首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data on the composition of the absorbed complex of riverine solid substances and its transformation in marine environments obtained from field observations and experimental investigations are systematized and generalized. Average values of the specific surface of the riverine suspended particulates (~20 m2/g) and the total exchange capacity of solid substances of the continental runoff (~28 mg-equiv/100 g or 280 g-equiv/t of the transported terrigenous material) are determined. It is shown that the composition of the absorbed complex in the riverine suspended particulates, as well as bottom sediments of rivers and inland water bodies differs principally from that of bottom sediments in oceans and seas: Ca dominates in the first case; Na, in the second case. When the riverine terrigenous material enters oceans and seas, the composition of the absorbed complex is subjected to the ion-exchange transformation reflected in the replacement of exchange Ca (~80%) mainly by Na and also by K and Mg of seawater. This process is responsible for the influx of 45.5 Mt/yr of dissolved Ca to ocean and the removal of 37.3, 12.8, and 3.9 Mt/yr of Na, K, and Mg, respectively. The relative transport of Ca, Na, K, and Mg to ocean with the river runoff is +7.5,–12.3,–22.4, and–2.6%, respectively.  相似文献   

2.
A systematic study of the granulometric properties and the occurrence and distribution of rare earth elements (REE) within surface sediments from ten bays situated along the coast of Southeast China has facilitated a more rigorous understanding of constraints on sediment provenance in the area. The results show that REE concentrations are similar within a single bay, but vary considerably (133.58–251.77 mg/kg) among the bays. The chondrite-normalized distribution patterns show the typical enrichment of light REEs (LREEs: La–Eu) relative to heavy REEs (HREEs: Gd–Lu), and an apparent depletion of Eu, which is diagnostic of a terrigenous sediment source. Obvious enrichments of the middle REEs (MREEs: Sm–Ho) in the PAAS-normalized (Post-Archean Australian Shale) distribution patterns of these bay sediments are similar to results reported from large rivers in China. Comparing the REE composition of the bay sediments with those of adjoining fluvial sediments and with the bedrock of the surrounding drainage basins, the latter are indicated as the dominant sediment source. The uniform REE distribution patterns, and MREE enrichments, prove that the sediments are derived from the material transported by the streams and rivers that discharge into the bays.  相似文献   

3.
Sediment grain size and organic carbon (OC) data collected over the past 50 years, together with δ13C values of OC in recently collected samples, were analyzed to improve understanding of sediment OC distribution and abundance in Todos Santos Bay. Sediments in the submarine canyon at the mouth of the bay and in quiet-water locations along the shore are fine grained, high in OC, and have generally low δ13C values; sediments in high-energy environments are low in OC and have high δ13C values. A bivariate isotopic mixing model indicates that none of the sediments contain >50% terrigenous OC (average ~30%), and that the terrigenous OC content of the sediments is a small proportion of the OC content of local soils. Sediment OC composition is apparently controlled by energy-related sorting and deposition, oxidation of much of the original terrigenous OC, and replacement of some terrigenous OC by marine OC.  相似文献   

4.
Abstract Core BAP96‐CP, sampled from the deepest part of the Bay of La Paz, Gulf of California, has been analysed sedimentologically taking into account regional climate and oceanography. Laminated sediments at the bottom of the bay are essentially not bioturbated by benthic fauna. A subanoxic condition (O2 < 0·2 mL L?1) inhibits the proliferation of benthic fauna. Within the bay, the relative abundances of terrigenous and biogenic inputs change periodically. The terrigenous input is greater than the biogenic input and apparently experiences larger fluctuations. The terrigenous input dominates in dark laminae, whereas the biogenic input mostly occurs in light laminae. Thus, it is assumed that, down the core, the alternation of dark and light laminae represents cycles in the extent of dilution of the biogenic input by terrigenous input. The terrigenous input into the Bay of La Paz is mostly regulated by pluvial runoff. Thus, its temporal fluctuation follows the periods shown by the regional pluvial regime, particularly the 11·2 year period. This is equal to the frequency of sunspot cycles.  相似文献   

