共查询到20条相似文献,搜索用时 15 毫秒
1.
A. V. Polyakov Yu. M. Timofeyev Ya. A. Virolainen M. V. Makarova A. V. Poberovskii H. K. Imhasin 《Izvestiya Atmospheric and Oceanic Physics》2018,54(5):487-494
The results of the first long-term (2009–2017) ground-based spectroscopic measurements of the total content (TC) of a number of freons in Russia are presented. According to measurements in Peterhof, TCs of CFC-11 and CFC-12 decrease at a rate of ~0.6% per year and TC of HCFC-22 grows at a rate of ~2.7% per year, which is in good agreement with independent measurements. The seasonal course of freon TC in the area of St. Petersburg is registered: highs of CFC-11 and CFC-12 are observed in summer and lows are in late winter and spring. For the HCFC-22 TC, the opposite seasonal course is observed, with a maximum in winter and a minimum in summer. 相似文献
2.
Y. A. Virolainen Y. M. Timofeyev S. P. Smyshlyaev M. A. Motsakov O. Kirner 《Izvestiya Atmospheric and Oceanic Physics》2017,53(9):911-917
A comparison between the numerical simulation results of ozone fields with different experimental data makes it possible to estimate the quality of models for their further use in reliable forecasts of ozone layer evolution. We analyze time series of satellite (SBUV) measurements of the total ozone column (TOC) and the ozone partial columns in two atmospheric layers (0–25 and 25–60 km) and compare them with the results of numerical simulation in the chemistry transport model (CTM) for the low and middle atmosphere and the chemistry climate model EMAC. The daily and monthly average ozone values, short-term periods of ozone depletion, and long-term trends of ozone columns are considered; all data sets relate to St. Petersburg and the period between 2000 and 2014. The statistical parameters (means, standard deviations, variations, medians, asymmetry parameter, etc.) of the ozone time series are quite similar for all datasets. However, the EMAC model systematically underestimates the ozone columns in all layers considered. The corresponding differences between satellite measurements and EMAC numerical simulations are (5 ± 5)% and (7 ± 7)% and (1 ± 4)% for the ozone column in the 0–25 and 25–60 km layers, respectively. The correspondent differences between SBUV measurements and CTM results amount to (0 ± 7)%, (1 ± 9)%, and (–2 ± 8)%. Both models describe the sudden episodes of the ozone minimum well, but the EMAC accuracy is much higher than that of the CTM, which often underestimates the ozone minima. Assessments of the long-term linear trends show that they are close to zero for all datasets for the period under study. 相似文献
3.
Dobrolenskiy Y. S. Ionov D. V. Korablev O. I. Fedorova A. A. Zherebtsov E. A. Shatalov A. E. Poberovskii A. V. 《Izvestiya Atmospheric and Oceanic Physics》2018,54(9):1399-1407
Izvestiya, Atmospheric and Oceanic Physics - The results obtained from test ground-based measurements with a new satellite instrument for mo-nitoring the Earth’s ozone layer are considered.... 相似文献
4.
Izvestiya, Atmospheric and Oceanic Physics - In this paper, we discuss the time series of the coefficient of backscattering from forest cover and unused land in the Moscow region based on 29 C-band... 相似文献
5.
Zavialov P. O. Zavialov I. B. Izhitskiy A. S. Izhitskaya E. S. Konovalov B. V. Krementskiy V. V. Nemirovskaya I. A. Chasovnikov V. K. 《Oceanology》2022,62(2):162-170
Oceanology - The paper presents the results of an analysis of the main pollutants (heavy metals, pesticides, detergents, hydrocarbons) in water, suspended particulate matter, and bottom sediments,... 相似文献
6.
Zuev V. V. Korotkova E. M. Pavlinsky A.V. 《Izvestiya Atmospheric and Oceanic Physics》2020,56(9):1072-1079
Izvestiya, Atmospheric and Oceanic Physics - This paper presents the results of a trend and correlation analysis of the air temperature and the normalized difference vegetation index (NDVI)... 相似文献
7.
Izvestiya, Atmospheric and Oceanic Physics - A series of monthly mean values of the surface temperature in August are created for the Sea of Okhotsk and adjacent waters using 21 years’ worth... 相似文献
8.
