首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Periodicities of solar irradiance and solar activity indices,I   总被引:1,自引:0,他引:1  
Using a standard FFT time series analysis, our results show an 8–11 months periodicity in the solar total and UV irradiances, 10.7 cm radio flux, Ca-K plage index, and sunspot blocking function. The physical origin of this period is not known, but the evidence in the results exclude the possibility that the observed period is a harmonic due to the FFT transform or detrending. Periods at 150–157 and 51 days are found in those solar data which are related to strong magnetic fields. The 51-day period is the dominant period in the projected areas of developing complex sunspot groups, but it is missing from the old decaying sunspot areas. This evidence suggests that the 51-day period is related to the emergence of new magnetic fields. A strong 13.5-day period is found in the total irradiance and projected areas of developing complex groups. This confirms those results (e.g., Donnelly et al., 1983, 1984; Bai, 1987, 1989) which show that active centers are located 180 deg apart from each other.Our study also shows that the modulation of various solar data due to the 27-day solar rotation is more pronounced during the declining portion of solar cycle than during the rising portion. This arises from that the active regions and their magnetic fields are better organized and more long-lived during the maximum and declining portion of solar cycle than during its rising portion.  相似文献   

2.
T. W. Cole 《Solar physics》1973,30(1):103-110
The techniques of power spectral analysis are used to determine significant periodicities in the annual mean relative sunspot numbers. The main conclusion is that a period of 10.45 yr is very basic and can be associated with an excitation of new solar cycles. When combined with a period of 11.8 yr, associated here with the free-running length of a solar cycle, the mean cycle length of 11.06 yr and a phase variation of 190 yr are explained. Similarly the amplitude variations with periods 88 and 59 yr (previously described as the 80-yr cycle) are due to an amplitude modulation of the solar cycle by a period of 11.9±0.3 yr. The results dispute several associations of planetary position and solar activity.Radiophysics Publication RPP 1647, January, 1973.  相似文献   

3.
We have studied Forbush decreases (FD) with solar flare data and major solar proton event (SPE) data (E > 10 MeV) for the years 1976–1986 and have found that FD solar flare data exhibit periods around 0.95, 2.4, and 4.75 years at >99% level of confidence (CL), while SPE data exhibit periods around 2.6 and 5.0 years (at >95% CL). Because of a common periodicity around 2.5 years, it is suggested that FD with the solar flare data and major SPE data, together with solar diameter and solar neutrino variations, behave similarly and may have a common origin.  相似文献   

4.
This paper tries to cast additional evidence on the proposed periodic behaviour of the N-S asymmetry in sudden disappearances (SD) of solar prominences (Vizoso and Ballester, 1987). We have performed a Blackman-Tukey power spectrum of the values of the SD N-S asymmetry and the results shows a significant peak, above 95% confidence level, at 12.4 years, another peak at 2.3 years fails to be statistically significant. Moreover, power spectrum performed with the values of N-S asymmetry of flare number and flare index (Vizoso and Ballester (1987) display significant peaks, above 95% confidence level, around 3.1–3.2 years.  相似文献   

5.
6.
The daily solar radio flux values at 9400, 3750, 2000 and 1000 MHz and at 2800 MHz observed since 1957 at Toyokawa and Ottawa, respectively, have been used to provide new information on the solar radio fluxes as indices of solar activity. After an examination of the yearly mean values at each frequency, another investigation based on mean ratios during periods of 18 or 6 months indicates that a close connection is observed between the radio fluxes in the cm region and that anomalies related to calibration problems can be detected. The regression analysis of the daily values of the fluxes during at least 25 years and a special test on the sensitivity may provide final information on the stability of the data with respect to time and solar activity. The method is capable of detecting long-term trends corresponding to instrumental drifts. Such information is essential to our understanding of anomalies detected in the observations of u.v. and X-ray irradiances. However, such a method is based on a linear relationship. When a quadratic form, as it is observed in the decimeter region, is adopted, the effect of the various levels of activity in a solar cycle must be considered.  相似文献   

