首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Nobuhiko  Nakano  Yasuhito  Osanai  Masaaki  Owada  Yasutaka  Hayasaka  Tran Ngoc  Nam 《Island Arc》2009,18(1):126-143
The Kontum Massif in central Vietnam is composed of various metamorphic complexes including a high-temperature southern part (Kannak and Ngoc Linh complexes) and a low- to medium-temperature northern part (Kham Duc complex). The Kham Duc complex exhibits Barrovian-type medium-pressure metamorphism evidenced by kyanite- and/or staurolite-bearing metapelites. The garnet–gedrite–kyanite gneiss, which is the focus of the present study, preserves several mineral parageneses formed during a prograde and retrograde metamorphic history: staurolite + quartz in gedrite, garnet + gedrite + kyanite in the matrix, and spinel + cordierite symplectite between gedrite and sillimanite. The calculated semiquantitative petrogenetic grid reveals peak pressure conditions of 620–650°C at 1.1–1.2 GPa and peak temperature conditions of 730–750°C at 0.7–0.8 GPa. The monazite U–Th–Pb electron microprobe ages of the garnet–gedrite–kyanite gneiss and associated gneisses yield 246 ± 3 Ma for the Kham Duc complex, which is similar to the age of the high- to ultrahigh-temperature metamorphism in the adjacent Kannak and Ngoc Linh complexes of the southern Kontum Massif. The present results indicate that both the Barrovian-type and ultrahigh-temperature metamorphism occurred simultaneously in the Kontum Massif during an event strongly related to Permo–Triassic microcontinental collision tectonics in Asia.  相似文献   

2.
This report describes an interpretation of the tectonics of central Asia made from seismic and geologic data. It is suggested that central Asia is not a tectonically passive unit, as previously proposed by others, responding solely to the convergence of the Indian plate with Asia. We postulate that the tectonics of central Asia can be represented by the motion of a few continental blocks which are influenced by spreading from the Baikal rift zone as well as compression due to the collision of the Indian plate. Here, a block is defined as a tectonic unit, within a continental plate, with boundaries delineated by broad zones of high seismicity with respect to the interior of the unit. Five tectonic units are postulated for central Asia. These are: the Siberian block, the East and West China blocks, the Southeast Asian block; and the Indian plate. An unusual phenomenon is noted along the boundary between the Siberian and West China blocks. There is general horizontal crustal compression along this boundary from the Hindu Kush north-eastward to the southern tip of Lake Baikal; however, there is general horizontal extension eastward from Lake Baikal through the Stanovoy range. Thus the West China block, to the south of this boundary, seems to be turning clockwise about a point near the southern tip of Lake Baikal. The major known faults within this block, which strike mainly northwest-southeast, may be interpreted as shear zones where interior stresses, due to the block rotation, are released. We cannot support this suggestion with an analytical model because of the uncertainties in various model parameters and geometries. The suggested model gives a possible explanation of why India, to the south of the Himalayas, is almost completely aseismic while the regions to the north and northeast have higher seismicity.  相似文献   

3.
The coincidence of orogenic belts containing zones of high pressure metamorphism, ophiolites and deepwater sediments with faunal province boundaries leads to the postulation of several sutural zones within Asia. About nine blocks are defined and it is suggested on the basis of palaeogeographical, palaeontological and tectonic evidence that Asia did not fuse completely until well into the Mesozoic.  相似文献   

4.
几乎所有的大陆碰撞造山带都含有多个增生地体,它们是大陆造山带的重要组成部分.前人对地体拼贴过程及其相应地质记录都做过详细探讨,但对后期大陆持续汇聚过程中的多地体之间的变形行为及拆离模式目前研究得仍较为薄弱.为此,我们以"两地体"结构为代表,通过系统的动力学模型试验,来探讨多地体流变结构及其几何参数对大陆碰撞动力学过程的影响.模型结果显示,大陆碰撞过程中的地体变形行为主要受控于靠近主碰撞带的地体流变强度(确切来说是地壳流变强度,下同)及其几何宽度,而与远离主碰撞带的地体流变和几何属性关系较弱.同时,模型结果也揭示出大陆碰撞造山带中地体之间的相互俯冲仅发生在靠近主碰撞带一侧地体较宽的情况下,且总是弱地体向相对强的地体之下俯冲.该研究成果不仅对喜马拉雅—青藏高原造山带中地体变形演化给予重要的动力学启示,也对含有多地体结构的碰撞造山带的动力学演化研究提供一定的理论支撑.  相似文献   

