首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 476 毫秒
1.
Some missions have been carried out to measure wave directional spectrum by synthetic aperture radar (SAR) and airborne real aperture radar (RAR) at a low incidence. Both them have their own advantages and limitations. Scientists hope that SAR and satellite-based RAR can complement each other for the research on wave properties in the future. For this study, the authors aim to simulate the satellite-based RAR system to validate performance for measuring the directional wave spectrum. The principal measurements are introduced and the simulation methods based on the one developed by Hauser are adopted and slightly modified. To enhance the authenticity of input spectrum and the wave spectrum measuring consistency for SAR and satellite-based RAR, the wave height spectrum inversed from Envisat ASAR data by cross spectrum technology is used as the input spectrum of the simulation system. In the process of simulation, the sea surface, backscattering signal, modulation spectrum and the estimated wave height spectrum are simulated in each look direction. Directional wave spectrum are measured based on the simulated observations from 0° to 360°. From the estimated wave spectrum, it has an 180° ambiguity like SAR, but it has no special high wave number cut off in all the direction. Finally, the estimated spectrum is compared with the input one in terms of the dominant wave wavelength, direction and SWH and the results are promising. The simulation shows that satellite-based RAR should be capable of measuring the directional wave properties. Moreover, it indicates satellite-based RAR basically can measure waves that SAR can measure.  相似文献   

2.
通过对2次海上作业期间船载X波段测波雷达数据对比分析,发现雷达测得的有效波高值在一段时间内存在较大误差。在2017年12月6日10:00至17:00期间,相比于人工目测值,雷达测得的有效波高值持续偏低。通过分析现场的天气与环境状况,并且对比相同海况下未受降雨影响和受到降雨影响时不同时刻的二维海浪谱,发现该段时间内因有降雨且能见度低,导致雷达测量的海浪谱能量异常偏低,信噪比SNR异常偏低造成X波段雷达测得的有效波高值异常偏低。在2018年4月11日船只路过5号大浮标和4号大浮标期间,相比于浮标测值,雷达测得的有效波高值异常偏高。通过查看系统中最大流速设置,发现设定的最大流速值过高(为50 m/s)。这样滤波器的带宽过大,大量噪声可能会被当成海浪信号通过滤波器,导致雷达反演的信噪比SNR异常偏高,造成X波段雷达测得的有效波高值异常偏高。通过分析误差产生的原因,对雷达设置的调整以及雷达系统的进一步完善有一定的参考价值。  相似文献   

3.
Recent experimental and theoretical findings raise interesting questions about the applicability of the normal gravity-wave dispersion relation at wave frequencies that exceed the spectral peak frequency. The use of the dispersion relation in analysis of HF radar Doppler sea echo is examined in this paper. Drawing on the results of perturbation theory for wave-wave nonlinear interactions, we show that this relation, so essential to echo interpretation in terms of current and wave information, can be employed with no degradation in accuracy for current measurement when the dominant wave frequency is considerably less (by as much as 10) than the radar Bragg resonance frequency. This finding is supported by comparisons of currents measured by HF radar with "surface truth;" the first-order echo must only be identifiable in order to be used accurately. Wave-height directional spectral information can be extracted from the second-order echo at a given radar frequency up to the point (in wave height) where the perturbation solution employed in the inversion process fails; then a lower radar frequency must be used. On the other hand, most conventional wave measuring instruments should not use the dispersion relation for interpretation of data well beyond the spectral peak, because they do not observe wave height as a function of both space and time independently, as does HF radar.  相似文献   

4.
Results of an airborne study of the waves in the Gulf Stream are presented. These results show that the active microwave sensors (high-flight radar and wind-wave radar) provide consistent and accurate estimates of significant wave height and surface wind speed, respectively. The correlation between the wave height measurements of the high-flight radar and a laser profilometer is excellent.  相似文献   

5.
Use of nautical radar as a wave monitoring instrument   总被引:2,自引:0,他引:2  
Common marine X-Band radars can be used as a sensor to survey ocean wave fields. The wave field images provided by the radars are sampled and analysed by a wave monitoring system (called WaMoS II) developed by the German research institute GKSS. This measuring system can be mounted on a ship, on offshore stations or at coastal locations. The measurement is based on the backscatter of microwaves from the ocean surface, which is visible as ‘sea clutter' on the radar screen. From this observable sea clutter, a numerical analysis is carried out. The unambiguous directional wave spectrum, the surface currents and sea state parameters such as wave periods, wave lengths, and wave directions can be derived. To provide absolute wave heights, the response of the nautical radar must be calibrated. Similar to the wave height estimations for Synthetic Aperture Radars, the so-called ‘Signal to Noise Ratio' leads to the determination of the significant wave height (HS). In this paper, WaMoS II results are compared with directional buoy data to show the capabilities of nautical microwave radars for sea state measurements.  相似文献   

