首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total ozone anomalies (deviation from the long-term mean) are created by anomalous circulation patterns. The dynamically produced ozone anomalies can be estimated from known circulation parameters in the layer between the tropopause and the middle stratosphere by means of statistics. Satellite observations of ozone anomalies can be compared with those expected from dynamics. Residual negative anomalies may be due to chemical ozone destruction. The statistics are derived from a 14 year data set of TOMS (Total Ozone Mapping Spectrometer January 1979-Dec. 1992) and corresponding 300 hPa geopotential (for the tropopause height) together with 30 hPa temperature (for stratospheric waves) at 60°N. The correlation coefficient for the linear multiple regression between total ozone (dependent variable) and the dynamical parameters (independent variables) is 0.88 for the zonal deviations in the winter of the Northern Hemisphere. Zonal means are also significantly dependent on circulation parameters, besides showing the known negative trend function of total ozone observed by TOMS. The significant linear trend for 60°N is 3 DU/year in the winter months taking into account the dependence on the dynamics between the tropopause region and the mid-stratosphere. The highest correlation coefficient for the monthly mean total ozone anomalies is reached in November with 0.94.  相似文献   

2.
With a detailed chemistry scheme for the middle atmosphere up to 70 km which has been added to the 3-D Karlsruhe simulation model of the middle atmosphere (KASIMA), the effects of coupling chemistry and dynamics through ozone are studied for the middle atmosphere. An uncoupled version using an ozone climatology for determining heating rates and a coupled version using on-line ozone are compared in a 10-month integration with meteorological analyses for the winter 1992/93 as the lower boundary condition. Both versions simulate the meteorological situation satisfactorily, but exhibit a too cold lower stratosphere. The on-line ozone differs from the climatological data between 20 and 40 km by exhibiting too high ozone values, whereas in the lower mesosphere the ozone values are too low. The coupled model version is stable and differs only above 40 km significantly from the uncoupled version. Direct heating effects are identified to cause most of the differences. The well-known negative correlation between temperature and ozone is reproduced in the model. As a result, the coupled version slightly approaches the climatological ozone field. Further feedback effects are studied by using the on-line ozone field as a basis for an artificial climatology. For non-disturbed ozone conditions realistic monthly and zonally averaged ozone data are sufficient to determine the heating rates for modelling the middle atmosphere.  相似文献   

3.
Eight periods of relativistic electron precipitation (REP) with electron energies of more than 300 keV are identified from VLF data (10/14 kHz) monitored along the Aldra (Norway) / Apatity (Kola peninsula) radio trace. In these cases, anomalous ionization below 55/50 km occurred without disturbing the higher layers of the ionosphere. The daily total ozone values in Murmansk for six days before and six days after the REP events are compared. In seven of eight events a decrease in the total ozone of about 20 DU is observed. In one event of 25 March, 1986, the mean total ozone value for six days before the REP is bigger han that for six days after, but this a case of an extremely high ozone increase (144 DU during the six days). However, on days 3 and 4 there was a minimum of about 47 DU with regard to REP days, so this case also confirms the concept of the ozone decrease after REP. The difference between mean ozone values for periods six days before and six days after the REPs was found also for 23 points in Arctic on TOMS data. The difference was negative only in Murmansk longitudinal sector. Along the meridian of the trace it was negative at high latitudes in both hemispheres and was near zero at low latitudes.  相似文献   