5.
We review the relative motion of India and Asia for the last 100 million years and present a revised reconstruction for the India–Antarctica–Africa–North America–Eurasia plate circuit based on published motion histories. Deformation of these continental masses during this time introduces uncertainties, as does error in oceanic isochron age and location. Neglecting these factors, the data ipso facto allow the inference that the motion of India relative to Eurasia was distinctly episodic. Although motion is likely to have varied more smoothly than these results would allow, the geological record also suggests a sequence of distinct episodes, at about the same times. Hence we suggest that no single event should be regarded as the collision of India with Asia. The deceleration of the Indian plate commencing at ∼65 Ma is matched by an equally significant prior acceleration and this aspect must be taken into account in geodynamic scenarios proposed to explain the collision of India with Asia.  相似文献   

6.
Modern collisional orogens represent the natural laboratory for the study of metallogeny in continental collision zones. The Pyrenees, Alps, Zagros and Himalaya are all associated with Neo-Tethyan subduction and represent the youngest collisional orogens on Earth. Here, we compare these four orogens in terms of their composition, architecture, tectonic evolution, and metallogenic systems. The four orogens can be divided into simple and composite types. Simple orogens are represented by the Pyrenees and the Alps, and are characterized by narrow linear shapes in plain view and symmetric structures in cross-section, are free of arc magmatism, and are associated with the Mississippi Valley Valley-type Pb-Zn and orogenic gold deposits. The mineral deposits that form in these simple collisional orogens are generally related to processes that occur in the middle and upper crust. In contrast, composite orogens, as exemplified by the Zagros-Iranian and Himalayan-Tibetan Plateaus, are associated with broad orogenic plateaus in plain view and asymmetrical structures in cross-section, record extensive arc magmatism in continental margins, and are associated with a variety of deposit types including carbonatite-related rare earth element (REE), porphyry Cu-Mo, orogenic Au, Mississippi Valley type Pb-Zn, and detachment-fault-related polymetallic deposits. Although the subduction of Neo-Tethys oceanic crust occurred before the creation of simple collisional orogens in the Pyrenees and the Alps, these areas do not show the record of continental arc magmatism. In contrast, the composite collisional orogens are associated with the development of huge continental margin arcs prior to continental subduction, and the subduction was followed by reactivation of the subduction-modified arc lithospheric material, generating the ore-forming systems in these regions.  相似文献   

7.
Wan  Bo  Wu  Fuyuan  Chen  Ling  Zhao  Liang  Liang  Xiaofeng  Xiao  Wenjiao  Zhu  Rixiang 《中国科学:地球科学(英文版)》2019,62(12):2005-2016
Numerous continents have rifted and drifted away from Gondwana to repeatedly open ocean basins over the past-500 millionyears.These Gondwana-derived continents drifted towards and collided with components of the Eurasian continent to successively close the preexisting oceans between the two.Plate tectonics satisfactorily describes the continental drift from Gondwana to Eurasia but does not define the geodynamic mechanism of continuously rifting to collisions of continents in the Tethy an Realm.After reappraisal of geological records of the rift,collision and subduction initiation from the surface and various geophysical observations from depth,we propose that Eurasia-directed subducting oceanic slabs would have driven Tethyan system in the Phanerozoic.The Eurasia-directed subduction would have dragged the passive Gondwana margin to rift and drift northwards,giving birth to new oceans since the Paleozoic.The closure of preexisting oceans between the Gondwana-derived continents and Eurasia led to continental collisions,which would have induced the initiation of oceanic subduction in the Tethyan Realm.Multiple episodic switches between collision-subduction-rift repeatedly led to the separation of continental fragments from Gondwana and dragged them to drift towards Eurasia.The final disappearance of Neo-Tethy s would have induced collision of the Gondwana-derived continents with the Eurasian continent,giving rise to the Cenozoic Alpine-Zagros-Himalayan collisional system.Therefore,the Eurasia-directed oceanic subduction would have acted as a 'one-way train' that successively transferred the ruptured Gondwana continental fragments in the south,into the terminal in the north.In this regard,the engine of this "Tethyan one-way train" is the negative buoyancy of subducting oceanic slabs.  相似文献   

8.
The tectonics of Asia are interpreted as a result of convergence of the Indian and Eurasian plates. The Indian shield bends down and underthrusts the Himalayas to the northeast along a shallow dipping fault plane while the Eurasian plate underthrusts the Pamir mountains, and therefore presumably the Indian Plate, to the south. The convergence of the Indian and Eurasian plates appears to cause relatively high stress to be transmitted across a broad area, north and east of the Himalayas, and this stress in turn causes earthquakes and renewed tectonic activity in some of the ancient Paleozoic and Mesozoic fold belts that separate more stable, aseismic blocks in Asia.  相似文献   