5.
Three sediment cores in a north-south transect (3°N to 13°S) from different sediment types of the Central Indian Ocean Basin (CIOB) are studied to understand the possible relationship between magnetic susceptibility (χ) and Al, Fe, Ti and Mn concentrations. The calcareous ooze core exhibit lowest χ (12.32 × 10−7 m3 kg−1), Al (2.84%), Fe (1.63%) and Ti (0.14%), terrigenous clay core with moderate χ (29.93 × 10−7 m3 kg−1) but highest Al (6.84%), Fe (5.20%) and Ti (0.44%), and siliceous ooze core with highest χ (38.06 × 10−7 m3 kg−1) but moderate Al (4.49%), Fe (2.80%) and Ti (0.19%) contents. The distribution of χ and detrital proxy elements (Al, Fe, and Ti) are identical in both calcareous and siliceous ooze. Interestingly, in terrigenous core, the behaviour of χ is identical to only Ti content but not with Al and Fe suggesting possibility of Al and Fe having a non-detrital source. The occurrence of phillipsite in terrigenous clay is evident by the Al-K scatter plot where trend line intersects K axis at more than 50% of total K suggesting excess K in the form of phillipsite. Therefore, the presence of phillipsite might be responsible for negative correlation between χ and Al (r = −0.52). In siliceous ooze the strong positive correlations among χ, Alexc and Feexc suggest the presence of authigenic Fe-rich smectite. High Mn content (0.5%) probably in the form of manganese micronodules is also contributing to χ in both calcareous and siliceous ooze but not in the terrigenous core where mean Mn content (0.1%) is similar to crustal abundance. Thus, χ systematically records the terrigenous variation in both the biogenic sediments but in terrigenous clay it indirectly suggests the presence of authigenic minerals.  相似文献   

6.
 Top and bottom samples of overbank sediments were collected at 43 sites within a 12 000 km2 area around the nickel smelter in Nikel and the ore roasting plant at Zapoljarnij, in northwestern Russia. In addition, three detailed overbank profiles were sampled in 10-cm sections from three catchments representing different levels of pollution. All samples were analysed for more than 30 elements by ICP-AES following aqua regia extraction. Results obtained show that overbank sediments represent natural (geogenic) background levels rather well. Although the major pollutants (Co, Cu, Ni and S) are strongly enriched at some places close to industry, overbank sediment is not especially well suited for mapping the extent of airborne contamination in the area. Co, Cu, Ni and S are mobile within the profile collected from the most polluted catchment. Received: 23 July 1996 · Accepted 18 October 1996  相似文献   

7.
海洋碎屑沉积物的粒度特征是海底沉积动力环境的直接体现,是用来研究海洋动力环境变化的重要手段,尤其是陆架海底表层沉积物的粒度分布,对于研究沿岸和水柱底边界层现今海洋动力环境可起到重要作用。该项研究通过调查遍布泰国湾至湄公河口海底表层沉积物陆源碎屑的粒度分布特征,以期获得影响现今特定海域沉积作用的海洋动力环境过程。粒度分析的结果显示,泰国湾表层沉积物的陆源碎屑以细砂-细粉砂为主,分选总体较差,频率分布以正偏为主。其中,细砂-极细砂组分主要分布在曼谷湾和柬埔寨沿岸。湄公河岸外沉积物为细砂,且分选比泰国湾区域的沉积物要好。这些表层沉积物的粒度特征具有良好的环境变化指示作用。湄公河岸外分选较好、近于正态分布的中砂沉积物指示了波浪作用下的沉积环境。曼谷湾和柬埔寨沿岸分选较差的中砂-细砂粗粒沉积物反映了潮汐和波浪的共同作用;泰国湾东西沿岸区域分选中等、呈正偏态的极细砂-中粉砂沉积物体现了潮汐的控制作用;而泰国湾中部分选较差的沉积物则指示了表层洋流作用。研究表明,泰国湾和湄公河岸外表层沉积物陆源碎屑的粒度分布特征可用于区分不同海洋动力因素的控制作用,揭示出泰国湾的沉积动力环境主要受潮汐、波浪和洋流的共同影响,湄公河岸外的沉积动力环境主要受波浪的影响。  相似文献   