4.
The effect of present-day and future NOx emissions from aircraft on the NOx and ozone concentrations in the atmosphere and the corresponding radiative forcing were studied using a three-dimensional chemistry transport model (CTM) and a radiative model. The effects of the aircraft emissions were compared with the effects of the three most important anthropogenic NOx surface sources: road traffic, electricity generation and industrial combustion. From the model results, NOx emissions from aircraft are seen to cause an increase in the NOx and ozone concentrations in the upper troposphere and lower stratosphere, and a positive radiative forcing. For the reference year 1990, the aircraft emissions result in an increase in the NOx concentration at 250 hPa of about 20 ppt in January and 50 ppt in July over the eastern USA, the North Atlantic Flight Corridor and Western Europe, corresponding to a relative increase of about 50%. The maximum increase in the ozone concentrations due to the aircraft emissions is about 3-4 ppb in July over the northern mid-latitudes, corresponding to a relative increase of about 3-4%. The aircraft-induced ozone changes cause a global average radiative forcing of 0.025 W/m2 in July. According to the ANCAT projection for the year 2015, the aircraft NOx emissions in that year will be 90% higher than in the year 1990. As a consequence of this, the calculated NOx perturbation by aircraft emissions increases by about 90% between 1990 and 2015, and the ozone perturbation by about 50-70%. The global average radiative forcing due to the aircraft-induced ozone changes increases by about 50% between 1990 and 2015. In the year 2015, the effects of the aircraft emissions on the ozone burden and radiative forcing are clearly larger than the individual effects of the NOx surface sources. Taking chemical conversion in the aircraft plume into account in the CTM explicitly, by means of modified aircraft NOx emissions, a significant reduction of the aircraft-induced NOx and ozone perturbations is realised. The NOx perturbation decreases by about 40% and the ozone perturbation by about 30% in July over Western Europe, the eastern USA and the North Atlantic Flight Corridor.  相似文献   

5.
This study demonstrates that ordinary kriging in spherical coordinates using experimental semi-variograms provides highly usable results, especially near the pole in winter and/or where there could be data missing over large areas. In addition, kriging allows display of the spatial variability of daily ozone measurements at different pressure levels. Three satellite data sets were used: Total Ozone Mapping Spectrometer (TOMS) data, Solar Backscattered UltraViolet (SBUV), and the Stratospheric Aerosol and Gas Experiment (SAGE II) ozone profiles. Since SBUV is a nadir-viewing instrument, measurements are only taken along the sun-synchronous polar orbits of the satellite. SAGE II is a limb-viewing solar occultation instrument, and measurements have high vertical resolution but poor daily coverage. TOMS has wider coverage with equidistant distribution of data (resolution 1° × 1.25°) but provides no vertical information. Comparisons of the resulting SBUV-interpolated (column-integrated) ozone field with TOMS data are strongly in agreement, with a global correlation of close to 98%. Comparisons of SBUV-interpolated ozone profiles with daily SAGE II profiles are relatively good, and comparable to those found in the literature. The interpolated ozone layers at different pressure levels are shown.  相似文献   

6.
The Global Ozone Monitoring Experiment (GOME) onboard the ERS-2 satellite has been in operation since July 1995. The Norwegian ground-based total ozone network has played an important role both in the main validation during the commissioning phase and in the validation of upgraded versions of the analysis algorithms of the instrument. The ground-based network consists of various spectrometer types (Dobson, Brewer, UV filter instruments). The validation of the second algorithm version used until January 1998 reveals a very good agreement between GOME and ground-based data at solar zenith angles <60° and deviations of GOME total ozone data from ground-based data of up to ±60 DU (∼20%) at zenith angles ≥60°. The deviations strongly depend on the season of the year, being negative in summer and positive in winter/spring, The deviations furthermore show a considerable scattering (up to ±25 DU in monthly average values of 5° SZA intervals), even in close spatial and temporal coincidence with ground-based measurements, especially in the high Arctic. The deviations are also dependent on the viewing geometry/ground pixel size with an additional negative offset for the large pixels used in the backswath mode and at solar zenith angles ≥85°, compared to forward-swath pixels.  相似文献   

7.
Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l.), an inland location. The database includes hourly values of the relevant variables covering the years 1994/95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290/385 nm). After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those considered as urban. Although SMARTS2 provide slightly worse results, both models give estimates of solar ultraviolet irradiance with mean bias deviation below 5%, and root mean square deviation close to experimental errors.  相似文献   

8.
A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmosphere. The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres. Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere, a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 Wm−2 daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude. The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.  相似文献   

