首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subfossil chironomids in the surface sediments of five small and shallow Norwegian lakes were studied to determine the within-lake variability of fossil assemblages, changes in chironomid assemblages with respect to water depth, and the representativeness of single samples for the entire chironomid fauna of a lake. In each of the lakes studied, six short sediment cores in the deepest part of the lake basin and two littoral to deep-water transects of seven cores each were obtained using a gravity corer, and chironomid assemblages in the uppermost centimetre of sediment were analysed. In three of the five lakes, chironomid concentrations were highest in the deepest parts of the lake basins. In the remaining two lakes, concentrations were either very variable or, in a lake with clear indications of anoxia in the bottom waters, highest at intermediate water depth. Chironomid assemblages tended to be dominated by the same taxa within a lake basin. However, in each of the lakes studied there was a clear and statistically significant shift in chironomid assemblages with respect to water depth. The organic content of the sediments was statistically significant in explaining the variance in the chironomid assemblages only in lakes where organic matter content was closely related to water depth. Only a few chironomid taxa were restricted to the shallowest parts of the lake basins, whereas a number of chironomids were found exclusively in deep-water sediments. Chironomid head capsules of running water taxa and simuliid remains were generally found in sediments close to lake tributaries and in the deepest parts of the lake basins. Although any individual sample contained only a part of the total subfossil chironomid fauna (21–63% of the total taxa per lake), chironomids dominant in any section of the study lakes were found in most of the transect and mid-lake samples.  相似文献   

2.
The larval head capsules of Sciaridae (black fungus gnats) are transported into lakes from terrestrial habitats, in most cases via streams or rivers, and preserve well in lake sediments. The abundance of sciarid remains can provide information on the importance of terrestrial and running-water input into fossil insect assemblages in lake sediments if examined in relation to the number of fossils of aquatic insects such as the Chironomidae, Thaumaleidae, Ceratopogonidae, or Simuliidae. Here we describe fossil head capsules of sciarid larvae and provide an example of how these remains can be used to constrain past changes in taphonomic processes that influence fossil chironomid records.  相似文献   

3.
We sampled modern chironomids at multiple water depths in Lake Annecy, France, before reconstructing changes in chironomid assemblages at sub-decadal resolution in sediment cores spanning the last 150 years. The lake is a large, deep (zmax = 65 m), subalpine waterbody that has recently returned to an oligotrophic state. Comparison between the water-depth distributions of living chironomid larvae and subfossil head capsules (HC) along three surface-sediment transects indicated spatial differences in the influence of external forcings on HC deposition (e.g. tributary effects). The transect with the lowest littoral influence and the best-preserved, depth-specific chironomid community characteristics was used for paleolimnological reconstructions at various water depths. At the beginning of the twentieth century, oxygen-rich conditions prevailed in the lake, as inferred from M. contracta-type and Procladius sp. at deep-water sites (i.e. cores from 56 to 65 m) and Paracladius sp. and H. grimshawi-type in the core from 30 m depth. Over time, chironomid assemblages in cores from all three water depths converged toward the dominance of S. coracina-type, indicating enhanced hypoxia. The initial change in chironomid assemblages from the deep-water cores occurred in the 1930s, at the same time that an increase in lake trophic state is inferred from an increase in total organic carbon (TOC) concentration in the sediment. In the 1950s, an assemblage change in the core from 30 m water depth reflects the rapid expansion of the hypoxic layer into the shallower region of the lake. Lake Annecy recovered its oligotrophic state in the 1990s. Chironomid assemblages, however, still indicate hypoxic conditions, suggesting that modern chironomid assemblages in Lake Annecy are decoupled from the lake trophic state. Recent increases in both TOC and the hydrogen index indicate that changes in pelagic functioning have had a strong indirect influence on the composition of the chironomid assemblage. Finally, the dramatic decrease in HC accumulation rate over time suggests that hypoxic conditions are maintained through a feedback loop, wherein the accumulation of (un-consumed) organic matter and subsequent bacterial respiration prevent chironomid re-colonization. We recommend study of sediment cores from multiple water depths, as opposed to investigation of only a single core from the deepest part of the lake, to assess the details of past ecological changes in large deep lakes.  相似文献   

