首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Data on the distribution of dissolved inorganic carbon (DIC) were obtained from two cruises in the North Yellow Sea (NYS) and off the Qingdao Coast (QC) in October, 2007. Carbonate parameters were calculated. The concentrations of DIC are from 1.896–2.229 mmolL−1 in the NYS and from 1.939–2.032 mmolL−1 off the QC. In the southwest of the NYS, DIC in the upper layers decreases from the north of the SP (Shandong Peninsula) shelf to the center of the NYS; whereas in the lower layers DIC increases from the north of the SP shelf to the center of the NYS and South Yellow Sea. In the northeast of the NYS, DIC in all layers increases from the YR (Yalu River) estuary to the centre of the NYS. The distribution of DIC in NYS can be used as an indicator of Yellow Sea Cold Water Mass (YSCWM). Air-sea CO2 fluxes were calculated using three models and the results suggest that both the NYS and the QC waters are potential sources of atmospheric CO2 in October.  相似文献   

2.
Distribution, variation and impact factors of biomass of bacterioplankton from April to May 1999 in Bohai Sea were studied in DAPI method with epifluorescence microscopy. The biomass in surface waters showed a small day-night variation, varying from 0.13 to 2.51μg/dm^3 with an average of 0.84μg/dm^3. The biomass in bottom waters showed, however, a large variation, changing from 0.15 to 4.18μg/dm^3 with an average of 1.36μg/dm^3. The peak values occurred at 5 and 11 a.m. The bottom water biomass showed a significant correlation with particulate organic carbon (r=0.639, P〈0.05). Heterotrophic bacterioplankton biomass was high in nearshore waters and low in offshore areas with a high biomass zone around Huanghe (Yellow) River mouth, showing the same distribution of nutrients. In vertical distribution, heterotrophic bacteria biomass in bottom waters was higher than that in surface water.  相似文献   

3.
A cruise was undertaken from 3rd to 8th November 2004 in Changjiang (Yangtze) River Estuary and its adjacent waters to investigate the spatial biomass distribution and size composition of phytoplankton. Chlorophyll-a (Chl-a) concentration ranged 0.42-1.17 μg L^-1 and 0.41-10.43 μg L^-1 inside and outside the river mouth, with the mean value 0.73 μg L^-1 and 1.86 μg L^-1, respectively. Compared with the Chl-a concentration in summer of 2004, the mean value was much lower inside, and a little higher outside the river mouth. The maximal Chl-a was 10.43 μg L^-1 at station 18 (122.67°E, 31.25°N), and the region of high Chl-a concentration was observed in the central survey area between 122.5°E and 123.0°E. In the stations located east of 122.5°E, Chl-a concentration was generally high in the upper layers above 5 m due to water stratification. In the survey area, the average Chl-a in sizes of 〉20 μm and 〈20 μm was 0.28 μg L^-1 and 1.40 μg L^-1, respectively. High Chl-a concentration of 〈20 μm size-fraction indicated that the nanophytoplankton and picophytoplankton contributed the most to the biomass of phytoplankton. Skeletonema costatum, Prorocentrum micans and Scrippsiella trochoidea were the dominant species in surface water. The spatial distribution of cell abundance of phytoplankton was patchy and did not agree well with that of Chl-a, as the cell abundance could not distinguish the differences in shape and size of phytoplankton cells. Nitrate and silicate behaved conservatively, but the former could probably be the limitation factor to algal biomass at offshore stations. The distribution of phosphate scattered considerably, and its relation to the phytoplankton biomass was complicated.  相似文献   

