首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
程晓  张艳梅  李震  邵芸 《水科学进展》2005,16(2):268-273
简单介绍了微波辐射的原理与应用现状,利用美国国防气象卫星计划DMSP F系列卫星携带的SSM/I辐射计南极地区极投影网格亮温数据进行了分析与处理。结合微波亮温等温线图和南极等高线图分析了南极地区亮温分布的特点。选取8个特征区域,对1992-2000年的日亮温数据进行了时间序列分析,分析了冰盖和冰架的亮温特性、季节和年度变化、短期波动等特征。研究表明南极大陆外围冰架和南极半岛地区的亮温呈增高趋势,而内陆冰盖地区则保持相对稳定;揭示了近年来随全球气候的变暖,南极冰架和南极半岛的融化正在加剧的趋势。  相似文献   

2.
利用最新的全球海潮模型(Csr3.0,Fes95.2,Tpxo2和Csr4.0)和原有的Schwiderski海潮模型以及中国近海海潮数据和标准地球模型负荷格林函数,采用直接褶积积分方法研究了中国地壳运动观测网络25个基准站重力固体潮观测中的海潮负荷效应问题,计算了 8个主要潮汐波的负荷振幅和相位,构制了北京和上海等10个台站重力负荷随时间变化函数。  相似文献   

3.
冰架是南极冰盖物质损失的主要出口。南极冰架动态变化和物质平衡的研究对揭示南极地区的气候变化具有重要的参考价值。本文从表面融化、冰流速、前缘崩解、底部融化和物质平衡五个方面入手,对近些年来南极冰架变化监测的研究进展进行梳理和归纳总结,综述了它们的观测方法、观测结果、机制分析及当前面临的问题。极地观测卫星和现场观测网络的发展、冰架多维度综合分析及数值模拟研究的推进,将有助于进一步揭示冰架变化因子之间的耦合作用及其演变机制,为全球增温影响南极冰盖/冰架的物理机制研究及其变化预测提供重要依据。  相似文献   

4.
近年来,南极冰架发生较多消融、崩解等现象。利用已有的1997年和2000年的Radarsat全南极海岸线产品、2003/2004年和2008/2009年的MODIS全南极海岸线产品,以及基于2006年、2012年和2015年MODIS影像提取的海岸线,共7期数据,对南极Ross,Filchner-Ronne和Amery三大冰架前端的变化进行了分析,以变化面积、累积变化量(Shoreline Change Envelope,SCE)和净变化量(Net Shoreline Movement,NSM)3个指标来评估冰架前端的变化。结果表明,1997—2015年,Amery冰架一直呈现增长趋势,前端大部分区域往外延伸20~25 km,增长面积达3.03×103km2;Ross冰架和Filchner-Ronne冰架在发生崩解后受上游冰川推进作用仍不断向外增长,但增长面积小于崩解退缩面积,冰架面积分别减少9.39×103km2和5.86×103km2,冰架崩解区域前端退缩最大达到53 km和39 km。  相似文献   

5.
潮汐变化空间分布可用于地球不同位置受外力响应及地球形状、地表变形的相关研究.受观测技术、仪器数量和观测精度等制约,中国大陆重力潮汐观测直到21世纪初才得到较大改善和发展.利用2015-2017年中国大陆运行较好的51个重力站潮汐观测数据,采用国际标准潮汐处理方法和软件,分析计算了中国大陆主要潮波潮汐因子的空间分布,同时,结合1′×1′的全球地形模型(ETOPO1)和全球重力场模型(WGM2012)讨论了中国大陆东西和南北向2个潮汐剖面的构造物理特征.研究结果表明:①90%以上重力站M2波潮汐因子中误差优于0.001,这已和20世纪80~90年代的超导重力仪的观测精度相当;沿海台站的O1和K1波潮汐因子大于其他地区,经Nao99b和Nao99jb海潮模型检验认为是海潮负荷引起的.②沿狮泉河—玉树—松潘—黄梅—上海佘山的东西向M2波潮汐剖面显示,当海拔高程差异超过4500m、布格重力异常差异600×10-5m/s2时,重力站间M2波潮汐因子差异可达2%,且和高程呈正相关特征.③沿孟连—西昌—银川—乌加河的南北向M2波潮汐剖面站间潮汐因子差异为1.0%~1.5%.④重力站潮汐因子和高程的相关性分析表明,内陆站M2、O1波相关系数超过40%具有正相关特征.上述结果可为中国大陆地壳结构横向不均匀性和动力变形响应研究提供参考.  相似文献   

