首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
China is the world's largest carbon dioxide (CO2) emitter and its energy system is dominated by coal. For China to dramatically reduce its greenhouse gas (GHG) emissions over the next few decades, it must either replace most of its uses of coal with energy supplies from renewables and nuclear power or install demonstration-size and then scaled-up carbon capture and storage (CCS) technologies. Currently, China is pushing ahead with increased investment in renewables and nuclear power and with demonstration CCS projects. This strategy is consistent with a country that seeks to be ready in case global pressures prompt it to launch an aggressive GHG reduction effort while also not going so fast that it reduces the likelihood of receiving substantial financial support from wealthier countries, as it feels it is entitled to as a developing country. At such a time, given the magnitude of the coal resource in China, and the country's lack of other energy resources, it is likely the Chinese will make a substantial effort to develop CCS before taking the much more difficult step of trying to phase-out almost all use of coal in the span of just a few decades in a country that is so dependent on this domestically abundant and economically affordable resource.  相似文献   

2.
The ambition to introduce carbon capture and storage (CCS) technology in developing countries raises particular considerations and challenges, where, most fundamentally, pressing socio-economic needs imply that there are other political priorities than GHG mitigation. This suggests that the interest in, and viability of, large-scale deployment of CCS in developing countries has to be analyzed as a strategic issue in the overall context of national development. But what are then the strategic concerns that may influence developing countries’ decisions to pursue large-scale deployment of CCS technology? The present article takes a first step in answering this question by comparing CCS policies and ongoing activities in Brazil, India and South Africa.  相似文献   

3.
The feasibility of two low-carbon society (LCS) scenarios, one with and one without nuclear power and carbon capture and storage (CCS), is evaluated using the AIM/Enduse[Global] model. Both scenarios suggest that achieving a 50% emissions reduction target (relative to 1990 levels) by 2050 is technically feasible if locally suited technologies are introduced and the relevant policies, including necessary financial transfers, are appropriately implemented. In the scenario that includes nuclear and CCS options, it will be vital to consider the risks and acceptance of these technologies. In the scenario without these technologies, the challenge will be how to reduce energy service demand. In both scenarios, the estimated investment costs will be higher in non-Annex I countries than in Annex I countries. Finally, the enhancement of capacity building to support the deployment of locally suited technologies will be central to achieving an LCS.

Policy relevance

Policies to reduce GHG emissions up to 2050 are critical if the long-term target of stabilizing the climate is to be achieved. From a policy perspective, the cost and social acceptability of the policy used to reduce emissions are two of the key factors in determining the optimal pathways to achieve this. However, the nuclear accident at Fukushima highlighted the risk of depending on large-scale technologies for the provision of energy and has led to a backlash against the use of nuclear technology. It is found that if nuclear and CCS are used it will be technically feasible to halve GHG emissions by 2050, although very costly. However, although the cost of halving emissions will be about the same if neither nuclear nor CCS is used, a 50% reduction in emissions reduction will not be achievable unless the demand for energy service is substantially reduced.  相似文献   

4.
碳捕集与封存(CCS)技术作为解决全球气候变化问题的重要手段之一,能够有效减少CO2排放。中国作为碳排放大国,当前电力的主要来源仍是煤电,碳捕集(CC)改造在燃煤电厂中有很大的应用潜力。经济性对CC改造的部署至关重要。为此,本文计算了中国各省典型电厂CC改造前后的平准化度电成本,比较了不同省份的CO2捕集成本与CO2避免成本,分析了不同掺烧率下生物质掺烧结合碳捕集(bioenergy with carbon capture,BECC)改造的经济性。研究发现,CC改造会导致不同地区的燃煤电厂度电成本增加57.51%~93.38%。煤价较低的华北和西北地区(青海除外)CC改造经济性较好,BECC改造则更适合华中地区。建议在推进燃煤电厂CC和BECC改造时要充分考虑区域资源特点,完善碳市场建设,形成合理碳价以促进CC和BECC部署。  相似文献   