4.
This study aims to analyze the spatial and temporal variations of the abundance and biodiversity of pelagic copepods and their relationships with the environmental factors in the North Yellow Sea(NYS). These variations were analyzed on the basis of the survey data of the NYS in four seasons from 2006 to 2007. A total of 31 copepod species that belong to 17 genera, 13 families and 4 orders were identified in the four seasons. Of these copepods, the species belonging to Calanoida is the most abundant component. The dominant species include Calanus sinicus, Centropages abdominalis, Paracalanus parvus, Acartia bifilosa, Oithona plumifera, and Corycaeus affinis. C. sinicus is the most important and widely distributed dominant species in all of the seasons. The dominant species have not shown any significant variation for the past 50 years. However, the richness of warm-water species increased. The abundance of copepods significantly varied among different seasons: the average abundance was higher in spring(608.2 ind m~(-3)) and summer(385.1 ind m~(-3)) than in winter(186.5 ind m~(-3)) and autumn(128.0 ind m~(-3)). Factor analyses showed a high correlation between the spatial distributions of dominant copepods and environmental parameters, and Chl-a was the most important factor that influenced the distribution of copepods. This research can provide the fundamental information related to zooplankton, especially pelagic copepods. This research is also beneficial for the long-term monitoring of zooplankton ecology in the NYS.  相似文献   

5.
There were different biogeographical tintinnids in the oceans. Knowledge of their distribution pattern and mixing was important to the understanding of ecosystem functions. Yellow Sea (YS) and Bohai Sea (BS) were semi-enclosed seas influenced by warm water intrusion and YS cold bottom water. The occurrence of tintinnids in YS and BS during two cruises (summer and winter) were investigated to find out: i) whether warm-water tintinnids appeared in YS and BS; ii) whether boreal tintinnids appeared in high summer; iii) the core area of neritic tintinnids and iv) how these different biogeographical tintinnids mixed. Our results showed that tintinnid community was dominated by neritic tintinnid. We confirmed the occurrence of warm-water tintinnids in summer and winter. In summer, they intruded into BS and mainly distributed in the upper 20 m where Yellow Sea Surface Warm Water (YSSWW) developed. In winter, they were limited in the surface water of central deep region (bottom depth >50 m) of YS where were affected by Yellow Sea Warm Water (YSWW). Boreal tintinnids occurred in YS in high summer (August) and in winter, while they were not observed in BS. In summer, the highest abundance of boreal tintinnids occurred in Yellow Sea Bottom Cold Water, indicating the presence of an oversummering stock. In winter, they were concentrated in the north of YSWW. Vertically, neritic tintinnids abundance was high in the bottom layers. Horizontally, high neritic tintinnids abundance in bottom layers occurred along the 50 m isobath coinciding with the position of front systems. Front systems were the core distribution area of neritic tintinnids. High abundance areas of warm-water and boreal tintinnids were clearly separated vertically in summer, and horizontally in winter. High abundance of neritic tintinnids rarely overlapped with that of warm-water or boreal tintinnids.  相似文献   

6.
From 1997 to 2000, four field surveys were conducted in the East China Sea (ECS) (23°30′–33°00′N, 118°30′–128°00′E). A field data yield density model was used to determine the optimal salinities for 19 dominant copepod species to establish the relationship between surface salinities and abundance of those species. In addition, ecological groups of the copepods were classified based on optimal salinity and geographical distribution. The results indicate that the yield density model is suitable for determining the relationship between salinity and abundance. Cosmocalanus darwini, Euchaeta rimana, Pleuromamma gracilis, Rhincalanus cornutus, Scolecithrix danae and Pareucalanus attenuatus were determined as oceanic species, with optimal salinities of >34.0. They were stenohaline and mainly distributed in waters influenced by the Kuroshio or Taiwan warm current. Temora discaudata, T. stylifera and Canthocalanus pauper were nearshore species with optimal salinities of <33.0 and most abundant in coastal waters. The remaining 10 species, including Undinula vulgaris and Subeucalanus subcrassus, were offshore species, with optimal salinity ranging from 33.0–34.0. They were widely distributed in nearshore, offshore and oceanic waters but mainly in the mixed water of the ECS.  相似文献   