8.
Geochemical studies of the ecosystems of 184 Siberian lakes in three largest zones of northern Asia (humid, arid, and semiarid) and in mountainous area were carried out. The contents of natural radionuclides, radiocesium, and rare-earth elements in conjugate components of the systems and the types of the main sources of the bottom sediment material have been determined.Dating of the bottom sediments was made by the activity of radioisotopes 137Cs and 210Pb, which permitted estimation of the sedimentation rates in lakes in different regions of Siberia: 0.35 cm/year in the south and 0.25–0.3 cm/year in the north.Six main ions have been determined in the waters of the studied lakes: Ca2+, Mg2+, Na+, HCO3?, SO42?, and Cl?. The distribution of natural radionuclides in the stratified sections of bottom sediments of Siberian lakes evidences the stable sedimentation and characterizes their contents in the soils of water-catchment areas, which can be considered background contents there. Sediments enriched in organic matter have higher concentrations of U and lower ones of Th and K. The Th/K ratio in the studied bottom sediments is the same as in the soils. The Th/U ratios are somewhat lower than those in the soils because U is accumulated by chemogenic and organic components. The overall 137Cs pollution of bottom sediments of Siberian lakes is close to the global background (40 mCi /km2 in 2000), but in the Altai Territory and Buryatia and Altai Republics it is twice higher. The uneven areal and temporal distribution of residual radiocesium is observed not only in the lacustrine sediments but also in the lake water areas. The REE patterns of bottom sediments of different mineral types are similar to those of continental crust and clays of the Russian Platform, though organogenic and carbonate sediments have higher absolute REE contents than terrigenous ones. Pelitic fraction is the main REE concentrator in the bottom sediments.  相似文献   

9.
Environmental geochemistry of Damodar River basin, east coast of India   总被引:1,自引:0,他引:1  
 Water and bed sediment samples collected from the Damodar River and its tributaries were analysed to study elemental chemistry and suspended load characteristics of the river basin. Na and Ca are the dominant cations and HCO3 is the dominant anion. The water chemistry of the Damodar River basin strongly reflects the dominance of continental weathering aided by atmospheric and anthropogenic activities in the catchment area. High concentrations of SO4 and PO4 at some sites indicate the mining and anthropogenic impact on water quality. The high concentration of dissolved silica, relatively high (Na+K)/TZ+ ratio (0.2–0.4) and low equivalent ratio of (Ca+Mg)/(Na+K) indicate that dissolved ions contribute significantly to the weathering of aluminosilicate minerals of crystalline rocks. The seasonal data show a minimum ionic concentration in the monsoon season, reflecting the influence of atmospheric precipitation on total dissolved solids contents. The suspended sediments show a positive correlation with discharge and both discharge and suspended load reach their maximum value during the monsoon season. Kaolinite is the mineral that is possibly in equilibrium with the water. This implies that the chemistry of the Damodar River water favours kaolinite formation. The concentration of heavy metals in the finer size fraction (<37 μ m) is significantly higher than the bulk composition. The geoaccumulation index values calculated for Fe, Mn, Zn, Ni and Cr are well below zero, suggesting that there is no pollution from these metals in Damodar River sediments. Received: 21 January 1998 · Accepted: 4 May 1998  相似文献   