5.
Deforestation, the second largest source of anthropogenic greenhouse gas emissions, is largely driven by expanding forestry and agriculture. However, despite agricultural expansion being increasingly driven by foreign demand, the links between deforestation and foreign demand for agricultural commodities have only been partially mapped. Here we present a pan-tropical quantification of carbon emissions from deforestation associated with the expansion of agriculture and forest plantations, and trace embodied emissions through global supply chains to consumers. We find that in the period 2010–2014, expansion of agriculture and tree plantations into forests across the tropics was associated with net emissions of approximately 2.6 gigatonnes carbon dioxide per year. Cattle and oilseed products account for over half of these emissions. Europe and China are major importers, and for many developed countries, deforestation emissions embodied in imports rival or exceed emissions from domestic agriculture. Depending on the trade model used, 29–39% of deforestation-related emissions were driven by international trade. This is substantially higher than the share of fossil carbon emissions embodied in trade, indicating that efforts to reduce greenhouse gas emissions from land-use change need to consider the role of international demand in driving deforestation. Additionally, we find that deforestation emissions are similar to, or larger than, other emissions in the carbon footprint of key forest-risk commodities. Similarly, deforestation emissions constitute a substantial share (˜15%) of the total carbon footprint of food consumption in EU countries. This highlights the need for consumption-based accounts to include emissions from deforestation, and for the implementation of policy measures that cross these international supply-chains if deforestation emissions are to be effectively reduced.  相似文献   

6.
Carbon capture and storage (CCS) is increasingly depicted as an important element of the carbon dioxide mitigation portfolio. However, critics have warned that CCS might lead to “reinforced fossil fuel lock-in”, by perpetuating a fossil fuel based energy provision system. Due to large-scale investments in CCS infrastructure, the fossil fuel based ‘regime’ would be perpetuated to at least the end of this century.In this paper we investigate if and how CCS could help to avoid reinforcing fossil fuel lock-in. First we develop a set of criteria to estimate the degree of technological lock-in. We apply these criteria to assess the lock-in reinforcement effect of adding CCS to the fossil fuel socio-technical regime (FFR).In principle, carbon dioxide could be captured from any carbon dioxide point source. In the practice of present technological innovations, business strategies, and policy developments, CCS is most often coupled to coal power plants. However, there are many point sources of carbon dioxide that are not directly related to coal or even fossil fuels. For instance, many forms of bio-energy or biomass-based processes generate significant streams of carbon dioxide emissions. Capturing this carbon dioxide which was originally sequestered in biomass could lead to negative carbon dioxide emissions.We use the functional approach of technical innovations systems (TIS) to estimate in more detail the strengths of the “niches” CCS and Bio-Energy with CCS (BECCS). We also assess the orientation of the CCS niche towards the FFR and the risk of crowding out BECCS. Next we develop pathways for developing fossil energy carbon capture and storage, BECCS, and combinations of them, using transition pathways concepts. The outcome is that a large-scale BECCS development could be feasible under certain conditions, thus largely avoiding the risk of reinforced fossil fuel lock-in.  相似文献   

7.
Over the last three decades, socio-economic, demographic and technological transitions have been witnessed throughout the world, modifying both sectorial and geographical distributions of greenhouse gas (GHG) emissions. Understanding these trends is central to the design of current and future climate change mitigation policies, requiring up-to-date methodologically robust emission inventories such as the Emissions Database for Global Atmospheric Research (EDGAR), the European Commission’s in-house, independent global emission inventory. EDGAR is a key tool to track the evolution of GHG emissions and contributes to quantifying the global carbon budget, providing independent and systematically calculated emissions for all countries.According to the results of the EDGAR v.5.0 release, total anthropogenic global greenhouse gas emissions (excluding land use, land use change and forestry) were estimated at 49.1 Gt CO2eq in 2015, 50 % higher than in 1990, despite a monotonic decrease in GHG emissions per unit of economic output. Between 1990 and 2015, emissions from developed countries fell by 9%, while emissions from low to medium income countries increased by 130%, predominantly from 2000 onwards. The 27 Member States of the European Union and the United Kingdom led the pathway for emission reductions in industrialised economies whilst, in developing countries, the rise in emissions was driven by higher emissions in China, India, Brazil and nations in the South-East Asian region. This diversity of patterns shows how different patterns for GHG emissions are and the need for identifying regionally tailored emission reduction measures.  相似文献   