7.
To decipher the sedimentary evolution and environmental changes since the late Last Deglaciation, two gravity cores were analyzed from the western North Yellow Sea (NYS). The two cores (B-L44 and B-U35) were sampled for grain size, clay minerals, detrital minerals, and 14C dating. They are comparable in lithofaies, and the observed succession was divided into four depositional units based on lithology and mineral assemblages, which recorded the postglacial transgression. Depositional unit 4 (DU 4) (before 11.5 ka) was characterized with enrichment in sand, and was interpreted as nearshore deposits in shallow water during the Younger Dryas Event. DU 3 (11.5-9.6 ka) displayed a fining-upward succession composed of sediments from local rivers, such as the Huanghe (Yellow) River, and from coastal erosion, which clearly were related to the Early Holocene transgression. Stable muddy deposition (DU 2) in NYS began to form at about 9.6 ka, which received direct supply of fine materials from the Shandong subaqueous clinoform. It is believed that the Yellow Sea circulation system played a major role in controlling the formation of fine sediment deposition in DU 1 (after 6.4 ka) after the sea level maximum.  相似文献   

8.
Distributions of inorganic nutrients in the bohai sea of china   总被引:2,自引:0,他引:2  
1 Introduction TheBohaiSeaislocatedinthenorthernChinawithlongitudesofbetween 117°38′Eand 12 2°31′Eandlat itudesofbetween 37°0 8′Nand 4 1°0 2′N .Itisashal lowseawithanaveragewaterdepthof 18m (LiuandZhang ,2 0 0 0 ) .Severalbigrivers ,suchastheLiaoheRiver,theHaiheRiverandtheYellowRiver ,findtheirwaysintotheBohaiSeaandtransportlargeamountofnutrientsandsuspendedmattersfromthecontinentintothesea (Zhangetal.,1994 ;Zhang ,1996 ) .Duringthelasttwodecades ,marineenviron mentintheBohai…  相似文献   

9.
In this paper, we characterize the North Yellow Sea (NYS) water masses in summer by analyzing temperature and salinity data surveyed in 2006. The Liaonan Coastal Water is characterized by low salinity westward and southward flow paths. The westward path flows parallel to land, turns to the south, then to the southeast adjacent to the mouth of the Lüshun River, where it mixes with other coastal water directly to the southwest. It becomes the main source of low salinity water in the deep water area west of 123°E. The high-salinity Lubei Coastal Water is the remnant of the winter Lubei Coastal Water, which is located mostly in a small area between Yantai and Weihai, and does not originate in the Bohai Sea Coastal Water. The two NYS zones demarcated at 123°E have distinctly different temperature and salinity characteristics. There are two high-salinity centers east of 123°E, whereas there is low-salinity water to the west whose temperature and salinity structures are complex, composed of the coastal water south of Chengshantou, the Liaonan Coastal Water and the Bohai Sea Water.  相似文献   

10.
Preliminary studies on microzooplankton grazing were conducted with dilution method in Jiaozhou Bay from summer 1998 to spring 1999. Four experiments were carried out at St. 5 located at the center of Jiaozhou Bay. Chlorophyll a concentrations were consistently dominated by netphytoplankton (net-, >20μm), except during the autumn 1998 cruise, when they were dominated by nanophytoplankton(nano-, 2–20μm). The contribution of picophytoplankton (pico-, <2μm) to total chlorophyll a concentrations (<200μm) varied considerably between cruises. Instantaneous growth coefficients(u) of phytoplankton varied from 0.098 to 1.947d−1, with mean value of 0.902d−1. Instantaneous coefficients(g) of microzooplankton grazing on phytoplankton ranged from 0.066 to 0.567d−1, mean value of 0.265d−1, which was equivalent to daily lose of 21.9% of the initial standing stock and 58.1% of the daily potential production. Project No KZCX3-SW-214 supported by Chinese Academy of Sciences.  相似文献   

