首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Wright andLyons (1981) used a least-squares matching technique (LMM) and an adaptive processing method (ADP) to study the behaviour of slowness and azimuth measurements made on two synthetic interfering wavelets having different arrival vectors and onset times. We have applied these results to the analysis of real array seismograms. Some of the effects generated synthetically are frequently observed on real seismograms of earthquakes recorded at Yellowknife at distances close to 50° and 90°. We have also processed sufficient data to illustrate how the interference phenomenon can be used to confirm the presence of radial velocity anomalies in the lower mantle. NumerousP arrivals from South American earthquakes at distances between 78° and 98° suggest the presence of two radial velocity anomalies at depths close to 2400 and 2730 km below the Caribbean region; these anomalies also appear to vary laterally.Contribution No. 864 from the Earth Physics Branch.  相似文献   

2.
本文基于中国地震观测台网记录到的震中距为10°~23°之间琉球俯冲区一个中深源地震的P波三重震相信息,研究了下扬子克拉通转换带顶部P波速度结构.通过射线追踪和理论地震图与观测地震波形的对比,发现下扬子克拉通下方的410 km间断面为一厚度20 km的梯度带,其上存在一由西南向东北变厚的低速层,厚度变化40~57 km,P波速度减低2.7%~4.5%.该低速层可以被认为是由于地幔橄榄岩部分熔融引起的.  相似文献   

3.
The source process of the deep-focus Spanish earthquake of March 29, 1954 (mb = 7.1, h = 630 km) has been studied by using seismograms recorded at teleseismic distances. Because of its unusual location, this earthquake is considered to be one of the most important earthquakes that merit detailed studies. Long-period body-wave records reveal that the earthquake is a complicated multiple event whose wave form is quite different from that of usual deep earthquakes. The total duration of P phases at teleseismic distances is as long as 40 s. This long duration may explain the considerable property damage in Granada and Malaga, Spain, which is rather rare for deep earthquakes. Using the azimuthal distribution of the differences between the arrival times of the first, the second and later P phases, the hypocenters of the later events are determined with respect to the first event. The focus of the second event is located on the vertical nodal plane of the first shock suggesting that this vertical plane is the fault plane. This fault plane which strikes in N2°E and dips 89.1°E defines a nearly vertical dip-slip fault, the block to the west moving downwards. The time interval and spatial separation between the first and the second events are 4.3 s and 19 km respectively, giving an apparent rupture velocity of 4.3 km/s which is about 74% of the S-wave velocity at the source. A third event occurred about 8.8 s after the first event and about 35.6 km from it. At least six to ten events can be identified during the whole sequence. The mechanism of some of the later events, however, seems to differ from the first two events. Synthetic seismograms are generated by superposition of a number of point sources and are matched with the observed signals to determine the seismic moment. The seismic moments of the later events are comparable to, or even larger than, that of the first. The total seismic moment is determined to be 7 · 1027 dyn cm while the moments of the first and the second shocks are 2.1 · 1026 dyn cm and 5.1 · 1026 dyn cm, respectively. The earthquake may represent a series of fractures in a detached piece of the lithosphere which sank rapidly into the deep mantle preserving the heterogeneity of material property at shallow depths.  相似文献   

4.
Slowness measurements on first and later arrivals from earthquakes in the Philippine and Taiwan regions recorded at the Warramunga array in Australia indicate abrupt decreases in slowness of the first arrival as well as triplications in the travel time curve at epicentral distances of about 38 and 43°. These results imply the presence of regions of rapid or discontinuous velocity increase at depths of about 900 and 1050 km, respectively. Between these regions of sharp velocity increases the dT/dΔ measurements indicate that the velocity gradients are lower than those determined by previous investigators. The observed extensions of the 650- and 770-km branches out to 50° can be explained in terms of the triplications if small negative velocity gradients of the order of 0.1 km/s per 100 km exist between 650–770 and 770–900 km depths. An alternative explanation of these observed extensions may be provided in terms of underside reflections from the bottom of the velocity discontinuities. Either of the two explanations require sharp velocity gradients at the depth of the velocity discontinuities. These observations are at variance with earth models where the P-wave velocity increases continuously with depth below a depth of 650 km.  相似文献   