6.
王兴国 《福建地质》2008,27(3):322-325
利用高精度GPS后处理软件GAMIT/GLOBK对厦门集美跨海大桥B级GPS控制网的实测数据进行处理,分析海潮对GPS控制网的影响,指出海潮改正对近海短时间GPS观测高程方向的影响可达数厘米。  相似文献   

7.
概要综述了确定卫星重力场恢复中的海洋负荷潮汐改正理论和精度估算问题。利用TPXO6海潮模型计算了海潮对卫星重力恢复的影响,与GRACE观测误差实施了对比。结果说明海潮M2波对卫星重力场恢复的影响最大,并主要体现在40阶以下的位系数上。海潮模型误差对低阶卫星重力场恢复的影响也是比较明显的。相关结果可有效降低GRACE恢复的低价重力场位系数的潮汐成分,为我国相应的学科研究提供有效参考。  相似文献   

8.
重力场的潮汐变化观测及其研究   总被引:6,自引:1,他引:6  
基于我国武汉超导重力仪长周期序列潮汐观测数据,研究了重力场潮汐变化特征,精密确定了地球潮汐常数,讨论了重力观测中的海潮负荷和大气效应问题;根据地球自由核章动在周日重力潮汐观测中的共振效应确定了自由核章动的复本征周期和品质因子Q值,研究了极移重力效应;并对进一步利用重力潮汐观测研究地球物理问题进行了讨论。  相似文献   

9.
陈瑞阁  周训  赵敬波  宋超 《地质通报》2013,32(7):1099-1104
海潮波动可以引起海岸带地下水位发生波动。建立了基于有限差分法的滨海地区一维承压含水层地下水运动数值模型。将潮汐波动概化为正弦波,模拟了滨海地区地下水位随潮汐波动的变化。通过与初始水位水平的承压含水层水位变化的比较表明,受海潮影响的滨海承压含水层地下水位与海潮有相似的波动特征,但变幅减小,受海潮的影响程度与离海岸的距离有关,随着离海岸距离的增加,地下水位的变幅及潮汐效率呈负指数函数衰减,但比前者变化程度稍缓,地下水位对海潮的滞后时间随距离呈线性增加。  相似文献   

10.
基于ICESat数据的南极冰盖DEM插值方法比较及精度分析   总被引:1,自引:0,他引:1  
南极数字高程模型(DEM)是从事南极地学和环境变化研究的基础. 内插是建立数字高程模型的重要技术点, 插值方法有多种, 根据不同的适用情况, 不同的插值方法各有优劣. 利用克里格、 距离反权、 三角网剖分、 最小曲率以及移动平均5种插值方法分别建立南极冰盖小范围区域的DEM, 通过抽取部分观测数据作为验证值对各插值方法进行了比较. 结果表明: 克里格插值方法的可靠性最好, 稳定性最高. 然后, 利用克里格插值方法, 基于ICESat测高卫星的GLA12数据建立了南极冰盖的DEM. 由于南极大陆实测数据有限, 缺乏对DEM的检核. 为了分析所建DEM的可靠性, 利用中国南极内陆冰盖考察所采集的GPS实测数据, 对所建立的DEM进行了验证分析. 结果显示, DEM在坡度较缓的南极内陆冰盖区域精度较高, 符合度在3 m以内; 距离卫星轨道越近的区域精度越高, 可达到1 m 以内. 在坡度较大, 高程变化较为显著的区域如沿海地区, 精度较低, 差距最大的点超过40 m.  相似文献   