9.
Processes of initial collision and suturing between India and Asia   总被引:6,自引:0,他引:6  
The initial collision between Indian and Asian continents marked the starting point for transformation of land-sea thermal contrast, uplift of the Tibet-Himalaya orogen, and climate change in Asia. In this paper, we review the published literatures from the past 30 years in order to draw consensus on the processes of initial collision and suturing that took place between the Indian and Asian plates. Following a comparison of the different methods that have been used to constrain the initial timing of collision, we propose that the tectono-sedimentary response in the peripheral foreland basin provides the most sensitive index of this event, and that paleomagnetism presents independent evidence as an alternative, reliable, and quantitative research method. In contrast to previous studies that have suggested collision between India and Asia started in Pakistan between ca. 55 Ma and 50 Ma and progressively closed eastwards, more recent researches have indicated that this major event first occurred in the center of the Yarlung Tsangpo suture zone (YTSZ) between ca. 65 Ma and 63 Ma and then spreading both eastwards and westwards. While continental collision is a complicated process, including the processes of deformation, sedimentation, metamorphism, and magmatism, different researchers have tended to define the nature of this event based on their own understanding, an intuitive bias that has meant that its initial timing has remained controversial for decades. Here, we recommend the use of reconstructions of each geological event within the orogenic evolution sequence as this will allow interpretation of collision timing on the basis of multidisciplinary methods.  相似文献   

10.
The 28 February, 2006 Tiab earthquake (Mw 6.0), is the first earthquake to have occurred in the transition zone between the Zagros continental collision and the Makran subduction zone for which the aftershock sequence is recorded by a temporary local seismic network. The epicentral distribution of the aftershocks is diffuse and we cannot define a simple alignment at the surface. The depth of the aftershocks increases gently northward and they are primarily concentrated between 15 and 21 km depth, implying a deeper seismogenic layer than the Zagros. Very low-angle thrust faulting deduced from this local study supports thrusting of the Arabian plate beneath central Iran at the southeastern end of the Zagros as suggested previously based on teleseismic data. The focal mechanism of the main shock indicates a thrust mechanism similar to that of other strong earthquakes in this region, while most of the focal mechanisms of the aftershocks are dominantly strike-slip. We propose that the strike-slip mechanisms belong to right-lateral fault systems that accommodate differential motion at the transition between the Zagros collision zone and the Makran subduction zone. If so, this suggests that the convergence between Arabia and central Iran is at present accommodated along the transition zone by a partitioning process.  相似文献   

11.
Continental orogens on Earth can be classified into accretionary orogen and collisional orogen.Magmatism in orogens occurs in every periods of an orogenic cycle,from oceanic subduction,continental collision to orogenic collapse.Continental collision requires the existence of prior oceanic subduction zone.It is generally assumed that the prerequisite of continental deep subduction is oceanic subduction and its drag force to the connecting passive-margin continental lithosphere during continental collision.Continental subduction and collision lead to the thickening and uplift of crust,but the formation time of the related magmatism in orogens depends on the heating mechanism of lithosphere.The accretionary orogens,on the other hand,have no strong continental collision,deep subduction,no large scale of crustal thrusting,thickening and uplift,and no UHP eclogite-facies metamorphic rocks related to continental deep subduction.Even though arc crust could be significantly thickened during oceanic subduction,it is still doubtful that syn-or post-collisional magmatism would be generated.In collisional orogens,due to continental deep subduction and significant crustal thickening,the UHP metamorphosed oceanic and continental crusts will experience decompression melting during exhumation,generating syn-collisional magmatism.During the orogen unrooting and collapse,post-collisional magmatism develops in response to lithosphere extension and upwelling of asthenospheric mantle,marking the end of an orogenic cycle.Therefore,magmatism in orogens can occur during the continental deep subduction,exhumation and uplift after detachment of subducted oceanic crust from continental crust,and extensional collapse.The time span from continental collision to collapse and erosion of orogens(the end of orogenic cycle)is 50–85 Myr.Collisional orogens are the key sites for understanding continental deep subduction,exhumation,uplift and orogenic collapse.Magmatism in collisional orogens plays important roles in continental reworking and net growth.  相似文献   