4.
Short sediment cores from two gulfs, Monche Bay and Kunchast Bay, of Lake Imandra (Kola Peninsula, northern Russia) were analysed for sediment chemistry and chironomid head capsule remains. Monche Bay has been receiving metals from the Severonikel copper-nickel smelter since the late 1930's. Kunchast Bay was selected in the remotest lake basin as an internal reference site. There were no pronounced changes in the chironomid assemblages with the beginning of slight metal contamination of Kunchast Bay. Based on the reconstructed environmental variables and chironomid assemblages, three developmental stages were distinguished from the chironomid fauna history of Monche Bay: (1) A natural development stage; (2) the early warning stage; and (3) the developing crises stage. During the first period, the changes in the chironomid fauna reflect an anthropogenically undisturbed assemblage, with Micropsectra insignilobus dominating (17–23%). The changes during the second period reflect the initial phase of anthropogenic succession associated with the beginning of metal pollution. The main species showed opposite distributional patterns in this period: the abundance of M. insignilobus decreased, whereas the abundance of Chironomus, Procladius and Sergentia coracina increased. At the same time, maximal numbers were attained for species richness (45) and Shannon-Weaver diversity (4.85) of chironomid assemblages, and the highest head capsule concentration (75 head capsules · g–1 of dry sediment). The third period was characterized by a major shift in the faunal assemblages, from M. insignilobus to other dominant species, including Chironomus (22–44%), Procladius (10–30 %) and S. coracina (15–18%). Besides fauna changes, assemblages of the third period are distinguished by the occurrence of mouthpart deformities in Chironomus head capsules.  相似文献   

5.
A multiproxy paleolimnological study of Douglas Lake, Michigan, was undertaken to elucidate the history of productivity and oxygen depletion in three basins of this multi-depression lake. Indicators investigated in three dated cores included chlorophyll a, Fe and Mn stratigraphy, and fossil chironomid assemblages. The coring sites were chosen to correspond to modern studies of oxygen depletion rates, and to determine if conclusions reached in these studies were supported by paleolimnological evidence. Stratigraphies of chlorophyll a, Fe and Mn indicate that two of the basins, South Fishtail Bay and Fairy Island, have been eutrophic and anoxic for a long period of time, predating European settlement. The third basin, Grapevine Point, has been consistently less productive, and had less severe oxygen depletion. Results of the chironomid analysis agree with these conclusions, including a change from mesotrophic to eutrophic indicator taxa in the Grapevine Point basin. All three cores show evidence of increasing trophic state in the most recent sediments, supporting some of the conclusions reached in the modern studies. It is also demonstrated that deforestation of the watershed had profound effects on littoral chironomid assemblages. Paleolimnological investigations also demonstrated the individual nature of the separate basins in Douglas Lake.  相似文献   