11.
中国极地大地测量学十年回顾:1996-2006年   总被引:1,自引:0,他引:1  
[STBZ][ZW(*][HT6H]〓收稿日期:. *基金项目:[HT6SS][ZK(]国家自然科学基金项目“利用多源遥感数据监测南极冰貌地形及其动态变化研究”(编号:40606002);国家测绘局项目“南极考察地区基础测绘”(编号:1469990324229)资助[ZK)] [HT6H]〓作者简介:[HT6SS](1939 ),男,江西广丰人,教授,博士生导师,主要从事极地测绘遥感信息学的研究.[WT6HZ]E mail:[WT6BZ] [ZW)] [HT4F] [HT5K](摘〓要:[HT5K]回顾了近10年来我国南北两极大地测量学在GPS、重力、验潮及合成孔径雷达干涉测量等方面的研究进展。具体介绍了以长城站、中山站和黄河站3个GPS观测站为依托,开展的板块运动、卫星定轨及极区大气环境监测方面的研究;GPS在埃默里冰架、格罗夫山及Dome A考察中的应用研究;长城站的高精度绝对重力及相对重力测量;中山站自动验潮站的建立;及合成孔径雷达干涉测量在南极内陆冰盖的应用研究等。  相似文献   

12.
The Antarctic Ice Sheet plays a major role in the global system, and the large ice streams discharging into the circumpolar sea represent its gateways to the world’s oceans. Satellite radar altimeter data provide an opportunity for mapping surface elevation at kilometerresolution with meteraccuracy. Geostaristical methods have been developed for the analysis of these data. Applications to Seasat data and data from the Geosat Exact Repeat Mission indicate that the grounding line of Lambert Glacier/Amery Ice Shelf, the largest ice stream in East Antarctica, has advanced 10–12 km between 1978 and 1987–89. The objectives of this paper are to explore possibilities and limitations of satellite-altimetry-based mapping to capture changes for shorter time windows and for smaller areas, and to investigate some methodological aspects of the data analysis. We establish that one season of radar altimeter data is sufficient for constructing a map. This allows study of interannual variation and is the key for a limeseries analysis approach to study changes in ice streams. Maps of the lower Lambert Glacier and the entire Amery Ice Shelf are presented for austral winters 1978, 1987, 1988, and 1989. As a first step toward understanding the dynamics of the ice-stream/iceshelf system, elevation changes are calculated for grounded ice, the grounding zone, and floating ice. In the absence of (sufficient) surface gravity control for the Lambert Glacier/Amery Ice Shelf area, altimetry-based maps may facilitate improvement of geoid models as they provide constraints on the terrain correction in the inverse gravimetric problem.  相似文献   

13.
The Antarctic Ice Sheet plays a major role in the global system, and the large ice streams discharging into the circumpolar sea represent its gateways to the world's oceans. Satellite radar altimeter data provide an opportunity for mapping surface elevation at kilometer-resolution with meter-accuracy. Geostatistical methods have been developed for the analysis of these data. Applications to Seasat data and data from the Geosat Exact Repeat Mission indicate that the grounding line of Lambert Glacier/Amery Ice Shelf, the largest ice stream in East Antarctica, has advanced 10–12 km between 1978 and 1987–89. The objectives of this paper are to explore possibilities and limitations of satellite-altimetry-based mapping to capture changes for shorter time windows and for smaller areas, and to investigate some methodological aspects of the data analysis. We establish that one season of radar altimeter data is sufficient for constructing a map. This allows study of interannual variation and is the key for a time-series analysis approach to study changes in ice streams. Maps of the lower Lambert Glacier and the entire Amery Ice Shelf are presented for austral winters 1978, 1987, 1988, and 1989. As a first step toward understanding the dynamics of the ice-stream/ice-shelf system, elevation changes are calculated for grounded ice, the grounding zone, and floating ice. In the absence of (sufficient) surface gravity control for the Lambert Glacier/Amery Ice Shelf area, altimetry-based maps may facilitate improvement of geoid models as they provide constraints on the terrain correction in the inverse gravimetric problem.  相似文献   

14.
The ten-year progress of Chinese polar geodesy from 1996 to 2006 is summarized. Research on plate motion, crustal movement, orbit determination, and atmospheric monitoring, including the ionosphere and troposphere, were performed using GPS data of the Great Wall Station, Zhongshan Station and Yellow River Station. GPS was also applied in the Amery Ice Shelf, Grove Mountains and Dome A expeditions to study ice dynamics. During the 2004/2005 austral summer season, the absolute gravity and relative gravity were measured at the Great Wall Station with precision within ± 3 × 10−8 ms−2 and ± 10 × 10−8 ms−2 respectively. The tide gauge, which was set up in Zhongshan Station to monitor sea level change in 2000, recorded the 2004 Indian Ocean tsunami. SAR interferometry was applied to build the DEM of ice sheet and monitor ice flow in the polar region. __________ Translated from Advances in Earth Science, 2007, 22(8): 784–790 [译自: 地球科学进展]  相似文献   