9.
We report on the comparison of winds measured by a medium frequency (MF) radar near Christchurch, New Zealand, and by the high resolution doppler imager (HRDI). Previous comparisons have demonstrated that there can be significant differences in the winds obtained by the two techniques, and our results are no different. However, these data show relatively good agreement in the meridional direction, but large differences in the zonal direction, where the radar is regularly measuring the zonal wind as too easterly. To do the comparison, overpasses from the satellite must be obtained when it is close to the radar site. The radar data are averaged in time around the overpass because we know the radars sample phenomena which have spatial and temporal scales which make them invisible to HRDI. There are a limited number of overpass comparisons which limit our confidence in these results, but a detailed analysis of these data show that the proximity of the overpass is often an important factor in the differences obtained. Other factors examined include the influence of the local time of the overpass, and the amount of radar data averaged around the overpass time.  相似文献   

10.
Interhemispheric transport is a key process affecting the accuracy of source quantification for species such as methane by inverse modelling, and is a source of difference among global three-dimensional chemistry transport models (CTMs). Here we use long-term observations of the atmospheric concentration of long-lived species such as CH3CCl3 and CFCl3 for testing three-dimensional chemistry transport models (CTMs); notably their ability to model the interhemispheric transport, distribution, trend, and variability of trace gases in the troposphere. The very striking contrast between the inhomogeneous source distribution and the nearly homogeneous trend, observed in the global ALE/GAGE experiments for both CH3CCl3 and CFCl3 illustrates an efficient interhemispheric transport of atmospherically long-lived chemical species. Analysis of the modelling data at two tropical stations, Barbados (13°N, 59°W) and Samoa (14°S, 124°W), show the close relationship between inter-hemispheric transport and cross-equator Hadley circulations. We found that cross-equator Hadley circulations play a key role in producing the globally homogeneous observed trends. Chemically, the most rapid interaction between CH3CCl3 and OH occurs in the northern summer troposphere; while the most rapid photolysis of CH3CCl3 and CFCl3, and the chemical reactions between CFCl3 and O(1D), take place in the southern summer stratosphere. Therefore, the cross-equator Hadley circulation plays a key role which regulates the southward flux of chemical species. The regulation by the Hadley circulations hence determines the amount of air to be processed by OH, O(1D), and ultraviolet photolysis, in both hemispheres. In summary, the dynamic regulation of the Hadley circulations, and the chemical processing (which crucially depends on the concentration of OH, O(1D), and on the intensity of solar insolation) of the air contribute to the seasonal variability and homogeneous growth rate of observed CH3CCl3 and CFCl3.  相似文献   

11.
The coupled thermosphere-ionosphere-plasmasphere model CTIP is used to study the global three-dimensional circulation and its effect on neutral composition in the midlatitude F-layer. At equinox, the vertical air motion is basically up by day, down by night, and the atomic oxygen/molecular nitrogen [O/N2] concentration ratio is symmetrical about the equator. At solstice there is a summer-to-winter flow of air, with downwelling at subauroral latitudes in winter that produces regions of large [O/N2] ratio. Because the thermospheric circulation is influenced by the high-latitude energy inputs, which are related to the geometry of the Earth’s magnetic field, the latitude of the downwelling regions varies with longitude. The downwelling regions give rise to large F2-layer electron densities when they are sunlit, but not when they are in darkness, with implications for the distribution of seasonal and semiannual variations of the F2-layer. It is also found that the vertical distributions of O and N2 may depart appreciably from diffusive equilibrium at heights up to about 160 km, especially in the summer hemisphere where there is strong upwelling.  相似文献   

12.
As part of the preparation for the Large-Scale Biosphere Atmosphere Experiment in Amazonia, a meso-scale modelling study was executed to highlight deficiencies in the current understanding of land surface atmosphere interaction at local to sub-continental scales in the dry season. Meso-scale models were run in 1-D and 3-D mode for the area of Rondonia State, Brazil. The important conclusions are that without calibration it is difficult to model the energy partitioning of pasture; modelling that of forest is easier due to the absence of a strong moisture deficit signal. The simulation of the boundary layer above forest is good, above deforested areas (pasture) poor. The models’ underestimate of the temperature of the boundary layer is likely to be caused by the neglect of the radiative effects of aerosols caused by biomass burning, but other factors such as lack of sufficient entrainment in the model at the mixed layer top may also contribute. The Andes generate patterns of subsidence and gravity waves, the effects of which are felt far into the Rondonian area The results show that the picture presented by GCM modelling studies may need to be balanced by an increased understanding of what happens at the meso-scale. The results are used to identify key measurements for the LBA atmospheric meso-scale campaign needed to improve the model simulations. Similar modelling studies are proposed for the wet season in Rondonia, when convection plays a major role.  相似文献   