7.
Using Greenwich data on sunspot groups during 1874–1976, we have studied the temporal variations in the differential rotation parametersA andB by determining their values during moving time intervals of lengths 1–5 yr successively displaced by 1 yr. FFT analysis of the temporal variations ofB (orB/A) shows periodicities 18.3 ± 3 yr, 8.5 ± 1 yr, 3.9 ± 0.5 yr, 3.1 ± 0.2 yr, and 2.6 ± 0.2 yr at levels 2. This analysis also shows five more periodicities at levels 1–2. The maximum entropy method is used to set narrower limits on the values of these periods. The reality of the existence of all these periodicities ofB (orB/A ) except the one at 2.8 yr is confirmed by analyzing the simulated time series ofB andB/A with values ofA andB randomly distributed within the limits of their respective uncertainties. Four of the prominent periods ofB agree, within their uncertainties, with the known periods in the the large-scale photospheric magnetic field. The deviations from the average differential rotation are larger near the sunspot minima. On longer time scales, the variations in the amount of sunspot activity per unit time are well correlated to the variations in the amplitudes of the torsional oscillation represented by the 22-yr periodicity inB. All the periods inB found here are in good agreement with the synodic periods of two or more consecutive planets. The possibility of planetary configurations providing perturbations needed for the Sun's MHD torsional oscillations is speculated upon and briefly discussed.  相似文献   

8.
Correlation studies between various solar activity indices and a long time series of annual sums of the maximum value of solar magnetic field intensity, observed for each group of sunspots during each passage of it over the visible solar hemisphere, have pointed out a couple of interesting points. First, the faculae have a significant contribution to the numerical representation of the small scale solar magnetic coefficients and low standard errors of estimation to the above mentioned maximum values of the solar magnetic field. These properties give to the area index an important physical meaning which is a first approximation to the small scale solar magnetic fields expressed by the above-mentioned maximum values of it. Finally, the main point which comes out is that long term studies of the solar magnetic fields, especially extrapolated studies to the past, could be supported by photospheric indices of the solar activity. This paper constitutes the expanded version of a report presented to theIAU Symposium No. 102 ‘Solar and Stellar magnetic fields: Origins and coronal effects’, held in Zürich 2–6 August, 1982.  相似文献   

9.
A numerical technique of time-longitude analysis has been developed by studying the fine structure of temporal variations in total solar irradiance (TSI). This analysis produces maps of large-scale thermal inhomogeneities on the Sun and reveals corresponding patterns of radiative excess and deficit relative to the unperturbed solar photosphere. These patterns are organized in two-and four-sector structures and exhibit the effects of both activity complexes and the active longitudes. Large-scale patterns with radiative excess show a facular macrostructure caused by the relaxation of large-scale thermo-magnetic perturbations and/or energy output due to very large-scale solar convection. These thermal patterns are related to long-lived magnetic fields that are characterized by rigid rotation. The patterns with radiative excess tend to concentrate around the active longitudes and are centered at 103° and 277° in the Carrington system when averaged over the time-longitude distribution of thermal inhomogeneities during activity cycles 21–23.  相似文献   

10.
We present data on the series of solar activity indices, Wolf sunspot numbers W and total sunspot areas S, obtained at the Kislovodsk high-altitude station of the Pulkovo Observatory. The problem of properly extending the 133-year-long Zürich series of W and the 102-year-long Greenwich series of S, which were discontinued in 1980 and 1976, respectively, is emphasized. We stress that the Kislovodsk data have retained mutual homogeneity with the classical series until now and that they are preferred for extension. The question under consideration is of fundamental importance in studying the solar activity variations on long time scales and related processes in the Sun-Earth system.  相似文献   