5.
There is broad agreement among various seismological studies that the upper mantle has two regions where high positive velocity gradients or transition zones exist. The presence of these zones implies that two major triplications should exist in the travel-time curve for distances less than 30°. Approximately 200 earthquakes from the New Guinea, New Britain, and Solomon Island regions recorded at the Warramunga Array were analyzed using adaptive processing methods in an attempt to identify the positions of the later arrival branches. From measurements made along the first 20 sec of the arrivals, a retrogade travel-time branch associated with the “650-km” discontinuity was clearly identified as extending from 21° to 26°, and some evidence was found near 16° for the lower portion of the triplication associated with the “400-km” discontinuity. A careful search revealed however that the upper portions of the replicated travel-time branches were missing. There were no observed values ofdt/dΔ in the 12–13 sec/deg range for Δ greater than 20°. In this study it was found that if anelastic effects (Q) were not taken into consideration or ifQ were kept constant, the models derived from observed travel-time data all predicted large amplitude arrivals where non existed. The difficulty with the first triplication was resolved by the introduction of a lowQ region at depths of 85–315 km. This region may be associated with “the low-velocity region” but it is not necessary to decrease the P velocity to explain the observations.The difficulty with the second triplication was resolved by the introduction of a layer at a depth of 575–657 km which has no velocity gradient and a value ofQ significantly less than that for the material just below the “650-km” discontinuity. This layer may well represent the return path for an upper mantle convection cell.  相似文献   

6.
In this paper, regionalP-wave upper mantle structure is investigated using slant-stack velocity analysis of short-period earthquake data recorded at station MAJO (Matsushiro, Japan). Shallow earthquakes from 1980–1986 within 35° of MAJO are used to construct a common receiver gather. Processing of the wavefield data includes focal depth and static time corrections, as well as deterministic deconvolution, in order to equalize pulse shapes and align wavelets on the first arrivals. The processed wavefield data are slant stacked and interatively downward continued to obtain a regional upper mantle velocity model. The model includes a low velocity zone between 107 and 220 km. Beneath the LVZ, the velocity increases smoothly down to the discontinuity at 401 km. In the transition zone, the velocity model again increases linearly, although there is some suggestion of further complexity in the downward continued wavefield data. At the base of the transition zone, a second velocity discontinuity occurs at 660 km, with a linear velocity gradient below. In addition to slant-stack analysis, travel times and synthetic seismograms are computed and compared with the processed and unprocessed wavefield data.  相似文献   

7.
The arrival times of seismic P waves recorded at long lines of portable seismographs deployed on the shield region of central Australia show evidence of breaks in the travel-time curve at epicentral distances near 30, 39 and 43°. These breaks are additional to those at about 20 and 24° (associated with the 400- and 650-km discontinuities) and imply that the P wave velocity structure of the mantle does not increase smoothly in the depth range 650–1100 km, but rather consists of regions of nearly constant velocity separated by small but significant velocity increases at depths of approximately 770, 980 and 1080 km. These conclusions are in agreement with those previously inferred from first and later arrivals at the Warramunga Seismic Array.  相似文献   

8.
利用纯S波输入研究地震台站下方的横波速度结构   总被引:13,自引:0,他引:13       下载免费PDF全文
震中距在50°左右的深源远震,直达波S波震相波列可以与其他震相波列分离. 在层状介质中,本文通过传播矩阵方法得到由S波从台下底层输入获得地面理论地震图的新方法,并由此拟合了河北省两个地震台短周期S波记录,获得台站下方横波速度结构. 结果表明,红山台下13km和24km左右有S波低速层存在,地壳厚度为33.km;涉县台下18km和30km左右有S波低速层存在. 红山台下S波差异显著的2个低速层夹持的高速层、较薄地壳及上地幔顶部低S波速度结构,与166年邢台大地震有关. 考虑到S波速度对部分熔融体的敏感性,认为地壳S波速度结构可作为揭示强震深部背景的依据之一.  相似文献   