13.
Since the summer of 1996, scientists from China and Japan have conducted a joint observation of natural cloud-to-ground lightning discharges in the Zhongchuan area that is located close to Qinghai-Xizang (Tibet) Plateau, China. It has been found that the long-duration of intracloud discharge processes, just before the first return stroke, lasted more than 120 ms for 85% of cloud-to-ground flashes in this area, with a mean duration of 189.7 ms and a maximum of 300 ms. We present the results of charge sources neutralized by four ground flashes and two intracloud discharge processes, just before the first return stroke, by using the data from a 5-site slow antenna network synchronized by GPS with 1 s time resolution. The result shows that the altitudes of the neutralized negative charge for three negative ground flashes were between 2.7 to 5.4 km above the ground, while that of neutralized positive charges for one positive ground flash and one continuing current process were at about 2.0 km above the ground. The comparison with radar echo showed that the negative discharges initiated in the region greater than 20 dBZ or near the edge of the region with intense echoes greater than 40 dBZ, while positive discharge initiated in the weak echo region.  相似文献   

14.
Wind and temperature profiles measured routinely by rockets at Ryori (Japan) since 1970 are analysed to quantify interannual changes that occur in the upper stratosphere. The analysis involved using a least square fitting of the data with a multiparametric adaptative model composed of a linear combination of some functions that represent the main expected climate forcing responses of the stratosphere. These functions are seasonal cycles, solar activity changes, stratospheric optical depth induced by volcanic aerosols, equatorial wind oscillations and a possible linear trend. Step functions are also included in the analyses to take into account instrumental changes. Results reveal a small change for wind data series above 45 km when new corrections were introduced to take into account instrumental changes. However, no significant change of the mean is noted for temperature even after sondes were improved. While wind series reveal no significant trends, a significant cooling of 2.0 to 2.5 K/decade is observed in the mid upper stratosphere using this analysis method. This cooling is more than double the cooling predicted by models by a factor of more than two. In winter, it may be noted that the amplitude of the atmospheric response is enhanced. This is probably caused by the larger ozone depletion and/or by some dynamical feedback effects. In winter, cooling tends to be smaller around 40–45 km (in fact a warming trend is observed in December) as already observed in other data sets and simulated by models. Although the winter response to volcanic aerosols is in good agreement with numerical simulations, the solar signature is of the opposite sign to that expected. This is not understood, but it has already been observed with other data sets.  相似文献   

15.
The total ozone distribution in March 1997 showed very low values in the North Atlantic-European region, even lower than in the years before. A spatial pattern correlation between the zonally asymmetric part of total ozone and that of the 300 hPa surface geopotential of the Northern Hemisphere was applied to examine the spatial structure of the low ozone values and its dynamic dependence. A trend analysis in the North Atlantic-European region was carried out to determine to what extent the low March 1997 ozone values are related to the decadal change of meteorological parameters in the lower stratosphere, observed since the 1980s, in comparison to the interannual variability. The conclusion is that the very low ozone values above the North Atlantic-European region in March 1997 were mainly induced by dynamic processes, namely their decadal change as well as their interannual variability.  相似文献   

16.
When the University of Bonn lidar on the Esrange (68°N, 21°E), Sweden, was switched on in the evening of July 18, 1998, a geometrically and optically thin cloud layer was present near 14 km altitude or 400 K potential temperature, where it persisted for two hours. The tropopause altitude was 4 km below the cloud altitude. The cloud particles depolarized the lidar returns, thus must they have been aspherical and hence solid. Atmospheric temperatures near 230 K were approximately 40 K too high to support ice particles at stratospheric water vapour pressures of a few ppmv. The isentropic back trajectory on 400 K showed the air parcels to have stayed clear of active major rocket launch sites. The air parcels at 400 K had travelled from the Aleutians across Canada and the Atlantic Ocean arriving above central Europe and then turned northward to pass over above the lidar station. Parcels at levels at ±25 K from 400 K had come from the pole and joined the 400 K trajectory path above eastern Canada. Apparently the cloud existed in a filament of air with an origin different from those filaments both above and below. Possibly the 400 K level air parcels had carried soot particles from forest wild fires in northern Canada or volcanic ash from the eruption of the Korovin Volcano in the Aleutian Islands.  相似文献   