10.
Analysis of 6 yr of monthly water quality data was performed on three distinct zones of Florida Bay: the eastern bay, central bay, and western bay. Each zone was analyzed for trends at intra-annual (seasonal), interannual (oscillation), and long-term (monotonic) scales. the variables TON, TOC, temperature, and TN∶TP ratio had seasonal maxima in the summer rainy season; APA and Chla, indicators of the size and activity of the microplankton tended to have maxima in the fall. In contrast, NO3 , NO2 , NH4 +, turbidity, and DOsat, were highest in the winter dry season. There were large changes in some of the water quality variables of Florida Bay over the study period. Salinity and TP concentrations declined baywide while turbidity increased dramatically. Salinity declined in the eastern, central, and western Florida Bay by 13.6‰, 11.6‰, and 5.6‰, respectively. Some of the decrease in the eastern bay could be accounted for by increased freshwater flows from the Everglades. In contrast to most other estuarine systems, increased runoff may have been partially responsible for the decrease in TP concentrations as input concentrations were 0.3–0.5 μM. Turbidity in the eastern bay increased twofold from 1991 to 1996, while in the central and western bays it increased by factors of 20 and 4, respectively. Chla concentrations were particularly dynamic and spatially heterogeneous. In the eastern bay, which makes up roughly half of the surface area of Florida Bay, Chla declined by 0.9 μg l−1 (63%). The hydrographically isolated central bay zone underwent a fivefold increase in phytoplankton biomass from 1989 to 1994, then rapidly declined to previous levels by 1996. In western Florida Bay there was a significant increase in Chla, yet median concentrations of Chla in the water column remained modest (∼2 μg l−1) by most estuarine standards. Only in the central bay did the DIN pool increase substantially (threefold to sixfold). Notably, these changes in turbidity and phytoplankton biomass occurred after the poorly-understood seagrass die-off in 1987. It is likely the death and decomposition of large amounts of seagrass biomass can at least partially explain some of the changes in water quality of Florida Bay, but the connections are temporally disjoint and the process indirect and not well understood.  相似文献   

11.
From a transact along 15‡N latitude in the middle Bengal Fan, temporal and spatial variations in the granulometric parameters and clay minerals in14C dated box cores from the eastern, the central and the western regions were studied to determine climate induced changes in the hydrography. Clay assemblages have spatial and temporal changes and are markedly different in the eastern and the western bay. From a high abundance of the clay smectite, which has its major source in the Deccan Basalt in peninsular India, it is inferred that the western bay is predominantly a depocenter of ‘peninsular sources”. The eastern and the central regions of the bay, however, mostly receive sediments of the ‘Himalayan source’. Related to unstable climate, the reported dominant illite-chlorite (I + C) assemblage in the eastern region of the bay (I + C > 60% smectite <15%), between 18 and 12.6 ka BP, points to a predominant supply from the Himalayan sources through equatorwards dispersal by the winter hydrography. Higher smectite, and reduced clays of the Himalayan sources (smectite > 25%; I + C > 45%) are reported also after 12.5 ka BP from the eastern bay. These are interpreted as evidences of an intensified SW monsoon and associated change in the dispersal pattern by stronger summer monsoon hydrography which supports across bay dispersal by anticyclonic gyre. The influence of climate on hydrographic changes is consistent during the short events of arid climate (weak NE monsoon) in Holocene in core 31/1 (western bay), in which the enhanced contents of the clays of the Himalayan sources are observed (smectite < 40% I + C > 50%). These findings have implications for climate regulated influence of fluvial processes over the areas, hitherto, considered unaffected by the Indian peninsular fluvial sources  相似文献   

12.
Studies of hydrothermal circulation within partly buried basement on the eastern flank of the Juan de Fuca Ridge (JFR) have shown that ridge-flank geochemical fluxes are potentially important for the global budgets of some elements. There are major uncertainties in these flux calculations, however, because the composition of these basement fluids is strongly dependent on temperature and because they may be modified by interaction with the overlying terrigenous sediments, either by diffusive exchange with basement or during upwelling to the seafloor. To better understand the nature and temperature control of basalt-fluid and sediment-fluid reactions at the JFR flank, we have conducted laboratory experiments between 51 and 350°C and at 400 bars pressure. K, Rb, and Si are leached from basalt between 150 and 351°C, and Sr and U are taken up. The direction of exchange of Li and Ca with basalt varies with temperature. Li and Sr are removed from fluid at 150°C, but isotope studies show that there is simultaneous release of both elements from basalt, indicating that uptake is controlled by the formation of secondary minerals. Moreover, our experiments confirm that Sr isotope exchange with oceanic crust occurs at moderate temperature and is not confined to high-temperature axial hydrothermal systems. Our data and field data from the JDR flank indicate that uptake of U into basalt at moderate temperature could remove between 9.9 and 15 × 106 mol U yr−1 from the oceans. This is higher than a recent estimate based on measurements of U in altered ocean crust (5.7 ± 3.3 × 106 mol yr−1), which concords with arguments that the Δelement/heat ratios of JDR flank fluids are too large to be representative of average global flank fluids. K, Ca, Sr, Ba, Li, Si, and B are leached from terrigenous sediments between 51 and 350°C, and U is taken up. Cs and Rb are removed from the fluid below 100°C and leached from the sediment at higher temperature. Sr isotope data show that Sr is preferentially mobilised from volcanic components within terrigenous sediments, which may lead to an overestimation of the ridge-flank Sr isotope flux at the JDR if there is exchange of sediment pore fluids with basement.  相似文献   