6.
We used a series of experiments to determine whether stable carbon isotope analysis of modern and fossil larval head capsules of chironomids allowed identification of their dietary carbon source. Our main focus was to assess whether carbon from naturally 13C-depleted methane-oxidizing bacteria (MOB) can be traced in chironomid cuticles using stable carbon isotope analysis. We first showed that a minimum sample weight of ~20 μg was required for our equipment to determine head capsule δ13C with a standard deviation of 0.5‰. Such a small minimum sample weight allows taxon-specific δ13C analyses at a precision sufficient to differentiate whether head capsules consist mainly of carbon derived from MOB or from other food sources commonly encountered in lake ecosystems. We then tested the effect of different chemical pre-treatments that are commonly used for sediment processing on δ13C measurements on head capsules. Processing with 10% KOH (2 h), 10% HCl (2 h), or 40% HF (18 h) showed no detectable effect on δ13C, whereas a combination of boiling, accelerated solvent extraction and heavy chemical oxidation resulted in a small (0.2‰) but statistically significant decrease in δ13C values. Using culturing experiments with MOB grown on 13C-labelled methane, we demonstrated that methanogenic carbon is transferred not only into the larval tissue, but also into chironomid head capsules. Taxon-specific δ13C of fossil chironomid head capsules from different lake sediments was analyzed. δ13C of head capsules generally ranged from −28 to −25.8‰, but in some instances we observed δ13C values as low as −36.9 to −31.5‰, suggesting that carbon from MOB is traceable in fossil and subfossil chironomid remains. We demonstrate that stable carbon isotope analyses of fossil chironomid head capsules can give insights into dietary links and carbon cycling in benthic food webs in the past and that the method has the potential to reconstruct the importance of MOB in the palaeo-diet of chironomid larvae and, indirectly, to infer past changes in methane flux at the sediment water interface in lakes.  相似文献   

7.
We use palaeolimnological techniques to reconstruct the eutrophication history of a volcanic lake (Lake Albano, central Italy) over the past three centuries. The presence of annual varves down to the bottom of the core (c. 1700 A.D.) indicated the lack of bioturbation and likely long-term meromixis. Sedimentation rates were estimated by varve counts (calcite/diatom couplets), indicating a mean rate of 0.15 cm yr–1. The reconstruction of eutrophication was traced using past populations of algal and photosynthetic bacteria (through their fossil pigment), and geochemistry, as well as fossil remains of chironomids. Phaeophorbidea and the red carotenoid astaxanthin were used to detect past zooplankton development.The first sign of trophic change related to human activities is datedc. 1870 A.D. From that period onward a sharp increase of authigenic CaCO3, nitrogen, N:P ratio, and dinoxanthin, a characteristic carotenoid of Chrysophyceae and Dinophyceae, is observed.Chironomid analyses showed the near absence of a deep water fauna throughout the core length. The populations of chironomid larvae are restricted to oxygenated littoral zones. In fact, the few fossil remains found are primarily of littoral origin, representing shallow water midges that were transported to profundal waters. The reduction of total chironomid in the uppermost layers of the core is to be related to human land uses.  相似文献   

8.
Stable oxygen isotope measurements on fossil chironomid head capsules from lake sediments show that these chitinous remains can be used to reconstruct past lake water δ18O and, indirectly, past climate change. We examined the impact of chemical pretreatment procedures on the chemical and stable oxygen isotope composition, and morphology of chironomid cuticles. Use of alkali, acids, and sodium chlorite alters the chemical composition and the morphological structure of chironomid cuticles by selective removal of chitin or proteins. Gas chromatograms of pyrolyzates show that NaClO2 causes deproteination, whereas the combined use of HCl and HF results in partial chitin removal. Head capsules pretreated with KOH contained both chitin- and protein-derived moieties, although the concentration of protein was reduced, especially after KOH treatment at high concentration (28%) and temperature (100°C). Scanning electron microscopy confirmed that a proteinaceous matrix is still present in modern and fossil head capsules after KOH treatment. This matrix, however, is largely absent in head capsules pretreated with NaClO2. A change in the proportion of chitin and proteins in our samples was associated with differences in chironomid δ18O values. Our results suggest that deproteination results in a relative increase of chironomid δ18O, whereas removal of chitin leads to decreased δ18O values. We therefore discourage the use of acids or prolonged (≥1 h) exposure to hot alkali (70°C) prior to chironomid δ18O analysis. Chitin purification by sodium chlorite causes significant weight loss, which may preclude down-core chironomid δ18O measurements. Caution and standardization are required when pretreating samples for chironomid δ18O analysis to ensure reliable, comparable, and reproducible results.  相似文献   