17.
The Stratospheric Regular Sounding project was planned to measure regularly the vertical profiles of several tracers like ozone, water vapor, NOx, ClOx and BrOx radicals, aerosol, pressure and temperature, at three latitudes, to discriminate between the transport and photochemical terms which control their distribution. As part of this project, the “Istituto di Fisica dell’Atmosfera” launched nine laser backscattersondes (LABS) on board stratospheric balloons to make observations of background aerosol and PSCs. LABS was launched with an optical particle counter operated by the University of Wyoming. Observations have been performed in the arctic, mid-latitudes and tropical regions in different seasons. Polar stratospheric clouds have been observed in areas inside and outside the polar vortex edge. A background aerosol was observed both in mid-latitudes and in arctic regions with a backscattering ratio of 1.2 at 692 nm. Very stratified aerosol layers, possibly transported into the lower stratosphere by deep convective systems, have been observed in the lower stratosphere between 20 and 29 km in the tropics in the Southern Hemisphere.  相似文献   

18.
The lunar semidiurnal tide in winds measured at around 90 km altitude has been isolated with amplitudes observed up to 4 m s–1. There is a marked amplitude maximum in October and also a considerable phase variation with season. The average variation of phase with height indicated a vertical wavelength of more than 80 km but this, and other results, needs to be viewed in the light of the considerable averaging required to obtain statistical significance. Large year-to-year variations in both amplitude and phase were also found. Some phase comparisons with the GSWM model gave reasonable agreement but the model amplitudes above a height of 100 km were much larger than those measured. An attempt to make a comparison with the lunar geomagnetic tide did not yield a statistically significant result.  相似文献   

19.
The spring of 1997 has represented a stable period of operation for the joint University of Tromsø/University of Saskatchewan MF radar, being between refurbishment and upgrades. We examine the horizontal winds from the February to June inclusive and also include estimates of energy dissipation rates derived from signal fading times and presented as upper limits on the turbulent energy dissipation rate, . Here we address the periodicity in the dynamics of the upper mesosphere for time scales from hours to one month. Thus, we are able to examine the changes in the spectral signature of the mesospheric dynamics during the transition from winter to summer states.  相似文献   

20.
Clouds affect local surface UV irradiance, even if the horizontal distance from the radiation observation site amounts to several kilometers. In order to investigate this effect, which we call remote clouds effect, a 3-dimensional radiative transfer model is applied. Assuming the atmosphere is subdivided into a quadratic based sector and its surrounding, we quantify the influence of changing cloud coverage within this surrounding from 0% to 100% on surface UV irradiance at the sector center. To work out this remote clouds influence as a function of sector base size, we made some calculations for different sizes between 10 km × 10 km and 100 km × 100 km. It appears that in the case of small sectors (base size 20 km × 20 km) the remote clouds effect is highly variable: Depending on cloud structure, solar zenith angle and wavelength, the surface UV irradiance may be enhanced up to 15% as well as reduced by more than 50%. In contrast, for larger sectors it is always the case that enhancements become smaller by 5% if sector base size exceeds 60 km × 60 km. However, these values are upper estimates of the remote cloud effects and they are found only for special cloud structures. Since these structures might occur but cannot be regarded as typical, different satellite observed cloud formations (horizontal resolution about 1 km × 1 km) have also been investigated. For these more common cloud distributions we find remote cloud effects to be distinctly smaller than the corresponding upper estimates, e.g., for a sector with base size of 25 km × 25 km the surface UV irradiance error due to ignoring the actual remote clouds and replacing their influence with periodic horizontal boundary conditions is less than 3%, whereas the upper estimate of remote clouds effect would suggest an error close to 10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号