13.
《Applied Geochemistry》1996,11(4):605-616
Lake Valencia is a tropical lowland lake in north-central Venezuela. Lake bottom sediments were collected from 25 locations in April, 1988. At 2 locations water pH, conductivity, dissolved O2 and temperature were measured at successive depths. After drying, 5 sediment samples were sieved into 5 mechanical fractions. Each was extracted with 1 M HNO3 and analysed for AI, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb and Zn. The <63 μm fraction of all samples was similarly analysed. Water temperatures declined with depth (1°C/25 m) from approximately 26°C. Conductivity varied little with depth but dissolved O2 contents indicated anoxic conditions < 25 m. Water pH (8.8–9.4) was consistent with high dissolved carbonates. There was little consistent relationship between grain size and sediment metal contents. Approximate baseline metal contents were calculated from 21 of 25 samples. The average composition of the sediments corresponded to an ideal mixture of shales/carbonate rocks as 0.5–0.7/0.5-0.3. Five samples from alluvial fans near the mouths of rivers traversing urban-industrial zones had compositions different from the other sediments. Generally, Ph, Zn, Ni, Cd and Cu were anthropogenically enriched by factors of 2–16. The major sources of pollutants were identified as domestic and industrial activities affecting the rivers that traverse the lakeside cities of Maracay and Valencia. Sodium, Mg, Ca, Mn and CO3 showed natural enrichment arising from carbonate precipitation following a physical mixing of 2 sedimentary components (biogenic carbonate and terrigenous material). Low geochemical mobility of metallic elements in neutral-basic and reducing waters, a processes of bury and mixture of sediments and precipitation of carbonate result in only 10% of the lake area being affected by contamination. Isoline plots of elements in the bottom sediments supported a hypothesis that material mixing, physical transport and carbonate precipitation are the main controls of spatial distribution patterns.  相似文献   

14.
An approximate biogenic contribution of minor elements to sapropel of Lake Kirek in West Siberia is estimated using the “model of direct inheritance” of their composition in plankton by OM of bottom sediments (Yudovich and Ketris, 1990). It is shown that the lifetime accumulation of P, Br, and Zn in copepod zooplankton of Lake Kirek notably affects the concentration of these elements in sapropelic mud (biogenic contribution is approximately 95–53%). The biogenic share of other elements in these sediments is substantially lower: approximately 30% for Sr and Ba; 26–16% for Ca, Pb, Cd, Cu, K, Mg, and Cr; and no more than 5% for As, Co, Fe, Ni, Ti, Y, and Mo.  相似文献   