9.
Most calibration data sets used to infer past environmental conditions from biological proxies are derived from many sites. An alternative strategy is to derive the calibration data set from within a single site. Transfer functions derived from such intra-site calibration data sets are usually applied to fossil assemblages from the focal lake, but a recent development has been to apply these transfer functions to other sites. Transfer functions derived from intra-site calibration data sets can have impressive cross-validation performance, but that gives little indication of their performance when applied to other sites. Here, we develop transfer functions for lake depth from intra-lake chironomid calibration data sets in Norway and Alaska and test the resulting models by cross-validation and against known depth in external lakes. Lake depth is a statistically significant predictor of chironomid assemblages at all these lakes, and most intra-lake transfer functions perform reasonably well under cross-validation, but their performance against external data is erratic. Downcore reconstructions from transfer functions developed on different lakes are dissimilar. Ignoring the poorly performing transfer functions, only 3 of 14 downcore reconstructions are statistically significant. Few assemblages downcore had good modern analogues in the calibration data set, even when the core was from the same lake as the calibration data set. We conclude that intra-site calibration data sets can find site-specific rather than general relationships between species and the environment and thus should be applied with care and to external sites only after careful and critical validation.  相似文献   

10.
Subfossil chironomid analysis was applied to a sediment core from Sägistalsee, a small lake at present-day tree-line elevation in the Swiss Alps. During the whole 9000-year stratigraphy the chironomid fauna was dominated by taxa typical of alpine lakes. Major faunistic trends were caused by changes in accumulation rates of three taxa, namely Procladius, Stictochironomus, and Tanytarsus lugens-type. In the early Holocene Procladius was the dominant taxon. In younger samples, Stictochironomus tended to have as high or higher abundances and both taxa showed an increase in accumulation rates. A possible cause of this succession is the decrease of lake-water depth due to infilling of the lake basin and changes in associated limnological parameters. The immigration of Picea (spruce) at ca. 6500 cal. 14C yrs BP and the resulting denser woodlands in the lake's catchment may have promoted this trend. During three phases, from ca. 70–1450, 1900–2350, and 3500–3950 cal. BP, remains of Procladius, Stictochironomus, and Tanytarsus lugens-type are absent from the lake sediment, whereas other typical lake taxa and stream chironomids show no change in accumulation rate. Together with sediment chemistry data, this suggests that increased oxygen deficits in the lake's bottom water during these intervals caused the elimination of chironomids living in the deepest part of the lake. All three periods coincide with increased human activity in the catchment, as deduced from palaeobotanical evidence. Therefore, enhanced nutrient loading of the lake due to the presence of humans and their livestock in the catchment is the most likely cause of the increased anoxia. The chironomid fauna reacted the same way to intensive pasturing during the last ca. 1500 years as to Bronze Age clear-cutting and more moderate pasturing during the Bronze, Iron, and Roman Ages, suggesting that alpine lake ecosystems can be extremely sensitive to human activity in the catchment. On the other hand, the chironomid assemblages show a considerable amount of resilience to human disturbance, as the chironomid fauna reverted to the pre-impact stage after the first two periods of human activity. In recent years, even though pasturing decreased again, the chironomid fauna has only partly recovered. This is possibly due to other human-induced changes in the lake ecosystem, e.g., the stocking of the lake with fish. The chironomid stratigraphy is difficult to interpret climatologically as the strongest changes in chironomid-inferred temperatures coincide with periods of intensive human activity in the catchment.  相似文献   