15.
The Greenland and East and West Antarctic ice sheets are assessed as being the source of ice that produced an Eemian sea level 6 m higher than present sea level. The most probable source is total collapse of the West Antarctic Ice Sheet accompanied by partial collapse of the adjacent sector of the East Antarctic Ice Sheet in direct contact with the West Antarctic Ice Sheet. This conclusion is reached by applying a simple formula relating the “floating fraction” of ice along flowlines to ice height above the bed. Increasing the floating fraction lowered ice elevations enough to contribute up to 4.7 m to global sea level. Adding 3.3 m resulting from total collapse of the West Antarctic Ice Sheet accounts for the higher Eemian sea level. Partial gravitational collapse that produced the present ice drainage system of Amery Ice Shelf contributes 2.3 m to global sea level. These results cast doubt on the presumed stability of the East Antarctic Ice Sheet, but destabilizing mechanisms remain largely unknown. Possibilities include glacial surges and marine instabilities at the respective head and foot of ice streams.  相似文献   

16.
Ice-distal Upper Miocene marine strata from inland Antarctica   总被引:2,自引:0,他引:2  
ABSTRACT Glacimarine strata of the Battye Glacier Formation (≈ 130 m thick), Pagodroma Group, exposed in the Amery Oasis of East Antarctica, provide a record of Late Miocene palaeoenvironmental conditions in an ice‐distal setting. The formation overlies the Amery Erosion Surface (≈ 300 m to ≈ 270 m above sea level) that formed during an advance of the Lambert Glacier into Prydz Bay (ODP Site 739), at least 750 km further north than today. Two lithological members: a grey and muddier Lower Member and a brown, sand‐rich Upper Member, reflect variation in proximity to the terminus of the Lambert Glacier. Ice‐distal, glacimarine, diatom‐bearing mud (up to 12% biogenic silica) and in situ articulated molluscs occur in the Lower Member. The Battye Glacier Formation is significant because of its inland location, which indicates that ice‐distal marine conditions existed 250 km inland from the current Amery Ice Shelf edge. Similar Neogene strata are known on land only from the Pliocene Sørsdal Formation in the Vestfold Hills, near the Antarctic coast. Three stratigraphic intervals of diatom‐bearing mud are recognized from glacially reworked clasts and from in situ strata informally referred to as the McLeod Beds and ‘Bed A’. The diatom‐bearing mud also contains sponge spicules and minor silicoflagellates and ebridians. Marine diatom biostratigraphy constrains the age of the beds to between 10·7 and 9·0 Ma (late Miocene). Abundant benthic diatoms suggest deposition within shallow euphotic waters. The high abundance of intercalary valves of Eucampia antarctica from an interval of the McLeod Beds suggests that there was less winter sea‐ice than in Prydz Bay today. It is unlikely that sea‐ice was perennial because the presence of Thalassionema spp. and Stellarima stellaris (Roper) Hasle et Sims suggests that summer sea‐surface temperatures were too warm (> 0°C and > 3°C respectively). The palaeoclimate at the time of deposition appears to have been analogous to that in modern fjords of East Greenland (e.g. Kangerdlugssuaq Fjord), which is consistent with the depositional model proposed previously for the Pagodroma Group. The three diatom‐bearing mud intervals were deposited in the Amery Oasis, ≈ 250 km inland of the current Amery Ice Shelf edge, when the East Antarctic Ice Sheet was reduced in size relative to today.  相似文献   