9.
通过人工爆破资料研究地球结构的独特优点是震源时间和位置精确知道.2010—2012年间福建省进行了一系列的爆破实验.本文利用手工拾取来自省地震台网记录的爆破地震初至Pg、Pn以及续至Pg波到时数据,采用联合反演方法构建了新的一维P波速度模型,即福建爆破模型(FJEM).与华南模型相比,FJEM模型对走时的拟合程度提高了45%,有明显改善.利用不同爆破地震数据组合得到稳定类似的福建地区一维速度模型,显示福建地区存在较简单的一维速度结构.对爆破地震的重定位显示传统使用的华南模型在福建地区具有较小的水平定位误差(平均0.52±0.45km),但存在较大深度误差(平均4.7±1.2km).FJEM模型表现出与华南模型相似的水平定位能力,但是震源深度误差更小(1.3±1.1km).对基于FJEM模型的合成天然地震目录的重定位,华南模型显示出相似的定位结果:(1)台站方位覆盖较好的福建中部地区的水平定位误差小;(2)台站方位覆盖差的福建海岸及海峡区域水平定位误差大;(3)震源深度误差则跟台站数目及方位分布没有明显的关系,而是与发震时间误差有互易关系.从中可以看出,地震水平定位误差基本上受台站方位覆盖影响,而受参考速度模型影响不大;而在深度方面,本文改进的FJEM模型不仅更加接近真实的速度结构(拟合走时更好)而且也减小了深度误差.因此建议在福建及其邻近区域的日常定位中用FJEM模型替代华南模型.  相似文献   

10.
Regional variations of the velocity structure down to a depth of about two hundred kilometers in the central United States are investigated by a combined use of body-wave spectra, surface-wave dispersion, travel-time residuals and synthetic seismograms. With minor adjustments to models obtained in a preceding study of body-wave transfer ratios the revised models FLO74, OXF74 and SHA74 are proposed which reasonably satisfy all data in the above four kinds of methods. These models retain the same characteristic feature of the deepening of the low-velocity zone from the Gulf of Mexico to the Interior Plain nearly along 89°N longitude while decreasing its thickness and increasing its velocities as in the preceding models. The low-velocity zone is about 50 km thick ranging in depth from about 150 to 200 km around a junction of the Interior Plain with the Interior Highlands, about 80 km thick from about 120 to 200 km in the Coastal Plain, and about 90 km thick from about 90 to 180 km in the continental shelf of the Gulf of Mexico. Although it is not clear what relation, if any, exists between the above characteristic feature of the low-velocity zone and the recurrent relief of intra-plate stress along the central Mississippi Valley, an intricate crustal structure found along the valley northwest of the confluence of the Mississippi and Ohio rivers is apparently related to the occurrence of historical earthquakes. Comparisons of synthetic seismograms of the above models with teleseismic records of deep earthquakes reveal that the undulations in a time interval of over 100 sec between the onsets of the P and pP phases on long-period records are good surface expression of the underlying layered structure below the station and are not associated with the source. Relevant future high-quality data promise a comprehensive elucidation of the fine configuration of structure in the crust and upper mantle.  相似文献   

11.
Various workers have constructed models to explain a class of anomalous arrivals at Peruvian and Chilean stations from deep-focus South American earthquakes. These arrivals are shear waves with a later arrival time, a higher frequency content, a longer duration and a lower apparent velocity than direct S. Our models assume that there is a sufficiently sharp discontinuity at the upper interface of the descending lithospheric slab between depths of 80 and 250 km to provide efficient reflection (≈0.1) for S-waves incident from below. The observed travel times require a single S-to-S reflection at this interface if the J-B velocity-depth model is modified to allow for 7% higher velocities down to a depth of 300 km (excluding the crust). The locus of required reflection points correlates well with the upper boundary of the observed seismicity (strike and dip angles within 5°) and Q for the proposed path is consistent with the frequency content of the anomalous arrivals. Thus the existence of these arrivals requires a dipping interface down to about 250 km, but, contrary to the wave-guide model of Isacks and Barazangi, cannot be used to infer a continuous lithospheric slab down to the deep-focus earthquakes (h #62; 500 km).  相似文献   