11.
Reconstructing climate change quantitatively over millennial timescales is crucial for understanding the processes that affect the climate system. One of the best methods for producing high resolution, low error, quantitative summer air temperature reconstructions is through chironomid analyses. We analysed over 50 lakes from NW and W Iceland covering a range of environmental gradients in order to test whether the distribution of the Icelandic chironomid fauna was driven by summer temperature, or whether other environmental factors were more dominant. A range of analyses showed the main environmental controls on chironomid communities to be substrate (identified through loss-on-ignition and carbon content) and mean July air temperature, although other factors such as lake depth and lake area were also important. The nature of the Icelandic landscape, with numerous volcanic centres (many of which are covered by ice caps) that produce large quantities of ash, means that relative lake carbon content and summer air temperature do not co-vary, as they often do in other chironomid datasets within the Arctic as well as more temperate environments. As the chironomid–environment relationships are thus different in Iceland compared to other chironomid training sets, we suggest that using an Icelandic model is most appropriate for reconstructing past environmental change from fossil Icelandic datasets. Analogue matching of Icelandic fossil chironomid datasets with the Icelandic training set and another European chironomid training set support this assertion. Analyses of a range of chironomid-inferred temperature transfer functions suggest the best to be a two component WA-PLS model with r 2 jack = 0.66 and RMSEP = 1.095°C. Using this model, chironomid-inferred temperature reconstructions of early Holocene Icelandic sequences show the magnitude of temperature change compared to contemporary temperatures to be similar to other NW European chironomid sequences, suggesting that the predictive power of the model is good.  相似文献   

12.
In paleolimnology, subfossil head capsules of chironomids play an important role as ecological indicators of lake history. It is important to determine, therefore, whether fossil assemblages are representative of former biocoenoses. There is evidence that headcapsules washed in from other places can make up a significant percentage of the total. As interpretations are usually drawn from the examination of a single core, it is of special interest to know whether a fossil assemblage of a single site properly reflects limnological conditions of the whole lake. This study examined the taxonomic distribution of subfossil chironomids in the surficial sediments of the Bodensee-Untersee, with the aim of assessing the variability in chironomid assemblages. Apparently, most of the head capsules of the profundal fossil assemblages in the Untersee had been washed in from the littoral zone or from the slope. Although the Bodensee-Untersee is a rather large lake, variability is surprisingly low among all samples. Therefore a correct interpretation from a single core may be possible.  相似文献   

13.
This paper presents the recent history of a large prealpine lake (Lake Bourget) using chironomids, diatoms and organic matter analysis, and deals with the ability of paleolimnological approach to define an ecological reference state for the lake in the sense of the European Framework Directive. The study at low resolution of subfossil chironomids in a 4-m-long core shows the remarkable stability over the last 2.5 kyrs of the profundal community dominated by a Micropsectra-association until the beginning of the twentieth century, when oxyphilous taxa disappeared. Focusing on this key recent period, a high resolution and multiproxy study of two short cores reveals a progressive evolution of the lake’s ecological state. Until AD 1880, Lake Bourget showed low organic matter content in the deep sediments (TOC less than 1%) and a well-oxygenated hypolimnion that allowed the development of a profundal oxyphilous chironomid fauna (Micropsectra-association). Diatom communities were characteristic of oligotrophic conditions. Around AD 1880, a slight increase in the TOC was the first sign of changes in lake conditions. This was followed by a first limited decline in oligotrophic diatom taxa and the disappearance of two oxyphilous chironomid taxa at the beginning of the twentieth century. The 1940s were a major turning point in recent lake history. Diatom assemblages and accumulation of well preserved planktonic organic matter in the sediment provide evidence of strong eutrophication. The absence of profundal chironomid communities reveals permanent hypolimnetic anoxia. From AD 1995 to 2006, the diatom assemblages suggest a reduction in nutrients, and a return to mesotrophic conditions, a result of improved wastewater management. However, no change in hypolimnion benthic conditions has been shown by either the organic matter or the subfossil chironomid profundal community. Our results emphasize the relevance of the paleolimnological approach for the assessment of reference conditions for modern lakes. Before AD 1900, the profundal Micropsectra-association and the Cyclotella dominated diatom community can be considered as the Lake Bourget reference community, which reflects the reference ecological state of the lake.  相似文献   