12.
Many features of the Cenozoic tectonic history of central and southeastern Asia can be understood as direct consequences of the thrust and penetration of India into Asia. Recent indentation experiments with plasticine (Tapponnier et al. [7]) have extended this idea and have led to the prediction of a pattern of large rotations and displacements of continental blocks that can be tested by paleomagnetism. The available Cretaceous and Cenozoic paleomagnetic data from this part of the world have been reviewed and a new APWP for Eurasia has been constructed for reference. The negligible rotation of South China and large clockwise rotation of Indochina are consistent with the model, i.e., with an history of large-scale left-lateral strike-slip motion along the Altyn Tagh and Red River faults. Data from Malaya and Borneo can be reconciled with the model, although in a less straightforward fashion. The large counter clockwise rotation of South Tibet implies that it rotated in sympathy with India during the collision and suggests that future indentation experiments should include this feature. Finally a middle Cretaceous reconstruction of the south margin of Asia is proposed. One interesting result is the restored continuity of geological features in Tibet and Indochina, with active subduction of oceanic (Indian plate) crust taking place to the south at subtropical latitudes.  相似文献   

13.
14.
Seismic provinces in Peru and northern Chile may be defined in direct relation to the geometry of parts of Nazca plate that are being subducted under the Americas plate. Recent tectonism and calc-alkaline volcanism appear also to have a clear relationship to that same geometry of the subducted slab. Under northern and central Peru, the slab plunges at 10–15° to the northeast, and becomes almost horizontal farther east; at surface in the same region, recent calc-alkaline volcanism is absent and recent tectonics are mostly compressional. Under southern Peru and northern Chile, the slab plunges regularly at about 30° to the east; at the surface, calc-alkaline volcanism is still active and recent tectonism appears to be mostly extensional.  相似文献   

15.
Mantle-derived volatiles in continental crust: the Massif Central of France   总被引:1,自引:0,他引:1  
CO2-rich gases and groundwaters from springs and boreholes originating within the basement of the Massif Central have variable3He/4He ratios with correspondingR/Ra values ranging from 0.8 to 5.5 and 0.3 to 2.8 respectively, indicating the presence of a significant component of mantle helium. Molar concentrations of rare gases in the CO2-rich gases are approximately 5 orders of magnitude greater than in the waters and suggest that a near-surface Henry's Law fractionation has occurred between exsolving CO2 and water.δ13C values of the CO2-rich gases are in the range −4.2 to −6.1‰, i.e. in that range normally attributed to mantle carbon, but which could also represent an average crustal composition and therefore do not discriminate between mantle and crustal sources.C/3He ratios show 4 orders of magnitude variation from 1.4 × 1012 to 5 × 108 and, compared to a mantleC/3He ratio of 109, indicate that either a complex fractionation has occurred between mantle helium and mantle CO2 or more likely that mantle rare gases have been diluted by large quantities of CO2 with an average crustal carbon isotope composition. The regional distribution of3He and C does not show any obvious relationship to age or proximity of volcanic centres or major faults, suggesting that mantle-derived C and He components decoupled from their silicate melt sources at some depth.The results from this area of active fluid circulation suggest that C-isotope data derived from metamorphic terrains should be interpreted with great caution, but that input of some mantle-derived carbon is expected to accompany crustal extension.  相似文献   

16.
Placing precise constraints on the timing of the India-Asia continental collision is essential to understand the successive geological and geomorphological evolution of the orogenic belt as well as the uplift mechanism of the Tibetan Plateau and their effects on climate,environment and life.Based on the extensive study of the sedimentary record on both sides of the Yarlung-Zangbo suture zone in Tibet,we review here the present state of knowledge on the timing of collision onset,discuss its possible diachroneity along strike,and reconstruct the early structural and topographic evolution of the Himalayan collided range.We define continent-continent collision as the moment when the oceanic crust is completely consumed at one point where the two continental margins come into contact.We use two methods to constrain the timing of collision onset:(1) dating the provenance change from Indian to Asian recorded by deep-water turbidites near the suture zone,and(2) dating the age of unconformities on both sides of the suture zone.The first method allowed us to constrain precisely collision onset as middle Palaeocene(59±l Ma).Marine sedimentation persisted in the collisional zone for another 20-25 Ma locally in southern Tibet,and molassic-type deposition in the Indian foreland basin did not begin until another 10-15 Ma later.Available sedimentary evidence failed to firmly document any significant diachroneity of collision onset from the central Himalaya to the western Himalaya and Pakistan so far.Based on the Cenozoic stratigraphic record of the Tibetan Himalaya,four distinct stages can be identified in the early evolution of the Himalayan orogen:(1) middle Palaeocene-early Eocene earliest Eohimalayan stage(from 59 to 52 Ma):collision onset and filling of the deep-water trough along the suture zone while carbonate platform sedimentation persisted on the inner Indian margin;(2) early-middle Eocene early Eohimalayan stage(from 52 to 41 or 35 Ma):filling of intervening seaways and cessation of marine sedimentation;(3) late Eocene-Oligocene late Eohimalayan stage(from 41 to 25 Ma):huge gap in the sedimentary record both in the collision zone and in the Indian foreland;and(4) late Oligocene-early Miocene early Neohimalayan stage(from 26 to 17 Ma):rapid Himalayan growth and onset of molasse-type sedimentation in the Indian foreland basin.  相似文献   