12.
利用中国数字测震台网(CDSN)记录到的台湾地区两个地震事件6°~30°震中距范围的三重震相波形资料,基于观测与理论波形拟合法,获到华南地区上地幔P波和S波的最佳波形拟合速度模型及其VP/VS比值.与AK135模型相比,华南地区410 km深度上方存在明显低速层:S波低速区厚度约为70 km,速度降为2%~5%;而P波低速区厚度为70~230 km,速度降为5%~6%.另外,410 km间断面整体表现为一个梯度层,厚度约为10~40 km,VP跃增量为4.0%~5.4%,而VS跃增量为2.6%~11.7%.研究区内,低速层的VPVS异常值大小和410 km间断面速度跃变量由北向南逐步减小.结合以往的接收函数和地震层析成像结果,华南地区410 km间断面上方的低速区可能与太平洋俯冲板块脱水有关.  相似文献   

13.
We consider nine earthquakes in the Koyna-Warna reservoir region on the western side of the Peninsular India. The deviatoric moment tensors of these earthquakes have been evaluated by minimizing the least-squares misfit between observed and synthetic seismograms. We use broadband seismograms of observatories at KARD and PUNE which are at distances of nearly 50 and 150 km, respectively, from the epicenters. Both surface wave inversion and the difference between the arrival times of SH and SV show the presence of an anisotropic crust. However, we have obtained an equivalent isotropic structure by improving the published crustal structures of this area through inversion of surface wave group velocity data. The deviatoric moment tensors of the earthquakes are decomposed into two components: double-couple and compensated linear vector dipoles (CLVD). The double-couple components of all the nine earthquakes show normal faulting with minor strike slip; the T axis is consistently subhorizontal with an average azimuth of 260.6° and the P axis is nearly vertical. The fault planes of six events give average strike direction and dip, respectively as 194.0° and 51.8° and are associated with the main fault of the area. The other three events lie in the southern part of this area and have strike direction between SSE and SE which is parallel to the tectonic features in this part. The CLVD component is generally within 20 percent of the total moment tensor. Recent studies show that anisotropy can produce source mechanism with CLVD up to 30 percent and can also cause high pore fluid pressure leading to fault instability more rapidly compared to conventional mechanism in an isotropic medium. It appears that the anisotropic crust, noted in the present work, is generating the CLVD component and also gives the proper environment to trigger earthquakes by reservoirs through pore fluid pressure.  相似文献   

14.
《Journal of Geodynamics》1999,27(4-5):567-583
Upper mantle P and S wave velocities in the western South America region are obtained at depths of foci from an analysis of travel time data of deep earthquakes. The inferred velocity models for the Chile–Peru–Ecuador region reveal an increase of P velocity from 8.04 km/s at 40 km to 8.28 km/s at 250 km depth, while the S velocity remains almost constant at 4.62 km/s from 40 to 210 km depth. A velocity discontinuity (probably corresponding to the L discontinuity in the continental upper mantle) at 220–250 km depth for P and 200–220 km depth for S waves, with a 3–4% velocity increase, is inferred from the velocity–depth data. Below this discontinuity, P velocity increases from 8.54 km/s at 250 km to 8.62 km/s at 320 km depth and S velocity increases from 4.81 km/s at 210 km to 4.99 km/s at 290 km depth. Travel time data from deep earthquakes at depths greater than 500 km in the Bolivia–Peru region, reveal P velocities of about 9.65 km/s from 500 to 570 km depth. P velocity–depth data further reveal a velocity discontinuity, either as a sharp boundary at 570 km depth with 8–10% velocity increase or as a broad transition zone with velocity rapidly increasing from 560 to 610 km depth. P velocity increases to 10.75 km/s at 650 km depth. A comparison with the latest global average depth estimates of the 660 km discontinuity reveals that this discontinuity is at a relatively shallow depth in the study region. Further, a velocity discontinuity at about 400 km depth with a 10% velocity increase seems to be consistent with travel time observations from deep earthquakes in this region.  相似文献   