6.
便携式高频地波雷达台湾海峡浪高观测   总被引:2,自引:1,他引:1  
As an important equipment for sea state remote sensing, high frequency surface wave radar(HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the integration of the second-order spectral continuum to that of the first-order region, where the strong external noise and the incorrect delineation of the first- and second-order Doppler spectral regions due to spectral aliasing are two major sources of errors in the wave height. To account for these factors, two more indices are introduced to the wave height estimation, i.e., the ratio of the maximum power of the second-order continuum to that of the Bragg spectral region(RSCB) and the ratio of the power of the second harmonic peak to that of the Bragg peak(RSHB). Both indices also have a strong correlation with the underlying wave height. On the basis of all these indices an empirical model is proposed to estimate the wave height. This method has been used in a three-months long experiment of the ocean state measuring and analyzing radar, type S(OSMAR-S), which is a portable HFSWR with compact cross-loop/monopole receive antennas developed by Wuhan University since 2006. During the experiment in the Taiwan Strait, the significant wave height varied from 0 to 5 m. The significant wave heights estimated by the OSMAR-S correlate well with the data provided by the Oceanweather Inc. for comparison, with a correlation coefficient of 0.74 and a root mean square error(RMSE) of 0.77 m. The proposed method has made an effective improvement to the wave height estimation and thus a further step toward operational use of the OSMAR-S in the wave height extraction.  相似文献   

7.
This paper describes the results of an initial on-orbit engineering assessment of the performance achieved by the radar altimeter system flown on Seasat-1. Additionally, the general design characteristics of this system are discussed and illustrations of altimeter data products are provided. The instrument consists of a 13.5-GHz monostatic radar system that tracks in range only using a 1-m parabolic antenna pointed at the satellite nadir. Two of its unique features are a linear FM transmitter with 320-MHz bandwidth, which yields a 3.125-ns time-delay resolution, and microprocessor-implemented closed-loop range tracking, automatic gain control (AGC), and real-time estimation of significant wave height (SWH). Results presented herein show that the altimeter generally performed in accordance with its original performance requirements of measuring altitude to a precision of less than 10-cm rms, SWH to an accuracy ofpm0.5m or 10 percent whichever is greater, and ocean backscatter coefficient to an accuracy ofpm1dB, all over an SWH range of 1 to 20 m.  相似文献   

8.
The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improve the accuracy and increase the valid detection range of the wave height measurement, particularly by the smallaperture radar, it is turned to singular peaks which often exceed the power of other frequency components. The power of three kinds of singular peaks, i.e., those around ±1,±2~(1/2) and ±1(2~(1/2)) times the Bragg frequency, are retrieved from a one-month-long radar data set collected by an ocean state monitoring and analyzing radar,model S(OSMAR-S), and in situ buoy records are used to make some comparisons. The power response to a wave height is found to be described with a new model quite well, by which obvious improvement on the wave height estimation is achieved. With the buoy measurements as reference, a correlation coefficient is increased to 0.90 and a root mean square error(RMSE) is decreased to 0.35 m at the range of 7.5 km compared with the results by the second-order method. The further analysis of the fitting performance across range suggests that the peak has the best fit and maintains a good performance as far as 40 km. The correlation coefficient is 0.78 and the RMSE is 0.62 m at 40 km. These results show the effectiveness of the new empirical method, which opens a new way for the wave height estimation with the HF radar.  相似文献   

9.
X波段导航雷达浪高实时测量研究   总被引:9,自引:1,他引:9  
针对舰船对浪高实时测量的需要,提出了基于X波段导航雷达浪高实时测量的方案。介绍X波段导航雷达浪高测量原理,建立基于X波段导航雷达浪高实时测量的数学模型。通过某海域实测采集的雷达图像,经过数学模型反演得出浪高实时数据,并与采用浮标传感器实时测量的浪高数据进行对比,发现X波段导航雷达与浮标传感器测得的浪高数据有近一致的线性关系,标准差也较小。从一定程度上为舰船浪高测量提供一种可行性方法。  相似文献   