11.
The N-S asymmetry of the long-lived solar filaments published in the Meudon catalogues for the time interval 1919–1989 is studied by means of power-spectrum analysis. Statistically significant periods of 35.0 and 11.7 yr are obtained. There are no statistically significant periods shorter than 11 yr.  相似文献   

12.
Periodicities in the occurrence rate of solar proton events   总被引:1,自引:0,他引:1  
Power spectral analyses of the time series of solar proton events during the past three solar cycles reveal a periodicity around 154 days. This feature is prominent in all of the cycles combined, cycles 19 and 21 individually but is only weak in cycle 20. These results are consistent with the presence of similar periodicities between 152 and 155 days in the occurrence rate of major solar flares, the sunspot blocking function (P s ), the 10.7 cm radio flux (F 10.7) and the sunspot number (R z ). This suggests that the circa 154-days periodicity may be a fundamental characteristic of the Sun. Periods around 50–52 days are also found in the combined data set and in the three individual cycles in general agreement with the detection of this periodicity in major flares in cycle 19 and inP s ,F 10.7, andR z in cycle 21. The cause of the 155 day period remains unknown. The spectra contain lines (or show power at frequencies) consistent with a model in which the periodicity is caused by differential rotation of active zones and a model in which it is related to beat frequencies between solar oscillations, as proposed by Wolff.  相似文献   

13.
Balloon observations of solar irradiance between 200 and 240 nm have been performed in 1976 and 1977 corresponding to minimum conditions of solar activity. Ultraviolet spectra have been recorded for different zenith angles at an altitude of 41 km by means of a spectrometer with a spectral bandpass of 0.4 nm. Solar irradiances at 1 a.u. confirm previous values obtained by balloon. They are compared with other measurements and discussed in term of possible long-term variability.  相似文献   

14.
ACRIM data have been analyzed to study the time profiles of simple irradiance dips caused by single active regions. Comparison of the average characteristics of the dips appearing in the minimum and maximum of the solar cycle shows that there are no significant differences. In both periods we disclosed the facular irradiance excess in the profile wings having typical duration of two to three days and an amplitude of about 20% of the dip amplitude. The profiles were asymmetric, with a stronger and longer excess in the trailing wing. We determined an average profile which was attributed to an idealized active region, and we calculated the luminosity perturbation caused by it. Excess radiation in the wings of the profile compensates about 1/3 of the deficit in the dip. In the most simple case from our sample we compared the profile based on ACRIM measurements and the proxy profile estimated using sunspot and plage areas published in Solar Geophysical Data catalogues. The comparison indicates that the facular excess was compensating instantaneously about 2/3 of the luminosity deficit caused by sunspots.  相似文献   

15.
The Sun is the primary source of energy that governs both the terrestrial climate and near-earth space environment. Variations in UV irradiances seen at earth are the sum of global (solar dynamo) to regional (active region, plage, network, bright points and background) solar magnetic activities that can be identified through spatially resolved photospheric, chromospheric and coronal features. In this research, the images of CaII K-line (NSO/Sac Peak) have been analysed to segregate the various chromospheric features. We derived the different indices and estimated their contribution from the time series data to total CaII K emission flux and UV irradiance variability. A part of the important results from this research is discussed in this paper.  相似文献   

16.
The following sunspot formation indices are analyzed: the relative sunspot number R z, the normalized sunspot group number R g, and the total sunspot area A. Six empirical formulas are derived to describe the relations among these indices after 1908. The earlier data exhibit systematic deviations from these formulas, which can be attributed to systematic errors of the indices. The Greenwich data on the sunspot total area A and the sunspot group number in 1874–1880 are found to be doubtful. Erroneous data at the beginning of the Greenwich series must spoil the values of the index R g in the XVII–XIX centuries. The Hoyt-Schatten series of R g may be less reliable than the well-known Wolf number series R z.  相似文献   