15.
The technique of earthquake location relative to a master event is used to estimate near-source velocity and take-off angles for rays travelling to selected stations. Computations of a reconnaissance nature were carried out with arrival times of P and pP from deep earthquakes beneath the northwest corner of the Fiji plateau, the Peru-Brazil border region and the basin separating Fiji from the Tonga arc. These data yield estimates of compressional velocity of 11.2 ± 0.4, 11.4 ± 0.7 and 10.7 ± 0.3 km/sec respectively. Each of these velocities and the other parameters of each model space are essentially independent of their starting values. The corresponding depth ranges are 600–660, 580–650 and 540–600 km. These in-situ velocities are 5–10% higher than those of the Helmberger and Wiggins model. To account for such high velocities by a thermal effect alone would require an improbably high thermal contrast of 1000°C between “normal” mantle and the cooler earthquake zones. Spinels of proposed mantle composition would have compressional velocities of about 10.4 km/sec at temperatures that are taken as normal for these depths. If the high values of near-source velocity are explained by the addition of a post-spinel assemblage, then by implication this transformation occurs at shallower depths in those seismic zones than in the “normal” mantle.  相似文献   

16.
云南思茅—中甸地震剖面的地壳结构   总被引:7,自引:7,他引:7       下载免费PDF全文
张智  赵兵  张晰  刘财 《地球物理学报》2006,49(5):1377-1384
云南思茅—中甸宽角反射/折射地震剖面切割松潘—甘孜、扬子和华南三个构造单元的部分区域. 我们利用初至波和壳内反射波走时层析成像获得地壳纵波速度结构. 在获得新的地壳速度结构模型基础上,利用地震散射成像思想和低叠加次数的叠前深度偏移方法重建了研究区的地壳、上地幔反射结构. 综合分析研究区地壳P波速度模型和壳内地震反射剖面发现:沿测线从北至南地壳厚度从约50 km减薄至35 km左右,地壳厚度的减薄量主要体现在下地壳,剖面北段下地壳厚度约为30 km,剖面南段下地壳厚度仅为15 km左右;上地幔顶部局部位置P波速度值偏低,一般为76~78 km/s,反映出云南地区是典型的构造活动区的特点.剖面沿线地壳内地震反射发育,其中莫霍强反射出现在景云桥下方;在景云桥弧形断裂带8~10 km深处出现宽约50 km的强反射带.  相似文献   

17.
南北地震带北段的远震P波层析成像研究   总被引:5,自引:4,他引:1       下载免费PDF全文
本文利用"中国地震科学台阵"探测项目在南北地震带北段布设的678个流动地震台站在2013年10月至2015年4月期间记录到的远震波形数据,经过波形互相关拾取到473个远震事件共130309条P波走时残差数据,通过远震层析成像研究获得了该区(30°N-44°N,96°E-110°E)下方0.5°×0.5°的P波速度扰动图像.结果显示,研究区下方P波速度结构显示强烈的不均一性和显著的分区、分块特征.岩石圈速度结构具有显著的东西差异:祁连、西秦岭和松潘甘孜地块组成的青藏东北缘地区显示明显的低速异常,而属于克拉通性质的鄂尔多斯地块和四川盆地则显示高速异常,表明东部克拉通块体对青藏高原物质的东向挤出起到了强烈的阻挡作用.阿拉善地块显示出弱高速和局部弱低速的异常并存的特征.阿拉善地块西部显示低速异常,而东部与鄂尔多斯相邻的地区显示高速异常,可能表明该地区的岩石圈的变形主要受到青藏高原东北缘的挤压作用.在鄂尔多斯和四川盆地之间的秦岭下方100~250 km深度上表现为明显的低速异常,表明该处可能存在软流圈物质的运移通道.鄂尔多斯北部的河套裂陷盆地下方在100~500 km深度内低速异常表现明显,说明该区有深部热物质上涌且至少来源于地幔过渡带.青藏东北缘上地幔显示低速异常且地幔过渡带中出现明显的高速异常,这种结构模式暗示了在青藏高原东北缘可能发生了岩石圈拆沉作用,而高速异常体可能是拆沉的岩石圈地幔.  相似文献   