10.
We present the results of development and testing of a coastal X-band radar system for monitoring wind waves and currents at the Black Sea (near Gelendzhik) created on the basis of nautical radars. Radar measurements of wave heights were validated by data from a wave buoy and a moored acoustic Doppler current profiler (ADCP). The conditions for successful radar measurements of waves in the coastal environment have been determined. It was shown that a radar with an aperture 1° could successfully measure wave heights at a distance of 1.2 km from the radar, when waves arrive at an angle of ±31° to the main sensing direction. In this case, for wave height measurements, the correlation coefficient between the radar and independent data is 0.82 and the standard deviation is 0.26 m.  相似文献   

11.
Many synthetic aperture radar(SAR) wave height retrieval algorithms have been developed.However,the wave height retrievals from most existing methods either depend on other input as the first guess or are restricted to the long wave regime.A semiempirical algorithm is presented,which has the objective to estimate the wave height from SAR imagery without any prior knowledge.The proposed novel algorithm was developed based on the theoretical SAR ocean wave imaging mechanism and the empirical relation between two types of wave period.The dependency of the proposed model on radar incident and wave direction was analyzed.For Envisat advanced synthetic aperture radar(ASAR) wave mode data,the model can be reduced to the simple form with two input parameters,i.e.,the cutoff wavelength and peak wavelength of ocean wave,which can be retrieved from SAR imagery without any prior knowledge of wind or wave.Using Envisat ASAR wave mode data and the collocated buoy measurements from NDBC,the semiempirical algorithm is validated and compared with the Envisat ASAR level 2 products.The root-mean-square-error(RMSE) and scatter index(SI) in respect to the in situ measurements are 0.52 m and 19% respectively.Validation results indicate that,for Envisat ASAR wave mode data,the proposed method works well.  相似文献   

12.
基于相参X-波段海洋雷达的海表轮廓测量研究   总被引:4,自引:2,他引:2  
X-波段海洋雷达测量所得海面散射单元的多普勒信息与散射单元的雷达视向速度密切相关。首先,基于符号多普勒估计方法,对X-波段雷达海面回波的多普勒频移信息进行了估计;在此基础上,应用各分辨单元回波的多普勒频移信息,建立了海浪表面轮廓的反演算法。该算法中,同时考虑了雷达入射角、方位角和雷达空间分辨率等因素对反演结果的影响。通过将反演结果与浮标测量数据相比较,发现雷达空间分辨率起到了类似低通滤波的作用,该作用对短重力波谱影响显著。同时,还应用加拿大麦克马斯特大学的IPIX雷达数据对海表轮廓进行了反演,并将反演所得有效波高、海浪周期与现场测量数据进行了比较,反演结果与现场测量结果吻合较好。  相似文献   

13.
Significant wave height(SWH) can be computed from the returning waveform of radar altimeter, this parameter is only raw estimates if it does not calibrate. But accurate calibration is important for all applications, especially for climate studies. HY-2a altimeter has been operational since April 2012 and its products are available to the scientific community. In this work, SWH data from HY-2A altimeters are calibrated against in situ buoy data from the National Data Buoy Center(NDBC), Distinguished from previous calibration studies which generally regarded buoy data as "truth", the work of calibration for HY-2A altimeter wave data against in situ buoys was applied a more sophisticated statistical technique—the total least squares(TLS) method which can take into account errors in both variables. We present calibration results for HY-2A radar altimeter measurement of wave height against NDBC buoys. In addition, cross-calibration for HY-2A and Jason-2 wave data are talked over and the result is given.  相似文献   

14.
Measurement of ocean wave spectra using narrow-beam HE radar   总被引:1,自引:0,他引:1  
A data interpretation algorithm is developed to extract ocean wave information from HF radar backscatter observed by a narrow-beam antenna system. The basis of this measurement is the inversion of the integral equation representing the second-order radar cross section of the ocean surface. This equation is numerically inverted by approximating it as a matrix equation and pseudoinverting the kernel matrix using a singular value decomposition. As a test of this algorithm, comparisons are made between wave spectrum estimates obtained from a WAVEC buoy and a pair of 25.4-MHz ground wave radars, using data collected during the 1986 Canadian Atlantic Storms Program (CASP). Overall, the results of this experiment have been positive and have demonstrated both the basic feasibility of the inversion algorithm and the wave sensing capability of HF radar. For example, significant wave height estimates deduced by two radars differed from the buoy, in an absolute value sense, by only 0.12 m on average. When using only one radar, the mean difference of this important parameter from the buoy was a reasonable 0.33 m  相似文献   