14.
Assemblages of subfossil Chaoboridae mandibles from 80 thermally-stratified shield lakes in southern central Canada were examined to explore the influence of subfossil Chaoborus on subfossil Chironomidae-based paleolimnological inference models of deepwater oxygen, as volume-weighted hypolimnetic oxygen (VWHO). Inclusion of subfossil Chaoborus in subfossil Chironomidae-based VWHO models only improved model performance modestly, however it produced substantively better inferences of hypolimnetic oxygen in anoxic lakes, because Chaoborus had a much stronger positive relationship with low VWHO compared to chironomid taxa indicative of anoxic conditions, such as Chironomus. A Chaoborus mandible:Chironomidae head capsule ratio (chaob:chir) may be a useful index in paleolimnological studies, as chaob:chir in a surface sediment training set was significantly related to VWHO, and displayed little co-variation with other limnological variables such as trophic status (e.g. TP, TN) or lake depth (e.g. Z max). Chaob:chir values in a stratigraphic analysis tracked chironomid-inferred VWHO, however the use of chaob:chir in regional ‘top–bottom’ paleolimnological studies must be used with caution.  相似文献   

15.
A suite of surface sediment samples from three Icelandic lakes was analysed for subfossil chironomid head capsules, and a quantitative July air temperature inference model was applied to the data to investigate whether there was significant variability among samples taken from a lake. Ordination and simple regression methods were used to analyse the relationships between environmental and sedimentological variables and the chironomid assemblages and inferred temperature data. Substrate was the most important influence on the chironomid assemblages and inferred temperatures, while water depth at the sampling location had no relationship with the chironomid-inferred temperatures. Within-lake variability of the chironomid assemblages and their inferred temperatures, however, were not significant statistically, suggesting that in lakes of western and northwest Iceland within-lake sampling location has no effect on the data obtained, and therefore on training set samples.  相似文献   

16.
Surface lake sediment was recovered from 57 lakes along an elevation gradient in the central, eastern Sierra Nevada of California. The surface sediment was analysed for subfossil chironomid remains in order to assess the modern distribution of chironomids in the region. The lakes sampled for the calibration dataset were between 2.0 and 40.0 m in depth, spanned an altitudinal gradient of 1360 m and a surface water temperature gradient of approximately 14 °C. Redundancy analysis (RDA) identified that five of the measured environmental variables – surface water temperature, elevation, depth, strontium, particulate organic carbon – accounted for a statistically significant amount of the variance in chironomid community composition. Quantitative transfer functions, based on weighted-averaging (WA), partial least squares (PLS) and weighted-averaging partial least squares (WA-PLS), were developed to estimate surface water temperature from the chironomid assemblages. The best model was a WA model with classical deshrinking, which had a relatively high coefficient of determination (r2 = 0.73), low root mean square error of prediction (RMSEP = 1.2 °C) and a low maximum bias (0.90 °C). The results from this study suggest that robust quantitative estimates of past surface water temperature can be derived from the application of these models to fossil chironomid assemblages preserved in late-Quaternary lake sediment in this region.  相似文献   

17.
Water level fluctuations affect the size of the pelagic zone relative to the size of littoral habitats, and thus may influence the relative abundance of remains from planktonic and littoral cladocerans in sediment. The application of this planktonic/littoral ratio for the reconstruction of past water level changes is discussed using examples of: (1) surficial profundal sediments from lakes of different water depths; (2) Holocene variation in a profundal sediment core; (3) horizontal variation in surficial sediments within a lake; and (4) long term variation in an inshore sediment core. The latter seemed to be the most promising application of this ratio. Maximum effects of water depth changes on the lake fauna are expected in the littoral zone. It is, however, difficult to read this effect directly from subfossil cladoceran and chironomid assemblages from inshore sediments as shown by a sediment profile from a site exposed to a long term decrease of water depth.  相似文献   