18.
Deep earthquakes located in the Tonga-Kermadec region produce exceptionally clear and sharp short-period P, S, PcP, ScP, and ScS phases which are recorded at many stations at distances of less than 60°. The data used in this study are produced by short-period stations located in oceanic-type regions (Fiji and New Caledonia), a mobile continental region (eastern Australia) and a shield region (central Australia). Differential travel-time residuals of the above phases at these stations are investigated to determine the contribution to the differential residuals from: (1) the upper part of the mantle (S-P residuals); (2) the core-to-station portion of the mantle (ScS-ScP residuals); and (3) the hypocenter-to core portion of the mantle (ScP-PcP residuals). The use of differential travel-time residuals considerably reduces near-station effects and effects due to inaccurate determination of the source parameters, and hence the results can be interpreted as due to variations along the propagation paths. The results show that (S-P) residuals from phases traveling along event-to-station paths are about 7 s smaller at the shield station than at the oceanic stations. This correlation with surface tectonic environments is equally strong for the (ScS-ScP) residuals, with the shield/oceanic station difference being about 4 s. Moreover, the data suggest that this correlation between differential residuals and surface tectonic environments is caused by variations in shear velocity within the upper part of the mantle. However, the data cannot uniquely resolve the required depth of these variations within the mantle. For example, if the shear velocity variations extend to a depth of 400 km beneath the recording stations, then the average shear velocity difference between shield- and oceanic-type environments is about 4%. However, if the variations extend only to a depth of 200 km, this difference is more than 8%.(ScP-PcP) and (ScS-PcS) residuals vary from about +1 to about +4 s at the different stations, apparently because of compressional velocity variations in the mantle along the Pc path. If the variation in compressional velocity within the mantle below a depth of about 600 km is about 10% and occurs near the source region, these results suggest that, in the vicinity of deep earthquake zones, variations in compressional velocity extend to a depth of about 1000 km. However, these results can equally be explained by a 1% variation in compressional velocity, evenly distributed along the entire Pc path. An estimate of Q determined from the observed predominant frequency of ScS waves, as recorded at the shield station, suggests that the average 〈Qs〉 of the mantle beneath about 600 km is about 1050 at frequencies of about 1 Hz.  相似文献   

19.
Using the P-and S-wave arrivals from the 150 earthquakes distributed in Tibetan Plateau and its neighboring areas, recorded by Tibetan seismic network, Sichuan seismic network, WWSSN and the mobile network situated in Tibetan Plateau, we have obtained the average P-and S-wave velocity models of the crust and upper mantle for this region:
(1)  The crust of 70 km average thickness can be divided into two main layers: 16 km thick upper crust with P-wave velocity 5.55 km/s and S-wave velocity 3.25 km/s; and 54 km thick lower crust with P-wave velocity 6.52 km/s and S-wave velocity 3.76 km/s.
(2)  The p-wave velocity at the upper most mantle is 7.97 km/s, and the S-wave 4.55 km/s. The low velocity layer in the upper mantle occurs approximately at 140 km deep with a thickness of about 55–62 km. The prominent velocity gradient beneath the LVZ is comparable to the gradient above it.
The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, Supp., 573–579, 1992.  相似文献   

20.
Slowness data from earthquakes in the Mindanao and Philippine regions recorded at the Warramunga array indicate a small, but abrupt, decrease in dT/dΔ at a distance of 29.5°. There is evidence also of a triplication in the P travel-time curve at about this distance. These data strongly suggest the presence of a rapid or discontinuous velocity increase of about 2% in P-wave velocity at a depth of about 770 km. Such a velocity increase is consistent with the occurrence of more than one phase change between 600 and 900 km, as predicted by the pyrolite model of Ringwood.Previous observations of increasing dT/dΔ with distance may have resulted from the predominance of the 650-km branch as it approaches its cusp. If so, then it is not necessary to invoke a decrease in velocity with depth near 800 km to explain the increase in mdT/dΔ observed between 32–34°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号