15.
文中简要介绍了雷达水位计的测量原理、分类和技术特点,并将其中的导波式雷达水位计和非接触式雷达水位计与传统的浮子式水位计进行了比较,说明了导波式雷达水位计应用于一些特定条件下潮位观测的优势。基于导波式雷达水位计设计了一套水位观测系统。简要介绍了该水位观测系统的系统组成、硬件设计、软件设计。针对该水位观测系统进行了计量检定,并进行了现场安装试验。在现场实验中将导波式雷达水位计数据与浮子式水位计数据进行比较,说明了采用该设计方案进行潮位观测的可行性。  相似文献   

16.
The purpose of this study is to discuss the influence of signal nonlinearity upon X-band radar observations. A method for estimating the degree of nonlinearity by bispectral analysis was applied and discussed. We found that bispectral analyses from spatial radar backscatter series are similar to results obtained from water level time series. In addition, the average nonlinear degree from radar backscatter is related to wind speed. The accuracy of wave observations derived by consideration of the nonlinear effect from radar backscatter was also investigated. The estimated error in wave height from the radar data is also related to the degree of nonlinearity. In order to improve accuracy, the modulation transfer function method was applied in order to eliminate the influence of nonlinearity.  相似文献   

17.
根据星载合成孔径雷达(SAR)浅海水下地形和水深成像机理,建立了浅海水下地形和水深雷达后向散射截面仿真模型.利用该模型模拟并分析了不同地形条件下,浅海水下地形的雷达后向散射截面.分析结果表明,水下地形高度越高,SAR可测量的水深越深;水下地形坡度越大,越易被SAR所观测.水下地形的星载SAR测量还与水下地形的方向有关,与卫星飞行方向平行的水下地形最易被SAR观测,与卫星飞行方向垂直的水下地形最不易被SAR观测.  相似文献   

18.
高频地波雷达海面有效波高探测实验研究   总被引:4,自引:2,他引:2  
利用安装于福建龙海的OSMAR071高频地波雷达和位于雷达波束范围内金门料罗湾口的波浪浮标在2008年11月1日至2009年4月30日半年期间的观测结果,对Barrick波高模型进行改进和模型系数拟合、标定,讨论了改进模型系数的稳定性。结果表明,该模型能适应噪声和干扰等因素对宽波束雷达有效波高探测结果的影响。雷达观测反演回报的有效波高与浮标观测结果对比,二者时间序列的均方根误差为0.39m,相关系数为0.67。  相似文献   

19.
HY-2卫星雷达高度计时标偏差估算   总被引:2,自引:0,他引:2  
卫星雷达高度计是海洋遥感监测的重要传感器之一,测高系统和定轨系统是高度计重要的组成部分。若两系统使用不同的系统时钟,则获得的轨道高度和卫星测距值之间可能会存在一个时标偏差,该时标偏差会降低卫星雷达高度计的海面高度测量精度。针对HY-2卫星雷达高度计的时标偏差问题,本文分析了时标偏差对测高精度的影响,介绍了一种使用自交叉点数据估算时标偏差值的方法,并基于HY-2卫星雷达高度计第21个周期数据开展了时标偏差修正实验。时标偏差修正后HY-2自交叉点的海面高度差值(也称"不符值")分布收敛程度有了明显的提高,其RMS均方根值从24.7 cm减小到了7.0 cm,HY-2与Jason-2互交叉点的不符值的RMS也从16.6 cm减小到了7.3 cm。这表明本文介绍的时标偏差修正方法可有效地提高HY-2卫星雷达高度计的测高精度。  相似文献   

20.
利用X波段雷达图像估计有效波高   总被引:1,自引:0,他引:1  
海浪有效波高与雷达的海杂波强度有关,但是无法直接由雷达图像得到.借鉴运用SAR图像计算有效波高的方法,即假设有效波高与雷达回波强度信噪比的平方根成线性关系,可以由X波段雷达图像计算得到海浪的有效波高.将在小麦岛和南海分别进行的岸基试验和船基试验获得的浮标资料和雷达资料结合起来分析,结果表明用X波段航海雷达测量有效波高的最大误差不超过9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号