《Ocean Modelling》2011,40(3-4):284-290
The temperature dependency of ocean–atmosphere gas transfer velocities is commonly estimated in terms of Schmidt numbers, i.e. the ratio of kinematic viscosity to diffusivity. In numerical models least square regressions are used to fit the limited number of experimentally derived Schmidt numbers to a function of temperature. For CO2 a well established fit can be found in the literature. This fit constitutes an integral part in standardized carbon cycle simulation projects (e.g. C4MIP, OC4MIP, Friedlingstein et al., 2006). However, the fit is valid only in the range where diffusivity measurements exist, i.e., from 0 to about 30 °C. In many climate warming simulations like e.g. the MPI contribution to the fourth Intergovernmental Panel on Climate Change Assessment Report (IPCC AR 4), sea surface temperatures largely exceed the validated range and approach or even reach the range, where the standard fits leave the physically meaningful range. Thus, this paper underlines the demand for new measurements of seawater diffusivities for CO2 and other trace gases especially for the temperature range >30 °C.In this paper we provide improved fits for the temperature dependence of the Schmidt number. For carbon dioxide our fit is compared to the established fit under identical climate change simulations carried out with the 3D-carbon cycle model HAMOCC. We find that in many tropical and subtropical high temperature regions the established fit leads to unrealistically short adaption times of the surface water pCO2 to altered atmospheric pCO2. In regions where the local oceanic pCO2 is not primarily controlled by the atmospheric boundary pCO2 but by other processes such as biological activity, the atmosphere ocean pCO2 gradient is clearly underestimated when using the established fit. The effect on global oceanic carbon uptake in a greenhouse world is rather small and the potential climate feedback introduced by this bias seems to be negligible. However, the bias will clearly gain in significance the more regions warm up to over 30 °C. On a regional scale, especially in coastal regions at low latitudes, the effect is not negligible and a different steady state is approached. 相似文献
9.
Galyamov A. L. Volkov A. V. Lobanov K. V. 《Izvestiya Atmospheric and Oceanic Physics》2021,57(12):1751-1761
Izvestiya, Atmospheric and Oceanic Physics - The results of a comparative metallogenic spatial analysis based on GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) data, which allows... 相似文献
10.
Oceanology - The aim of this study is to compare satellite measurements of the total cloudiness with visual observations of clouds. This makes it possible to compare “different... 相似文献
11.
《Marine and Petroleum Geology》2012,33(1):138-158
Different methods have been used to examine minerals and/or solid bitumens in three adjacent Carpathian regions of Poland, Ukraine and Slovakia. The minerals fill smaller and larger veins and cavities, where they occur either together or separately. They usually co-occur with the solid bitumens. All δ13CPDB values measured for calcite lie in a relatively wide interval between −6.25‰ and +1.54‰, while most values fall into the narrower interval from below 0 to about −3‰. The general range of calcite δ18O results for the whole studied region is between +17.13‰ and +25.23‰ VSMOW or from about −11 to −5‰ VPDB, while the majority of these values are between +20.0 and 23.5‰ VSMOW (−10.53 and −8.00‰ PDB, respectively). δ18OVSMOW results for quartz vary between +23.2 and 27.6. The carbonate percentage determined in some samples falls between from <2% CaCO3 to >90% CaCO3, while the TOC values changes from 0.09% to over 70%.The aliphatic fraction predominates in all studied samples, mainly in bitumens and oils. The composition of the aliphatic fraction is relatively homogeneous and points to a strong aliphatic, oil-like paraffin character of the bitumens. Such a composition is characteristic of the Carpathian oils and different from the rocks studied that contain the higher percentage of a polar fraction. The content of the aliphatic fraction in bitumens is only slightly higher than that in two oils used for comparison. The distribution of n-alkanes is variable in rocks, solid bitumens as well as inclusions in quartz and calcite. Two groups of bitumens may be distinguished. Those with a predominance of long-chain n-alkanes in the C25–C27 interval (in some cases from C23–C25 and without or with a very low concentration of short-chain n-alkanes in the interval of C14–C21) show also a high content of isoprenoids i.e. of pristane (Pr) and phytane (Ph). In all but one bitumen samples, Pr predominates over Ph. The second group comprises oils and rock samples with a characteristic predominance of short-chain n-alkanes in the interval from C13–C19 and a low percentage of the long-chain n-alkanes from the n-C27–n-C33 interval. Pristane and phytane exhibit a concentration comparable to that of C17 and C18 n-alkanes with a Pr predominance over Ph. Due to high maturity, only small amounts of the most stable compounds from the hopane group have been observed in the samples, also oleanane in one case. Among the aromatic hydrocarbons, phenanthrene and its methyl- and dimethyl-derivatives are dominant in bitumens, source rocks and inclusions in calcite and quartz. Occurrence of cyclohexylbenzene and its alkyl-derivatives as well as cyclohexylfluorenes in solid bitumens suggest that they formed from oil accumulations under the influence of relatively high temperatures in oxidizing conditions.Homogenization temperatures for aqueous/brine inclusions in quartz within the Dukla and Silesian units (Polish and Ukrainian segments) are between 125 and 183.9 °C, while salinities are low in the interval of 0.2–5.5 wt% NaCl eq. The inclusions in calcite homogenize at higher temperatures of almost 200 °C and the brine displays higher salinity than the fluid in the quartz. Two quartz generations may be distinguished by inclusion and isotope characteristics and the macroscopic diversity. Oil inclusions homogenize at 95 °C. One phase inclusions in quartz contain methane, CO2 and nitrogen in variable proportions. 相似文献
12.