18.
Hypolimnetic oxygen depletion has been accelerated in many lakes due to cultural eutrophication. However, the extent and magnitude of environmental change is difficult to ascertain due to the lack of historical records. Larval Chironomidae (Diptera) are useful proxy indicators of oxygen, as they show a wide range of tolerances to oxygen conditions and their chitinous head capsules preserve well in lake sediments. Using paleolimnological techniques, chironomid assemblages from the surface sediments of 42 southeastern Ontario lakes were related to environmental conditions. Hypolimnetic oxygen conditions, measured as the average endofsummer hypolimnetic dissolved oxygen (AvgDO(Summ)), explained the most variation in the chironomid assemblages, whereas dissolved inorganic carbon, the Anoxic Factor, max. depth and total phosphorus concentrations were also correlated with assemblage composition. Based on the relative abundances of 45 chironomid taxa, a robust, partial least squares (PLS) regression transfer function for AvgDO(Summ) was constructed (r2 = 0.74, r2 (jack) = 0.58, n = 40). This new transfer function should allow paleolimnologists to directly track past trends in hypolimnetic oxygen levels.  相似文献   

19.
Studies addressing within-lake variability of fossil chironomid assemblages are very few, and all deal with hydrologically stable temperate lakes where the question of spatial integration mostly relates to the mixing of faunal assemblages associated with shallow, warm-water habitat and those associated with deeper, cold-water habitat. Here we study within-lake variability of surface-sediment chironomid assemblages in the fairly large (∼100–170 km2 since 1983) and shallow (Z max = 5–8 m) fluctuating tropical lake basin of Lake Naivasha, Kenya, and compare the patterns observed with those in two smaller adjacent basins, one similarly shallow (Lake Oloidien, 5.1–5.7 km2, 5–8 m), the other deep and stratified (Crescent Island Crater, 1.9 km2, 14–17 m). Chironomid assemblages were analysed in core-top samples and surface sediments along inshore to offshore transects, and how well individual samples represented the total (basin-wide mean) subfossil assemblage was considered both in terms of taxon richness and taxon percent composition. Within-lake variability of subfossil chironomid concentrations (with generally higher absolute values in nearshore samples) could be explained by effects of sediment winnowing and focusing, whereas between-lake variability reflected their relative susceptibility to wind-driven sediment disturbance or bottom anoxia. In all study lakes, but most significantly in lakes Naivasha and Oloidien, species distribution in the subfossil chironomid assemblages showed a strong nearshore to offshore gradient, which in these shallow lakes, reflects the dominant control of substrate and food quality on species distribution in the living community. Particularly in the larger basins, nearshore samples better represented the total lake assemblage than offshore samples, because the former always contained a component of mud-dwelling species whereas the latter often lacked a component of macrophyte-dwelling species. Our results show that although sedimentation dynamics in the shallow, wind-stressed Lake Naivasha is dominated by frequent resuspension and random sediment redistribution, the near- to offshore gradient in chironomid habitat remains imprinted on subfossil assemblages. We conclude that also in shallow fluctuating lakes, given sufficient size, incomplete pre-burial spatial integration of habitat-specific chironomid assemblages can be exploited for within-lake calibration of environmental gradients.  相似文献   

20.
We used 39 surface samples from Marcella Lake, Yukon Territory, to examine the distribution of chironomid head capsules in relation to depth and to develop a site-specific (intralake) inference model for reconstructing past lake levels. Ten of the 34 most-frequently occurring taxa encountered in the surface-sediment samples are significantly related to depth. We then applied the site-specific inference model and a previously developed regional model to samples from deep- and shallow-water cores from Marcella Lake. The inferences were compared to an independent Digerfeldt-type reconstruction of lake level history and to moisture inferences drawn from pollen data. Although the site-specific model was good in having better performance statistics than the regional model, it was bad at producing depth reconstructions because most samples from the long cores lacked suitable analogues in the site-specific training set. None of the chironomid-based reconstructions was a good match to the Digerfeldt-type reconstruction. Inconsistencies remain between the paleohydrological inferences derived from the chironomid depth models, the Digerfeldt-type reconstruction and pollen-inferred reconstructions of past moisture regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号