11.
Study on the dominant species of Pteropoda in East China Sea   总被引:2,自引:0,他引:2  
1 INTRODUCTION Pteropoda is a group of marine pelagic mol- lusks, which belongs to Opisthobranchia of Gastro- poda. Although Pteropoda is not a major group in pelagic zooplankton in terms of abundance and number of species, their ecological characters are…  相似文献   

12.
The size-fractionated phytoplankton biomass, and the spatial and temporal variations in abundance of Synechococcus (SYN) and picoeukaryotes (PEUK) were measured in the Taiwan Strait during three cruises (August 1997, February–March 1998, and August 1998). The results show that picophytoplankton and nanophytoplankton dominate the phytoplankton biomass, in average of 38% and 40%, respectively. SYN and PEUK varied over time in abundance and carbon biomass, greater in summer than in winter, in range of (7.70–209.2)×106 and (0.75–15.4)×106 cells/cm2 in the abundance, and 1.93–52.3 and 1.57–32.4 μgC/cm2 in the carbon biomass, for SYN and PEUK, respectively. The horizontal distributions of both groups were diurnal but heterogeneous in abundance, depending on the groups and layer of depths. Temperature is the key controlling factor for picophytoplankton distribution (especially in winter) in the Strait. Supported by Natural Science Foundation of China (No.40730846; 40521003)  相似文献   

13.
Measurement of the surface emissivity of turbid waters   总被引:2,自引:0,他引:2  
For interpreting thermal IR imagery of the ocean surface, the emissivity of the sea surface is usually assumed to be constant, approximately 0.98. However, the emissivity varies with the roughness of the sea surface, and the concentration and type of suspended particulates. The emissivity variations caused by the suspended sediments introduce significant errors in the satellite-derived temperature maps of turbid coastal waters. We measured in the laboratory the thermal IR emissivity of water as the suspended sediment concentration was varied from zero to extremely high values. The results indicated that increasing the sediment concentration decreases the spectral emissivity within the 8–14 μm waveband. Editor’s note A conference on West Pacific Circulation Influence in China Seas (WEPACICS) was held during November 10–14, 1986 in Qingdao, China, under the joint auspices of the Institute of Onceanology, Academic Sinica (IOAS) and the National Science Foundation, United States, and under the convernorship of Ya Hsueh, Florida State University, and Hu, Dunxin, IOAS. The primary subject of the conference is the influence of the West Pacific Circulation in the Yellow Sea and the East China Sea through the intermediary of the Kuroshio. In the conference more than 20 papers were presented, summarizing the works on the interaction between the Yellow and East China Sea, and the oceanic circulation, and the research experiences gained in the studies of the Gulf Stream and its influences in the U.S. Coastal waters were shared. In order to facilitate scientific exchange we chose to published successively the significant papers presented at the conference in the journal.  相似文献   

14.
The Yellow Sea Cold Water Mass (YSCWM) was suggested as an over-summering site of the dominant copepod species Calanus sinicus in coastal Chinese seas. Population abundance and structure were investigated by monthly sampling along three transects across the northern boundary of the YSCWM during 2009-2010. Results show that thermal stratification existed from June to October and that the vertical thermal difference increased with depth. Generally, total abundance was lowest in October and highest in June, and the female/male sex ratio was highest in February and lowest in August. Evident spatial differences in abundance were observed during the existence of the YSCWM. In June, total abundance averaged 158.8 ind/m~ at well-stratified stations, and 532.1 ind/m3 at other stations. Similarly, high abundances of 322.0 and 324.4 ind/m3 were recorded from July to August inside the YSCWM, while the abundance decreased from 50.4 to 1.9 ind/m3 outside the water mass. C. sinicus distribution tended to even out over the study area in September when the YSCWM disappeared. We believe that the YSCWM may retard population recruitment in spring and preserve abundant cohorts in summer. The summer population was transported to neritic waters in autumn. In addition to low temperatures, stable vertical structure was also an essential condition for preservation of the summer population. C. sinicus can survive the summer in marginal areas in high abundance, but the population structure is completely different in terms of C5 proportion and sex ratio.  相似文献   