Bondur V. G. Zakharova L. N. Zakharov A. I. 《Izvestiya Atmospheric and Oceanic Physics》2020,56(12):1520-1527
Izvestiya, Atmospheric and Oceanic Physics - Results are presented from monitoring the current state of the area of the landslide on the Bureya River in 2018–2019 using images from synthetic... 相似文献
13.
《Deep Sea Research Part I: Oceanographic Research Papers》2002,49(8):1413-1429
The distribution of pH and alkalinity has been used to calculate the distribution of total inorganic carbon (TC) and fugacity of carbon dioxide (fCO2) in the upper 200 m of the water column in coastal upwelling areas off northern Chile (23–24°S, near Antofagasta) and central Chile (30–31°S, near Coquimbo) during austral summer 1997. In these upwelling areas, colder surface waters were oxygen poor and strongly CO2 supersaturated (100% near Antofagasta and 200% near Coquimbo), although below the pycnocline the CO2 supersaturation invariably exceeded 200% in both areas. The larger surface CO2 supersaturation and outgassing at 30°S were associated with stronger winds that promoted the upwelling of denser water (richer in CO2) as well as a higher air–sea CO2 transfer velocity. The consistent decrease in intensity of the southerly winds (as derived from NSCAT scatterometer data) from 30–31°S to 23–24°S suggests a corresponding decline in the intensity of the CO2 outgassing due to upwelling. Additionally, we suggest here that the intensity of the local upwelling forcing (i.e. alongshore–equatorward winds) plays a role in determining the water mass composition and phytoplankton biomass of the coastal waters. Thus, while deep upwelling of salty and cold water resulted in high fCO2 (up to 1000 μatm) and very low phytoplankton biomass (chlorophyll a concentration lower than 0.5 mg m−3), the shallow upwelling of less salty (e.g. salinity <34.5) and less CO2-supersaturated water resulted in a higher phytoplankton biomass, which further reduced surface water fCO2 by photosynthesis. 相似文献
14.
Shevchenko V. I. Lukk A. A. Leonova V. G. 《Izvestiya Atmospheric and Oceanic Physics》2020,56(11):1337-1345
Izvestiya, Atmospheric and Oceanic Physics - Based on the available geological and geodetic data, it has been established that the structures of the Alpine–Himalayan–Indonesian mobile... 相似文献
15.
《Deep Sea Research Part II: Topical Studies in Oceanography》1999,46(6-7):1511-1530
We have developed a 3D model for the carbon cycle and air–sea flux of CO2 in the Greenland Sea that consists of three submodels for hydrodynamics, carbon chemistry and plankton ecology. The hydrodynamical model, based on the primitive Navier–Stokes equations, simulates the physical environment that is used for the chemical and biological models. The chemical model calculates the pCO2 as a function of the total inorganic carbon, alkalinity, temperature and salinity. The ecological model has eight state variables and simulates the transformation of CO2 into organic carbon, vertical transport, and the respiration processes that convert the organic carbon back into inorganic form. The model gives an average annual primary production of 68 g C m−2 y−1, of which 44.7 g C m−2 y−1 is new production. In the eastern part of the Greenland Sea, the average annual new production is above 50 g C m−2 y−1. Simulated, annual flux of CO2 from the atmosphere is 53 g C m−2 y−1, which sums up to 0.026 Gt for the whole Greenland Sea. Of this, 9 g C m−2 y−1 is exported by sinking particles, 6 g C m−2 y−1 by migrating zooplankton (mainly Calanus hyperboreus), and 38 g C m−2 y−1 by advection. 相似文献
16.