17.
The 10.7cm solar radio flux (F10.7), the value of the solar radio emission flux density at a wavelength of 10.7cm, is a useful index of solar activity as a proxy for solar extreme ultraviolet radiation. It is meaningful and important to predict F10.7 values accurately for both long-term (months-years) and short-term (days) forecasting, which are often used as inputs in space weather models. This study applies a novel neural network technique, support vector regression (SVR), to forecasting daily values of F10.7. The aim of this study is to examine the feasibility of SVR in short-term F10.7 forecasting. The approach, based on SVR, reduces the dimension of feature space in the training process by using a kernel-based learning algorithm. Thus, the complexity of the calculation becomes lower and a small amount of training data will be sufficient. The time series of F10.7 from 2002 to 2006 are employed as the data sets. The performance of the approach is estimated by calculating the norm mean square error and mean absolute percentage error. It is shown that our approach can perform well by using fewer training data points than the traditional neural network.  相似文献   

18.
The 10.7 cm solar radio flux (F10.7), the value of the solar radio emission flux density at a wavelength of 10.7 cm, is a useful index of solar activity as a proxy for solar extreme ultraviolet radiation. It is meaningful and important to predict F10.7 values accurately for both long-term (months-years) and short-term (days) forecasting, which are often used as inputs in space weather models. This study applies a novel neural network technique, support vector regression (SVR), to forecasting daily values of F10.7. The aim of this study is to examine the feasibility of SVR in short-term F10.7 forecasting. The approach, based on SVR, reduces the dimension of feature space in the training process by using a kernel-based learning algorithm. Thus, the complexity of the calculation becomes lower and a small amount of training data will be sufficient. The time series of F10.7 from 2002 to 2006 are employed as the data sets. The performance of the approach is estimated by calculating the norm mean square error and mean absolute percentage error. It is shown that our approach can perform well by using fewer training data points than the traditional neural network.  相似文献   

19.
The 11-year modulation of cosmic-ray intensity is studied using the data from nine world-wide neutron monitoring station over the period 1965–1975. From this analysis the following relation among the modulated cosmic-ray intensityI, the relative sunspot numberR, the number of proton eventsN p and the geomagnetic indexA p has been derived which describes the long-term modulation of cosmic rays $$I = C - 10^{ - 3} (KR + 4N_P + 12A_P ),$$ whereC is a constant which depends on the rigidity of each station, andK is a coefficient related to the diffusion coefficient of cosmic rays and its transition in space. The standard deviation between the observed and calculated values of cosmic-ray intensity is about 5–9%. This relation has been explained by a generalization of the Simpson solar wind model which has been proved by the spherically symmetric diffusion-convection theory.  相似文献   

20.
For more than a decade total solar irradiance has been monitored simultaneously from space by different satellites. The detection of total solar irradiance variations by satellite-based experiments during the past decade and a half has stimulated modeling efforts to help identify their causes and to provide estimates of irradiance data, using proxy indicators of solar activity, for time intervals when no satellite observations exist. In this paper total solar irradiance observed by the Nimbus-7/ERB, SMM/ACRIM I, and UARS/ACRIM II radiometers is modeled with the Photometric Sunspot Index and the Mg II core-to-wing ratio. Since the formation of the Mg II line is very similar to that of the Ca II K line, the Mg core-to-wing ratio, derived from the irradiance observations of the Nimbus-7 and NOAA9 satellites, is used as a proxy for the bright magnetic elements. It is shown that the observed changes in total solar irradiance are underestimated by the proxy models at the time of maximum and during the beginning of the declining portion of solar cycle 22 similar to behavior just before the maximum of solar cycle 21. This disagreement between total irradiance observations and their model estimates is indicative of the fact that the underlying physical mechanism of the changes observed in the solar radiative output is not well-understood. Furthermore, the uncertainties in the proxy data used for irradiance modeling and the resulting limitation of the models should be taken into account, especially when the irradiance models are used for climatic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号