15.
Microbial communities play key roles in the marine ecosystem. Despite a few studies on marine microbial communities in deep straits, ecological associations among microbial communities in the sediments of shallow straits have not been fully investigated. The Bohai Strait in northern China(average depth less than 20 m) separates the Bohai Sea from the Yellow Sea and has organic-rich sediments. In this study, in the summer of 2014, six stations across the strait were selected to explore the taxonomic composition of microbial communities and their ecological associations. The four most abundant classes were Gammaproteobacteria, Deltaproteobacteria, Bacilli and Flavobacteriia. Temperature, total carbon, depth, nitrate, fishery breeding and cold water masses influenced the microbial communities, as suggested by representational dif ference and composition analyses. Network analysis of microbial associations revealed that key families included Flavobacteriaceae, Pirellulaceae and Piscirickettsiaceae. Our findings suggest that the families with high phylogenetic diversity are key populations in the microbial association network that ensure the stability of microbial ecosystems. Our study contributes to a better understanding of microbial ecology in complex hydrological environments.  相似文献   

16.
Three seabed-mounted TD/CTD chains and two upward-looking acoustic Doppler current profilers(ADCPs) in the southwest of Zhangzi Island are used and a simultaneous cruise observation in the northern North Yellow Sea(NYS) is conducted to study temperature variation in the bottom thermal front zone of the NYS Cold Water Mass(NYSCWM) during the summer of 2009. In the flood-ebb tidal cycles, the bottom temperature decreases(increases) during flood(ebb) tides, which are dominated by the tidal-current induced horizontal advection. The ebb tide-induced temperature increase is larger than the flood tide-induced temperature decrease due to seasonal warming. In the spring-neap tidal cycles, the temperature and the vertical temperature structure show notable fortnightly variation from 16 July to 25 August. The bottom temperature increases from neap to spring tides and decreases from spring to neap. The Richardson number demonstrates strengthened vertical mixing during spring tides but enhanced stratification during neap tides. The spring-neap variation in vertical shear caused by tidal current is the dominant factor that induces the fortnightly variation in vertical mixing and thus bottom temperature.  相似文献   

17.
The concentration of suspended load can be determined by its linear relationship to turbidity. Our results present the basic distribution of suspended load in North Yellow Sea. In summer, the suspended load concentration is high along the coast and low in the center of the sea. There are four regions of high concentration in the surface layer: Penglai and Chengshantou along the north of the Shandong Peninsula, and the coastal areas of Lüshun and Changshan Islands. There is a 2 mg/L contour at 124°E that separates the North Yellow Sea from regions of lower concentrations in the open sea to the west. And there is a 2 mg/L contour at 124°E that separates the North Yellow Sea from regions of lower concentrations in the open sea to the west. The distribution features in the 10 m and bottom layer are similar to the surface layer, however, the suspended load concentration declines in the 10 m layer while it increases in the bottom layer. And in the bottom layer there is a low suspended load concentration water mass at the region south of 38°N and east of 123°E extending to the southeast. In general, the lowest suspended load concentration in a vertical profile is at a depth of 10 to 20 m, the highest suspended load concentration is in the bottom near Chengshantou area. In winter, the distribution of suspended load is similar to summer, but the average concentrations are three times higher. There are two tongue-shaped high suspended load concentration belt, one occurring from surface to seafloor, extends to the north near Chengshantou and the other invades north to south along the east margin of Dalian Bay. They separate the low suspended load concentration water masses in the center of North Yellow Sea into east and west parts. Vertical distribution is quite uniform in the whole North Yellow Sea because of the cooling effect and strong northeast winds. The distribution of suspended load has a very close relationship to the current circulation and wind-induced waves in the North Yellow Sea. Because of this, we have been able to show for the first time that the distribution of suspended load can be used to identify water masses.  相似文献   