17.
新一代冰流模式乌阿及其在南极埃默里冰架的应用   总被引:1,自引:1,他引:0  
李腾  陈卓奇  李慧林  程晓  韦屹  刘岩 《冰川冻土》2020,42(1):254-264
南极冰盖不仅是全球环境变化的指示器, 其消融所产生成的淡水输入也是未来海平面上升的主要不确定性来源。数值模式是诊断冰流动力机制、 评估冰盖物质损耗的重要手段。本文首先介绍了乌阿(冰岛语úa或英语Ua)冰流模式的基本原理, 并利用该模式模拟东南极埃默里冰架的动态变化。乌阿冰流模式基于质量和动量守恒方程的垂直积分, 在自适应不规则三角网格上求解微分方程, 仅用少数参数规则即可构造适应冰流动力特征的网格结构, 有效缩减运算时间。采用当前主流的模式边界数据集, 针对埃默里冰架设计了两个试验。试验一为反演试验, 试验中模式的代价函数在100次迭代后下降三个数量级, 表明模拟的流速与遥感观测吻合(RMSE = 13.35 m·a-1), 但高频细节仍有待提高; 试验二为预测试验, 测试了模拟冰厚变化率的不确定性, 以自由漂移量接近零为标准选出一组最优模型参数, 最后假设埃默里冰架解体情景开展模拟, 结果表明冰架解体会导致海平面上升(45.36 ± 0.08) mm。随着资料更新迭代, 基于最新发布的南极底部地形数据模拟效果是否提升还有待未来检验。  相似文献   

18.
Marine ice sheets are grounded on land which was below sea level before it became depressed under the ice-sheet load. They are inherently unstable and, because of bedrock topography after depression, the collapse of a marine ice sheet may be very rapid. In this paper equations are derived that can be used to make a quantitative estimate of the maximum size of a marine ice sheet and of when and how rapidly retreat would take place under prescribed conditions. Ice-sheet growth is favored by falling sea level and uplift of the seabed. In most cases the buttressing effect of a partially grounded ice shelf is a prerequisite for maximum growth out to the edge of the continental shelf. Collapse is triggered most easily by eustatic rise in sea level, but it is possible that the ice sheet may self-destruct by depressing the edge of the continental shelf so that sea depth is increased at the equilibrium grounding line.Application of the equations to a hypothetical “Ross Ice Sheet” that 18,000 yr ago may have covered the present-day Ross Ice Shelf indicates that, if the ice sheet existed, it probably extended to a line of sills parallel to the edge of the Ross Sea continental shelf. By allowing world sea level to rise from its late-Wisconsin minimum it was possible to calculate retreat rates for individual ice streams that drained the “Ross Ice Sheet.” For all the models tested, retreat began soon after sea level began to rise (~15,000 yr B.P.). The first 100 km of retreat took between 1500 and 2500 yr but then retreat rates rapidly accelerated to between 0.5 and 25 km yr?1, depending on whether an ice shelf was present or not, with corresponding ice velocities across the grounding line of 4 to 70 km yr?1. All models indicate that most of the present-day Ross Ice Shelf was free of grounded ice by about 7000 yr B.P. As the ice streams retreated floating ice shelves may have formed between promontories of slowly collapsing stagnant ice left behind by the rapidly retreating ice streams. If ice shelves did not form during retreat then the analysis indicates that most of the West Antarctic Ice Sheet would have collapsed by 9000 yr B.P. Thus, the present-day Ross Ice Shelf (and probably the Ronne Ice Shelf) serves to stabilize the West Antarctic Ice Sheet, which would collapse very rapidly if the ice shelves were removed. This provides support for the suggestion that the 6-m sea-level high during the Sangamon Interglacial was caused by collapse of the West Antarctic Ice Sheet after climatic warming had sufficiently weakened the ice shelves. Since the West Antarctic Ice Sheet still exists it seems likely that ice shelves did form during Holocene retreat. Their effect was to slow and, finally, to halt retreat. The models that best fit available data require a rather low shear stress between the ice shelf and its sides, and this implies that rapid shear in this region encouraged the formation of a band of ice with a preferred crystal fabric, as appears to be happening today in the floating portions of fast bounded glaciers.Rebound of the seabed after the ice sheet had retreated to an equilibrium position would allow the ice sheet to advance once more. This may be taking place today since analysis of data from the Ross Ice Shelf indicates that the southeast corner is probably growing thicker with time, and if this persists then large areas of ice shelf must become grounded. This would restrict drainage from West Antarctic ice streams which would tend to thicken and advance their grounding lines into the ice shelf.  相似文献   

19.
In recent years, melting and calving happen in the Antarctic ice shelves. In this paper, seven periods of coastlines were applied to provide an analysis of the ice front changes of Ross, Filchner-Ronne and Amery ice shelves with the inclusion of 1997 and 2000 Radarsat products, 2003/2004 and 2008/2009 MODIS products and 2006, 2012, 2015 coastline which were extracted from MODIS images. