首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oil field brine was applied to a gravel roadbed at an instrumented study site in Newark, Ohio, to simulate the use of brine as a deicer on roads in certain areas of Ohio. Brine was applied on a weekly basis eight times during the winter of 1988 as part of the deicing simulation. Eleven wells were installed at the site prior to brine application to permit collection of ground water quality samples. Surface geophysical methods — electrical resistivity and electromagnetic conductivity — were used to map the resulting brine plume. The accuracy of the methods was evaluated by comparing geophysical and ground water quality data. The presence of brine in ground water resulted in a decrease in resistivity and an increase in conductivity. Specific conductance measured in the field was used as a general indicator of the presence of the brine plume in ground water. Chloride concentration was an indicator of brine in the ground water. Results of the surface geophysical surveys correlated best with chloride and dissolved solids concentrations, and with specific conductance in ground water. The surface geophysical methods were found to be useful for qualitative interpretations of ground water quality changes resulting from the application of brine on roads.  相似文献   

2.
Locating Ground Water in the Santa Catherina Area Using Geophysical Methods   总被引:1,自引:0,他引:1  
D. Wachs  A. Arad  A. Olshina 《Ground water》1979,17(3):258-263
  相似文献   

3.
Airborne Geophysical Exploration for Ground Water   总被引:1,自引:0,他引:1  
  相似文献   

4.
Advanced borehole-geophysical methods were used to assess the geohydrology of fractured crystalline bedrock at five test boreholes in southwestern Manhattan Island, New York, in preparation for construction of a third water tunnel for New York City. The boreholes penetrated gneiss and other crystalline bedrock that has an overall southwest to northwest dipping foliation with a 60° dip. Most of the fractures encountered are either nearly horizontal or have moderate northwest dip azimuths. Fracture indexes range from 0.25 to 0.44 fracture per foot (0.3 m) of borehole.
Electromagnetic (EM) and heat-pulse flowmeter logs obtained under ambient and pumping conditions, together with other geophysical logs, indicate transmissive fracture zones in each borehole. Pumping tests of each borehole indicated transmissivity ranges from <2 to 360 ft2/day (0.2 to 33 m2/day). Ground water appears to flow within an interconnected fracture network toward the south and west within the study area. No correlation was indicated between the fracture index and the total borehole transmissivity.  相似文献   

5.
Depth-discrete aquifer in formal ion was obtained using recently developed adaptations and improvements to conventional characterization techniques. These improvements included running neutron porosity and hulk density geophysical logging tools through a cased hole, performing an enhanced point-dilution tracer test for monitoring tracer concentration as a function of Lime and depth, and using pressure derivatives for diagnostic and quantitative analysis of constant rate discharge lest data. Data results from the use of these techniques were used to develop a conceptual model of a heterogeneous aquifer. Depth-discrete aquifer information was required to effectively design field-scale deployment and monitoring of an in situ bioremediation technology.
Geophysical logging and point-dilution tracer test results provided the relative distribution of porosity and horizontal hydraulic conductivity, respectively, with depth and correlated well. Hydraulic pumping tests were conducted to estimate mean values for transmissivity and effective hydraulic conductivity, Tracer lest and geophysical logging results indicated that ground water flow was predominant in the upper approximate 10 feet of the aquifer investigated. These results were used to delineate a more representative interval thickness for estimating effective hydraulic conductivity. Hydraulic conductivity, calculated using this representative interval, was estimated lo be 73 ft/d, approximately three limes higher than that calculated using the full length of the screened test interval.  相似文献   

6.
The potential and the problems for geophysical monitoring programs at waste disposal sites are discussed. No data are presented, but the expectations, design criteria and implementation of a geophysical monitor are examined for a hypothetical landfill. We conclude that any geophysical monitor must be designed to allow for future changes in the physical setting, geophysical technology and the personnel who will record, process and interpret the data. This suggests that permanent installations be kept to a minimum, and that a high priority be given to simplicity and reliability. It is also important that the detection limits of the monitor be clearly established, that the noise levels in readings unrelated to changes in contamination levels are well defined and that the monitor is integrated into an overall hydrogeological monitoring program.  相似文献   

7.
Borehole television has been successfully utilized to gather in situ information on boreholes and wells in several ground water monitoring programs. Borehole television surveys are proposed as a viable alternative to other downhole instruments in the subsurface investigation stages of a ground water monitoring program.
The borehole television camera used by the authors was originally developed for use in the examination of nuclear reactor cores; the camera has since been modified for use in borehole investigations. The lens attachments are capable of looking sideward or downward and include built-in lighting assemblies. Use of the camera, lenses and various support equipment are discussed.
The in situ characterization of fractures that can provide pathways for contaminant migration poses a significant challenge. Borehole television inspection can provide information on the frequency, size and orientation of these fractures. Vertical correlations of rock cores in areas where voids are present (i.e. deep mining or karst topography) can also be simplified by this technique. In addition, borehole television can also be used to check monitoring well integrity. Casing inspections are especially useful where construction details are not known. Well screens may be inspected in place to determine if rusting has enlarged the screen openings or if screens have been damaged during emplacement or well development operations (i.e. surge block, air jetting, etc.). This information may prove to be very valuable in the decision to decommission a well. Examples of these successful applications in ground water monitoring programs at several Superfund hazardous waste sites are presented.  相似文献   

8.
9.
The standard MODFLOW packages offer limited capabilities to model piecewise-linear boundary conditions to describe ground water–surface water interaction. Specifically, MODFLOW is incapable of representing a Cauchy-type boundary with different resistances for discharge or recharge conditions. Such a more sophisticated Cauchy boundary condition is needed to properly represent surface waters alternatively losing water through the bottom (high resistance) or gaining water mostly near the water surface (low resistance). One solution would be to create a new package for MODFLOW to accomplish this. However, it is also possible to combine multiple instances of standard packages in a single cell to the same effect. In this specific example, the general head boundary package is combined with the drain package to arrive at the desired piecewise-linear behavior. In doing so, the standard USGS MODFLOW version can be used without any modifications at the expense of a minor increase in preprocessing and postprocessing and computational effort. The extra preprocessing for creating the input and extra postprocessing to determine the water balance in terms of the physical entities from the MODFLOW cell fluxes per package can be taken care of by a user interface.  相似文献   

10.
11.
Joint Management of Surface and Ground Water Supplies   总被引:10,自引:0,他引:10  
  相似文献   

12.
13.
Two borehole geophysical methods—electromagnetic induction and natural gamma radiation logs—were used to vertically delineate landfill leachate plumes in a glacial aquifer. Geophysical logs of monitoring wells near two land-fills in a glacial aquifer in west-central Vermont show that borehole geophysical methods can aid in interpretation of geologic logs and placement of monitoring well screens to sample landfill leachate plumes.
Zones of high electrical conductance were delineated from the electromagnetic log in wells near two landfills. Some of these zones were found to correlate with silt and clay units on the basis of drilling and gamma logs. Monitoring wells were screened specifically in zones of high electrical conductivity that did not correlate to a silt or clay unit. Zones of high electrical conductivity that did not correlate to a silt or clay unit were caused by the presence of ground water with a high specific conductance, generally from 1000 to 2370 μS/cm (microsiemens per centimeter at 25 degrees Celsius). Ambient ground water in the study area has a specific conductance of approximately 200 to 400 μS/cm. Landfill leachate plumes were found to be approximately 5 to 20 feet thick and to be near the water table surface.  相似文献   

14.
15.
16.
Grout continuity and the location of the bentonite seal and sand pack in PVC-cased monitoring wells can be evaluated with cased-hole geophysical density logs. This method relies upon density contrasts among various completion conditions and annular materials. Notably, the lack of annular material behind pipe (i.e., void space) creates a low-density zone that is readily detected by borehole density measurements.
Acoustic cement bond logging has typically been applied to the evaluation of cement in the annular space of completed oil and gas production wells, and in some cases to ground water monitoring wells. These logs, however, can only be obtained in the fluid-filled portion of the borehole, and their interpretation is severely hindered by the presence of the micro-annulus between casing and cement. The influence of the micro-annulus on cement bond logs can be mitigated in steel-cased wells by pressurizing the wellbore during acquisition of the log, but this procedure is not feasible in PVC-cased monitoring wells. The micro-annulus does not affect cased-hole density logs or their interpretation.
Empirical measurements made in the laboratory with density probes provide information on their depths of investigation and response to specific completion conditions. These empirical data, and general knowledge of the density of annular completion materials (sand, bentonite, cement), are used to support interpretations of cased-hole density logs acquired in the field. Three field examples demonstrate the applicability of geophysical density logs to the evaluation of PVC-cased monitoring well completions.  相似文献   

17.
18.
地层含水性研究的地球物理方法   总被引:3,自引:1,他引:3  
论述了研究地层含水性的意义,指出了研究地层含水性的关键,提出了物性的基础,物探方法的选择是关键的技术路线。进而比较详细地介绍了地层含水性探测的各种电法的原理、仪器及方法的应用范围和条件,系统地阐述了针对西部水资源勘查应采用的技术方法,对地层含水性的电法勘探技术作了较为全面的评述;提出各方法综合运用、合理搭配的技术思路,可为西部水资源的勘查提供技术性指导。  相似文献   

19.
The paper considers some original strainmeters and gravitoinertial instruments designed at the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences. The instruments are successfully used for measuring the Earth’s gravitational field, tilts, and deformations of the Earth’s crust in solving a number of applied and fundamental problems in geophysics and geodynamics, in particular, evaluating and monitoring the stability of environmentally hazardous engineering and construction objects (dams, hydroelectric dams, nuclear power plants, oil and gas pipelines, etc.), searching for the zones of weakness in the Earth’s crust, identifying precursors of natural and technological disasters, studying the Earth’s global characteristics (lunar–solar tides, irregularity of the Earth’s rotation, translational oscillations of the Earth’s core, and azimuthal shifts of lithosphere blocks).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号