18.
The spatial distribution of some large tintinnid species (nominally〉76 μm) was investigated according to samples collected by vertical towing in cruises to the southern Yellow Sea in summer 2000-2002 and 2004. Eight species were identified: Codonellopsis mobilis, Leprotintinnus netritus, Tintinnopsis karajacensis, T. japonica, T. kiaochowensis, T. butschlii, T. radix, and Parafavella sp. With maximum abundance of 158.2 ind/L in June 2004, C. mobilis was the dominant species, lasting from May to July 2004. Tintinnid communities were patchy and distributed mainly in shallow waters along the shore.  相似文献   

19.
Sea surface temperature (SST) variation in the Subei coastal waters, East China, which is important for the ecological environment of the Yellow Sea where Enteromorphaprolifera blooms frequently, is affected by the East Asian winter monsoon (EAWM), El Nifio-Southem Oscillation (ENSO), and Pacific Decadal Oscillation (PDO). In this study, correlations between climatic events and SST anomalies (SSTA) around the Subei (North Jiangsu Province, East China) Coast from 1981-2012 are analyzed, using empirical orthogonal function (EOF) and correlation analyses. First, a key region was determined by EOF analysis to represent the Subei coastal waters. Then, coherency analyses were performed on this key region. According to the correlation analysis, the EAWM index has a positive correlation with the spring and summer SSTA of the key region. Furthermore, the Nifio3.4 index is negatively correlated with the spring and summer SSTA of the key region 1 year ahead, and the PDO has significant negative coherency with spring SSTA and negative coherency with summer SSTA in the key region 1 year ahead. Overall, PDO exhibits the most significant impact on SSTA of the key region. In the key region, all these factors are correlated more significantly with SSTA in spring than in summer. This suggests that outbreaks ofEnteromorpha prolifera in the Yellow Sea are affected by global climatic changes, especially the PDO.  相似文献   

20.
In this paper, the distribution patterns and abundance of pelagic tunicates in the North Yellow Sea of China during the period 2006-2007 were analyzed. Zooplankton samples were obtained with vertical towing from bottom to surface using a WP2 plankton net(200 μm mesh size; mouth area: 0.25 m2). Five species belonging to two classes were identified: Oikopleura dioica, O. longicauda and Fritillaria borealis belonging to class Appendicularia; Salpa fusiformis and Doliolum denticulatum of class Thaliacea. O. dioica and O. longicauda were the dominant species, occurring in the samples of all four seasons, with different distribution patterns. Their maximum abundance were 1664.7 ind. m-3(spring) and 1031.7 ind. m-3(spring) respectively. Following Oikopleura spp. were D. denticulatum, which was found only in autumn with an average abundance of 149.6 ind. m-3, and S. fusiformis, which was detected all the year long except for autumn with low abundance(max. abundance 289.4 ind. m-3 in summer). Only a very small amount of F. borealis was detected in summer samples, with an average abundance of 2.7 ind. m-3. The relationship between tunicates abundances and the environmental factors was analyzed using the stepwise regression model for each species. The variation of appendicularian abundance showed a significant correlation with the surface water temperature and with the concentration of Chl-a. No relationship was found between tunicates abundance and salinity, likely due to the slight changes in surface salinity of the studied area during the four seasons. Salps abundance and that of doliolids were significantly correlated to bottom water temperature, indicating that these two species(S. fusiformis and D. denticulatum) migrate vertically in the water column. In particular D. denticulatum, known to be a warm water species, showed not only an important correlation with water temperature, but also a spatial distribution connected to the warm currents in the North Yellow Sea. The occurrence of D. denticulatum represents an interesting result never found in past research work. Water temperature, algal distribution and currents were the most relevant environmental factors influencing the tunicate abundance and distribution in the North Yellow Sea. Further research is needed in order to get more information on the ecology of these organisms and to better understand their role in the ecosystem including the oceanic food web.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号