8.
Carbon capture and storage (CCS) is considered by some to be a promising technology to reduce greenhouse gas emissions, and advocates are seeking policies to facilitate its deployment. Unlike many countries, which approach the development of policies for geologic storage (GS) of carbon dioxide (CO2) with nearly a blank slate, the U.S. already has a mature policy regime devoted to the injection of CO2 into deep geologic formations. However, the existing governance of CO2 injection is designed to manage enhanced oil recovery (EOR), and policy changes would be needed to manage the risks and benefits of CO2 injection for the purpose of avoiding GHG emissions. We review GS policy developments at both the U.S. federal and state levels, including original research on state GS policy development. By applying advocacy coalition framework theory, we identify two competing coalitions defined by their beliefs about the primary purpose of CO2 injection: energy supply or greenhouse gas (GHG) emission reductions. The established energy coalition is the beneficiary of the current policy regime. Their vision of GS policy is protective: to minimize harm to fossil energy industries if climate policy were to be enacted. In contrast, the newly formed climate coalition seeks to change existing GS policy to support their proactive vision: to maximize GHG reductions using CCS when climate policy is enacted. We explore where and at what scale legislation emerges and examine which institutions gain prominence as drivers of policy change. Through a detailed textual analysis of the content of state GS legislation, we find that the energy coalition has had greater success than the climate coalition in shaping state laws to align with its policy preferences. It has enshrined its view of the purpose of CO2 injection in state legislation, delegated authority for GS to state agencies aligned with the existing policy regime, and protected the EOR status quo, while creating new opportunities for EOR operators to profit from the storage of CO2 The climate coalition's objective of proactively putting GS policy in place has been furthered, and important progress has been made on commonly held concerns, such as the resolution of property rights issues, but the net result is policy change that does not significantly revise the existing policy regime.  相似文献   

9.
总结了IPCC《气候变化与土地特别报告》中有关陆气相互作用、粮食系统与粮食安全、土地退化和荒漠化、可持续土地管理等的主要结论,分析了报告中争议较大的粮食系统温室气体排放、生物质能源、土地温室气体通量等问题。我国在粮食系统全生命周期温室气体排放量估算、基于遥感测量和地面测量的大气浓度等数据反演温室气体排放量等方面需要深入研究。同时,我国要继续加强可持续土地管理,提高相应的技术措施和能力建设。  相似文献   

10.
欧盟自1997年起就如何通过市场和行政手段“双轮驱动”控制碳排放总量进行不断探索,并逐步建立了较为成熟的碳排放交易体系及减排责任分担机制,已经取得了良好的减排效果。文中梳理分析《责任分担条例》修正案中关于成员国减排目标更新的内容、目标分配的原则与方法、灵活性机制,归纳了欧盟采用行政手段控制碳排放交易系统未涉及部门的温室气体排放的经验,并对中国如何构建充分考虑市场手段和行政手段的CO2排放总量控制制度提出政策建议。  相似文献   

11.
We investigate uncertainties about conventional petroleum resources and substitutes for conventional petroleum, focusing on the impact of these uncertainties on future greenhouse gas (GHG) emissions. We use examples from the IPCC Special Report on Emissions Scenarios as a baseline for comparison. The studied uncertainties include, (1) uncertainty in emissions factors for petroleum substitutes, (2) uncertainties resulting from poor knowledge of the amount of remaining conventional petroleum, and (3) uncertainties about the amount of production of petroleum substitutes from natural gas and coal feedstocks. We find that the potential effects of a transition to petroleum substitutes on GHG emissions are significant. A transition to low-quality and synthetic petroleum resources such as tar sands or coal-to-liquids synfuels could raise upstream GHG emissions by several gigatonnes of carbon (GtC) per year by mid-century unless mitigation steps are taken.  相似文献   

