of the galaxies in the early universe. We find that even galaxies with a normal evolution without a starburst have an Hδ-strong phase at early galaxy ages.  相似文献   

18.
We present multifrequency Very Large Array (VLA) observations of two giant quasars, 0437−244 and 1025−229, from the Molonglo Complete Sample. These sources have well-defined FR II radio structure, possible one-sided jets, no significant depolarization between 1365 and 4935 MHz and low rotation measure (|RM|<20 rad m−2). The giant sources are defined to be those with overall projected size 1 Mpc. We have compiled a sample of about 50 known giant radio sources from the literature, and have compared some of their properties with a complete sample of 3CR radio sources of smaller sizes to investigate the evolution of giant sources, and test their consistency with the unified scheme for radio galaxies and quasars. We find an inverse correlation between the degree of core prominence and total radio luminosity, and show that the giant radio sources have similar core strengths to smaller sources of similar total luminosity. Hence their large sizes are unlikely to be caused by stronger nuclear activity. The degree of collinearity of the giant sources is also similar to that of the sample of smaller sources. The luminosity–size diagram shows that the giant sources are less luminous than our sample of smaller sized 3CR sources, consistent with evolutionary scenarios in which the giants have evolved from the smaller sources, losing energy as they expand to these large dimensions. For the smaller sources, radiative losses resulting from synchrotron radiation are more significant while for the giant sources the equipartition magnetic fields are smaller and inverse Compton loss owing to microwave background radiation is the dominant process. The radio properties of the giant radio galaxies and quasars are consistent with the unified scheme.  相似文献   

19.
We have observed a sample of 149 Seyfert galaxies and radio-quiet quasars at 13 cm with both a 275-km radio interferometer and the 6-km compact array of the Australia Telescope. The high-resolution observations searched for the presence of compact, high-brightness-temperature radio emission from the active nucleus. The low-resolution observations measured the total radio emission from the galaxy disc and Seyfert core and lobes. From these we draw the following conclusions. (i) Seyfert galaxies that lack compact radio cores display a correlation between radio and far-infrared (FIR) emission similar to the correlation displayed by normal spirals, albeit with greater scatter. The correlation is found to be intrinsic and is not an artefact of the richness effect. (ii) A very different radio–FIR correlation is displayed by those Seyferts that harbour compact radio cores. These tend to be more radio-loud than either normal spirals or the Seyferts that lack compact cores. The compact core emission thus seems to be responsible for the generally poor radio–FIR correlation displayed by Seyfert galaxies. (iii) The radio–FIR correlation is not significantly improved by subtracting off the 0.1-arcsec (20- to 200-pc) compact radio emission from the total radio emission. This suggests that the emission from the active galactic nucleus has significant structure on scales larger than 0.1 arcsec. Perhaps these structures are the 'linear' radio features that have been seen previously in Seyfert nuclei.  相似文献   

20.
We present measurements of the clustering properties of galaxies in the field of redshift range 0.5 ≲ z ≲ 1.5 Ultra Steep Spectrum radio sources selected from the Sydney University Molonglo Sky Survey and the National Radio Astronomy Observatories Very Large Array Sky Survey. Galaxies in these USS fields were identified in deep near-infrared observations, complete down to   K s= 20  , using the IRIS2 instrument at the Anglo-Australian Telescope. We used the redshift distribution of   K s < 20  galaxies taken from Cimatti et al. (2002) to constrain the correlation length r 0. We find a strong correlation signal of galaxies with   K s < 20  around our USS sample. A comoving correlation length   r 0= 14.0 ± 2.8  h −1 Mpc  and γ= 1.98 ± 0.15 are derived in a flat cosmological model universe.
We compare our findings with those obtained in a cosmological N -body simulation populated with galform semi-analytic galaxies. We find that clusters of galaxies with masses in the range   M = 1013.4–14.2  h −1 M  have a cluster–galaxy cross-correlation amplitude comparable to those found between the USS hosts and galaxies. These results suggest that distant radio galaxies are excellent tracers of galaxy overdensities and pinpoint the progenitors of present day rich clusters of galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号