17.
Kenshiro  Otsuki 《Island Arc》1992,1(1):51-63
Abstract The Izanagi plate subducted rapidly and obliquely under the accretionary terrane of Japan in the Cretaceous before 85 Ma. A chain of microcontinents collided with it at about 140 Ma. In southwest Japan the major part of it subducted thereafter, but in northeast Japan it accreted and the trench jumped oceanward, resulting in a curved volcanic front. The oblique subduction and the underplated microcon-tinent caused uplifting of high-pressure (high-P) metamorphic rocks and large scale crustal shortening in southwest Japan. The oblique subduction caused left-lateral faulting and ductile shearing in northeast Japan. The arc sliver crossed over the high-temperature (high-T) zone of arc magmatism, resulting in a wide high-T metamorphosed belt. At about 85 Ma, the subduction mode changed from oblique to normal and the tectonic mode changed drastically. Just after this the Kula/Pacific ridge subducted and the subduction rate of the Pacific plate decreased gradually, causing the intrusion of huge amounts of granite magma and the eruption of acidic volcanics from large cauldrons. The oblique subduction of the Pacific plate resumed at 53 Ma and the left-lateral faults were reactivated.  相似文献   

18.
Continental subduction and collision normally follows oceanic subduction,with the remarkable event of formation and exhumation of high-to ultra-high-pressure(HP-UHP)metamorphic rocks.Based on the summary of numerical geodynamic models,six modes of continental convergence have been identified:pure shear thickening,folding and buckling,one-sided steep subduction,flat subduction,two-sided subduction,and subducting slab break-off.In addition,the exhumation of HP-UHP rocks can be formulated into eight modes:thrust fault exhumation,buckling exhumation,material circulation,overpressure model,exhumation of a coherent crustal slice,episodic ductile extrusion,slab break-off induced eduction,and exhumation through fractured overriding lithosphere.During the transition from subduction to exhumation,the weakening and detachment of subducted continental crust are prerequisites.However,the dominant weakening mechanisms and their roles in the subduction channel are poorly constrained.To a first degree approximation,the mechanism of continental subduction and exhumation can be treated as a subduction channel flow model,which incorporates the competing effects of downward Couette(subduction)flow and upward Poiseuille(exhumation)flow in the subduction channel.However,the(de-)hydration effect plays significant roles in the deformation of subduction channel and overriding lithosphere,which thereby result in very different modes from the simple subduction channel flow.Three-dimensionality is another important issue with highlighting the along-strike differential modes of continental subduction,collision and exhumation in the same continental convergence belt.  相似文献   

19.
The Kohistan–Ladakh Arc in the Himalaya–Karakoram region represents a complete section of an oceanic arc where the rocks from mantle to upper crustal levels are exposed. Generally this arc was regarded as of Jurassic–Cretaceous age and was welded to Asia and India by Northern and Southern Sutures respectively. Formation of this arc, timings of its collisions with Asia and India, and position of collision boundaries have always been controversial. Most authors consider that the arc collided with Asia first during 102–75 Ma and then with India during 55–50 Ma, whereas others suggest that the arc collided with India first at or before 61 Ma, and then the India–arc block collided with Asia ca 50 Ma. Recently published models of the later group leave several geological difficulties such as an extremely rapid drifting rate of the Indian Plate (30 ± 5 cm/year) northwards between 61–50 Ma, absence of a large ophiolite sequence and accretionary wedge along the Northern Suture, obduction of ophiolites and blueschists along the Southern Suture, and the occurrence of a marine depositional environment older than 52 Ma in the Indian Plate rocks south of the Southern Suture. We present a review based on geochemical, stratigraphic, structural, and paleomagnetic data to show that collision of the arc with Asia happened first and with India later.  相似文献   

20.
We present a new regional three-layer crustal model for the Central and Southern Asia and surroundings (AsCRUST-08). The model provides Moho boundary, thickness of different layers of consolidated crust and P-velocity distribution in these layers. A large volume of new data on seismic reflections and refractions as well as on surface waves generated by earthquakes or blasts was analyzed. All these data were incorporated into a unified digital 3D integrated model with 1° × 1° resolution. Results are represented as seven numerical maps imaging the distributions of the Moho depth, the thickness of the upper, middle, and lower layers of the consolidated crust, and the P-wave velocities therein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号