15.
Sediment-water oxygen and nutrient (NH4 +, NO3 ?+NO2 ?, DON, PO4 3?, and DSi) fluxes were measured in three distinct regions of Chesapeake Bay at monthly intervals during 1 yr and for portions of several additional years. Examination of these data revealed strong spatial and temporal patterns. Most fluxes were greatest in the central bay (station MB), moderate in the high salinity lower bay (station SB) and reduced in the oligohaline upper bay (station NB). Sediment oxygen consumption (SOC) rates generally increased with increasing temperature until bottom water concentrations of dissolved oxygen (DO) fell below 2.5 mg l?1, apparently limiting SOC rates. Fluxes of NH4 + were elevated at temperatures >15°C and, when coupled with low bottom water DO concentrations (<5 mg l?1), very large releases (>500 μmol N m?2 h?1) were observed. Nitrate + nitrite (NO3 ?+NO2 ?) exchanges were directed into sediments in areas where bottom water NO3 ?+NO2 ? concentrations were high (>18 μM N); sediment efflux of NO3 ?+NO2 ? occurred only in areas where bottom water NO3 ?+NO2 ? concentrations were relatively low (<11 μM N) and bottom waters well oxygenated. Phosphate fluxes were small except in areas of hypoxic and anoxic bottom waters; in those cases releases were high (50–150 μmol P m?2 h?1) but of short duration (2 mo). Dissolved silicate (DSi) fluxes were directed out of the sediments at all stations and appeared to be proportional to primary production in overlying waters. Dissolved organic nitrogen (DON) was released from the sediments at stations NB and SB and taken up by the sediments at station MB in summer months; DON fluxes were either small or noninterpretable during cooler months of the year. It appears that the amount and quality of organic matter reaching the sediments is of primary importance in determining the spatial variability and interannual differences in sediment nutrient fluxes along the axis of the bay. Surficial sediment chlorophyll-a, used as an indicator of labile sediment organic matter, was highly correlated with NH4 ?, PO4 3?, and DSi fluxes but only after a temporal lag of about 1 mo was added between deposition events and sediment nutrient releases. Sediment O:N flux ratios indicated that substantial sediment nitrification-denitrification probably occurred at all sites during winter-spring but not summer-fall; N:P flux ratios were high in spring but much less than expected during summer, particularly at hypoxic and anoxic sites. Finally, a comparison of seasonal N and P demand by phytoplankton with sediment nutrient releases indicated that the sediments provide a substantial fraction of nutrients required by phytoplankton in summer, but not winter, especially in the mid bay region.  相似文献   

16.
Many Gulf of Mexico estuaries have low ratios of water volume to bottom surface area, and benthic processes in these systems likely have a major influence on system structure and function. The purpose of this study was to determine the spatiotemporal distribution of biomass and community composition of subtidal benthic microalgal (BMA) communities in Galveston Bay, TX, USA, compare BMA community composition and biomass to phytoplankton in overlying waters, and estimate the potential contribution of BMA to the trophodynamics in this shallow, turbid, subtropical estuary. The estimates of BMA biomass (mean = 4.21 mg Chl a m−2) for Galveston Bay were within the range of the reported values for similar Gulf of Mexico estuaries. BMA biomass in the central part of the bay was essentially homogeneous, whereas biomass at the seaward and upper bay ends of the transect were significantly lower. Peridinin, fucoxanthin, and alloxanthin were the three carotenoids with the highest concentrations, with fucoxanthin having the highest mean concentration (1.82 mg m−2). The seaward and landward ends of the transect differed from the central region of the bay with respect to the relative abundances of chlorophytes, cyanobacteria, and photosynthetic bacteria. Benthic microalgal community composition also showed a gradual shift over time due to changes in the relative abundances of photosynthetic bacteria, cryptophytes, dinoflagellates, and cyanobacteria. Major changes in community composition occurred in the spring months (March to April). On an areal basis, BMA biomass in Galveston Bay occurred at minor concentrations (16.5%) relative to phytoplankton. Furthermore, the concentrations of carotenoid pigments for phytoplankton and BMA (fucoxanthin, alloxanthin, and zeaxanthin) were correlated (r = 0.48 to 0.61), suggesting a close linkage between microalgae in the water column and sediments. The contribution of BMA to the primary productivity of the deeper waters (>2 m) of Galveston Bay is probably very small in comparison to shallower waters along the bay margins. The significant similarities in the community composition of phytoplankton and BMA illustrate the potential importance of deposition and resuspension processes in this turbid, shallow estuary.  相似文献   