L.G. Anderson T. Tanhua G. Björk S. Hjalmarsson E.P. Jones S. Jutterström B. Rudels J.H. Swift I. Wåhlstöm 《Deep Sea Research Part I: Oceanographic Research Papers》2010,57(7):869-879
The Arctic Ocean has wide shelf areas with extensive biological activity including a high primary productivity and an active microbial loop within the surface sediment. This in combination with brine production during sea ice formation result in the decay products exiting from the shelf into the deep basin typically at a depth of about 150 m and over a wide salinity range centered around S ~33. We present data from the Beringia cruise in 2005 along a section in the Canada Basin from the continental margin north of Alaska towards the north and from the International Siberian Shelf Study in 2008 (ISSS-08) to illustrate the impact of these processes. The water rich in decay products, nutrients and dissolved inorganic carbon (DIC), exits the shelf not only from the Chukchi Sea, as has been shown earlier, but also from the East Siberian Sea. The excess of DIC found in the Canada Basin in a depth range of about 50–250 m amounts to 90±40 g C m?2. If this excess is integrated over the whole Canadian Basin the excess equals 320±140×1012 g C. The high DIC concentration layer also has low pH and consequently a low degree of calcium carbonate saturation, with minimum aragonite values of 60% saturation and calcite values just below saturation. The mean age of the waters in the top 300 m was calculated using the transit time distribution method. By applying a future exponential increase of atmospheric CO2 the invasion of anthropogenic carbon into these waters will result in an under-saturated surface water with respect to aragonite by the year 2050, even without any freshening caused by melting sea ice or increased river discharge. 相似文献
17.
A 3D coupled biogeochemical–hydrodynamic model (MIRO-CO2&CO) is implemented in the English Channel (ECH) and the Southern Bight of the North Sea (SBNS) to estimate the present-day spatio-temporal distribution of air–sea CO2 fluxes, surface water partial pressure of CO2 (pCO2) and other components of the carbonate system (pH, saturation state of calcite (Ωca) and of aragonite (Ωar)), and the main drivers of their variability. Over the 1994–2004 period, air–sea CO2 fluxes show significant inter-annual variability, with oscillations between net annual CO2 sinks and sources. The inter-annual variability of air–sea CO2 fluxes simulated in the SBNS is controlled primarily by river loads and changes of biological activities (net autotrophy in spring and early summer, and net heterotrophy in winter and autumn), while in areas less influenced by river inputs such as the ECH, the inter-annual variations of air–sea CO2 fluxes are mainly due to changes in sea surface temperature and in near-surface wind strength and direction. In the ECH, the decrease of pH, of Ωca and of Ωar follows the one expected from the increase of atmospheric CO2 (ocean acidification), but the decrease of these quantities in the SBNS during the considered time period is faster than the one expected from ocean acidification alone. This seems to be related to a general pattern of decreasing nutrient river loads and net ecosystem production (NEP) in the SBNS. Annually, the combined effect of carbon and nutrient loads leads to an increase of the sink of CO2 in the ECH and the SBNS, but the impact of the river loads varies spatially and is stronger in river plumes and nearshore waters than in offshore waters. The impact of organic and inorganic carbon (C) inputs is mainly confined to the coast and generates a source of CO2 to the atmosphere and low pH, of Ωca and of Ωar values in estuarine plumes, while the impact of nutrient loads, highest than the effect of C inputs in coastal nearshore waters, also propagates offshore and, by stimulating primary production, drives a sink of atmospheric CO2 and higher values of pH, of Ωca and of Ωar. 相似文献
18.
19.
20.
Lake St Lucia, the largest estuarine lake in Africa has been subjected to hypersaline conditions and low lake levels over the past eight years following the closure of its mouth due to drought in the region. This paper documents the physical changes through which the lake has passed and summarises the main findings of research undertaken on the three major biotic components that have been subjected to these conditions. A review of the anthropogenic impacts which have affected the system is provided. These indicate that in combination with drought conditions greater pressure is placed on the system that was the case in the historical past. Available data indicate that the current situation is not only impacting on the lake and its fauna but also on the adjacent nearshore marine environment, It is considered that the Meta area is potentially also under threat. Medium to long term relief possibilities that are under consideration are discussed in relation to the restructuring of something resembling the historically combined uMfolozi–St Lucia ecosystem that existed in the past. It is concluded that in the short term only two options are available to potentially provide relief for the system, the first is to breach the connection between the mouth and the sea. The second is to re-establish some form of more permanent connection, between uMfolozi and St Lucia. 相似文献