12.
《Climate Policy》2013,13(2-3):197-209
Abstract

Korea, straddled between developing and developed country status, is facing challenges and opportunities in energy use and climate change mitigation potential. Unlike other OECD countries, Korea's greenhouse gas (GHG) emissions are expected to continue to grow for the next two decades. The responses Korea could take to lower emissions without hampering economic development have an important bearing on the global response to climate change. This paper summarizes and evaluates mitigation strategies and major options for Korea in the energy sector, a major contributor to GHG emissions.  相似文献   

13.
交通运输行业是温室气体排放的主要来源之一。“双碳”目标对交通领域碳减排工作提出了更高的要求。我国交通运输行业能源消耗统计和温室气体排放测算的统计数据基础较为薄弱,目前国家层面尚未公布统一的交通运输温室气体核算方法,温室气体排放存在底数不清的问题,其核算边界、范围、方法都有待进一步明确。文中通过梳理国内外交通运输领域温室气体核算边界及测算方法,提出了适用于我国交通运输不同子领域温室气体的测算研究思路。并针对我国交通运输温室气体核算工作现存问题,从健全行业能耗与排放核算方法体系、建立交通运输能耗与碳排放数据共享机制、加强交通能耗与碳排放核算方法培训、强化数据质量管理等方面提出相应的政策建议,为我国交通运输行业温室气体排放核算工作的持续开展提供参考。  相似文献   

14.
China's 12th Five-Year Plan (2011–2015) envisages that shale gas and coal will be central to its energy future. However, for China to meet the energy security and climate change objectives set out in its 12th Five-Year Plan it will be reliant on the widespread commercial deployment of two key technologies; hydraulic fracturing combined with horizontal drilling for shale gas, and carbon capture and storage (CCS) for coal. China is moving to acquire these technologies through technology transfer and diffusion from the US, but progress has been slow, and neither is currently available in China on a commercial scale. Drawing on interviews in the US and China, this article argues that China's expectation of technology from the US may well be disappointed because of factors unique to the US institutional environment that have made the development of fracking technology possible and hinder the development of CCS technology at a commercial scale.

Policy relevance

If China is to meet the energy security and climate change objectives set out in its 12th Five-Year Plan it will be reliant on the widespread commercial deployment of fracking and clean coal technologies. While China expects to acquire these technologies via technology transfer and diffusion from the US, progress has been slow. Because of factors unique to the US institutional environment the availability of both technologies on a commercial scale in China is unlikely in the coming years. As a result, Chinese policy makers would be well-advised not to count on these technologies to meet their energy and climate goals.  相似文献   

15.
Developing economy greenhouse gas emissions are growing rapidly relative to developed economy emissions (Boden et al. 2010) and developing economies as a group have greater emissions than developed economies. These developments are expected to continue (U.S. Energy Information Administration 2010), which has led some to question the effectiveness of emissions mitigation in developed economies without a commitment to extensive mitigation action from developing economies. One often heard argument against proposed U.S. legislation to limit carbon emissions to mitigate climate change is that, without participation from large developing economies like China and India, stabilizing temperature at 2 degrees Celsius above preindustrial (United Nations 2009), or even reducing global emissions levels, would be impossible (Driessen 2009; RPC Energy Facts 2009) or prohibitively expensive (Clarke et al. 2009). Here we show that significantly delayed action by rapidly developing countries is not a reason to forgo mitigation efforts in developed economies. This letter examines the effect of a scenario with no explicit international climate policy and two policy scenarios, full global action and a developing economy delay, on the probability of exceeding various global average temperature changes by 2100. This letter demonstrates that even when developing economies delay any mitigation efforts until 2050 the effect of action by developed economies will appreciably reduce the probability of more extreme levels of temperature change. This paper concludes that early carbon mitigation efforts by developed economies will considerably affect the distribution over future climate change, whether or not developing countries begin mitigation efforts in the near term.  相似文献   