17.
Sediment cores were sampled from Xiamen Western Bay at five sites during the summer and winter of 2006 and Hg–Au microelectrodes were used to make on board measurements of the concentration gradients of dissolved oxygen, Mn2+, and Fe2+ within the sediments. The O2 concentrations decreased sharply from about 200 μmol L−1 in the bottom seawater to zero within a depth of a few millimeters into the sediment. Dissolved Mn2+ was detected below the oxic zones with peak concentrations up to 600 μmol L−1, whereas dissolved Fe2+ had peak concentrations up to 1,000 μmol L−1 in deeper layers. The elemental contents of organic carbon and nitrogen within the sediments were analyzed and their C/N ratios were in the range of 9.0 to 10.1, indicative of heavy terrestrial origin. Sediments from two sites near municipal wastewater discharge outlets had higher organic contents than those from the other sites. These high organic contents corresponded to shallow O2 penetration depths, high dissolved Mn2+ and Fe2+ concentrations, and negative redox potentials within the sediments. This indicated that the high organic matter content had promoted microbial respiration within the sediments. Overall, the organic content did not show any appreciable decrease with increasing sediment depths, so a quadratic polynomial function was used to fit the curve of O2 profiles within the sediments. Based on the O2 profiles, O2 fluxes across the seawater and sediment interface were estimated to be in the range 6.07 to 14.9 mmol m−2 day−1, and organic carbon consumption rates within the surface sediments were estimated to be in the range 3.3 to 20.8 mgC cm−3 a−1. The case demonstrated that biogeochemistry within the sediments of the bay was very sensitive to human activities such as sewage discharge.  相似文献   

18.
The grain size and element (including redox sensitive elements and terrigenous elements) concentration of surface sediments from the Changjiang Estuary hypoxia zone and its adjacent sea area were measured in this research. Based on the obtained data, the hypoxic environment’s influence on the distribution of elements in surface sediments was further studied. We believe that the “redox environment effect” greatly influences the distribution of the RSE, which reveals the “patchy enrichment pattern” offshore in the hypoxia zone, while the distribution of the terrigenous elements which shows the “stripped enrichment pattern” near shore is mainly affected by “granularity effects”. Due to the existence of the hypoxia zone of the Changjiang Estuary, the distribution of the RSE such as Mo, Cd and V in the study area exhibits the characteristics of “redox environment effects”. __________ Translated from Marine Geology & Quaternary Geology, 2007, 27(3):1–8 [译自: 海洋地质与第四纪地质]  相似文献   

19.
Kaneohe Bay, Hawaii, is an estuary used as a harbor for a military installation and for recreation, fishing, and research purposes. Rapid shoaling of the bay had been reported and attributed to increased stream erosion and sedimentation from the newly suburbanized watershed. Comparison of a 1976 bathymetric survey of Kaneohe Bay with that of a 1927 survey indicates an average shoaling of the lagoonal area of 1.0 m. Average shoaling for the north and middle bay at 0.6m/49 years (1.2 cm yr−1 is lower than for the south bay at 1.5m/49 years (3.1 cm yr−1). The total lagoonal fill in the 49-year period is about 1.95× 107 m3, assigned as follows: 64% carbonate detritus from the reefs as well as growth of living coral and unrecorded dredging spill, 9% recorded dredging spoils, and only 27% terrigenous sediment. Seismic reflection profiles distinguish spoil from natural sediment and show that the infilling sediment is trapped between, burying reef structures built during Quaternary lower stands of the sea. There had been little obvious change between 1882 and 1927 surveys. All information suggests that increased shoaling rates since 1927 are due to reported and unreported disposal of dredge spoil, mainly from 1939 to 1945 for ship and seaplane channels in the south bay, and not from increased runoff and urbanization around the south bay. Hawaii Institute of Geophysics Contribution No. 1257.  相似文献   

20.
Heavy contaminant load released into the Northern Dvina River during flooding increased the concentrations of aliphatic (AHC) and polcyclic aromatic (PAH) hydrocarbons in water and bottom sediments. The composition of hydrocarbons was different from that of the summer low flow season. The concentrations of dissolved and particulate AHC ranged from 12 to 106 and from 192 to 599 μg/l, respectively, and bottom sediments contained from 26.2 to 329 μg/g AHC and 4 to 1785 ng/g PAH. As the transformation of AHC occurred at low spring temperatures, the alkane composition was shown to be dominated by terrigenous compounds, whereas more stable PAH showed elevated contents of petrogenic and pyrogenic compounds. It was also shown that the Northern Dvina-Dvina Bay geochemical barrier prevents contaminant input into the White Sea, i.e., acts as a marginal filter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号