16.
Activities to reduce net greenhouse gas emissions by biological soil or forest carbon sequestration predominantly utilize currently known, readily implementable technologies. Many other greenhouse gas emission reduction options require future technological development or must wait for turnover of capital stock. Carbon sequestration options in soils and forests, while ready to go now, generally have a finite life, allowing use until other strategies are developed. This paper reports on an investigation of the competitiveness of biological carbon sequestration from a dynamic and multiple strategy viewpoint. Key factors affecting the competitiveness of terrestrial mitigation options are land availability and cost effectiveness relative to other options including CO2 capture and storage, energy efficiency improvements, fuel switching, and non-CO2 greenhouse gas emission reductions. The analysis results show that, at lower CO2 prices and in the near term, soil carbon and other agricultural/forestry options can be important bridges to the future, initially providing a substantial portion of attainable reductions in net greenhouse gas emissions, but with a limited role in later years. At higher CO2 prices, afforestation and biofuels are more dominant among terrestrial options to offset greenhouse gas emissions. But in the longer run, allowing for capital stock turnover, options to reduce greenhouse gas emissions from the energy system and biofuels provide an increasing share of potential reductions in total US greenhouse gas emissions.  相似文献   

17.
碳捕获和封存技术认知、政策现状与减排潜力分析   总被引:1,自引:0,他引:1       下载免费PDF全文
在综合大量相关资料的基础上,研究总结了碳捕获和封存(CCS)技术的发展现状、示范项目进展和相关的国际法规政策,分析了其大规模应用的障碍,并将CCS技术与提高能效、发展可再生能源等减排技术方案进行了对比。分析认为,一方面我国需审慎评估CCS技术推广使用可能产生的负面影响;另一方面我国也需要适当加大对CCS关键技术的研发投入,避免在技术上受制于人。此外,有关CCS推广的财税政策的推出,需要视CCS技术的实际发展情况而定。我国还需要根据现实情况,重点考虑如何对现有火电厂进行改造,为CCS技术未来的大规模推广打下基础。  相似文献   

18.
Economics of geological CO2 storage and leakage   总被引:1,自引:0,他引:1  
  相似文献   

19.
Demonstration of a fully integrated power plant with carbon capture and storage (CCS) at scale has not yet been achieved, despite growing international political interest in the potential of the technology to contribute to climate change mitigation and calls from multiple constituents for more demonstration projects. Acknowledging the scale of learning that still must occur for the technology to advance towards deployment, multiple CCS demonstration projects of various scales are emerging globally. Current plans for learning and knowledge sharing associated with demonstration projects, however, seem to be limited and narrowly conceived, raising questions about whether the projects will deliver on the expectations raised. Through a comparison of the structure, framing and socio-political context of three very different CCS demonstration projects in different places and contexts, this paper explores the complexity of social learning associated with demonstration projects. Variety in expectations of the demonstration projects’ objectives, learning processes, information sharing mechanisms, public engagement initiatives, financing and collaborative partnerships are highlighted. The comparison shows that multiple factors including the process of building support for the project, the governance context and the framing of the project matter for the learning in demonstration projects. This analysis supports a broader conceptualization of learning than that currently found in CCS demonstration plans - a result with implications for both future research and practice.  相似文献   

20.
Research on the effects of climate change on U.S. agriculture and world grain markets suggests that adaptation will occur with relatively small effects on total production. Additional research shows that reducing emission of greenhouse gases from U.S. agricultural production is relatively expensive compared to encouraging reforestation as an offset to emissions of carbon dioxide. Nevertheless, continued population growth and the increasing inequality of income across countries are likely to exacerbate the adverse effects of climate change. Concepts of sustainability should be expanded to cover industrial as well as agricultural production, and promote the efficient use of fossil fuels in general. Dealing with climate change effectively will require international cooperation and a willingness to address population growth and the divergence of incomes between rich and poor countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号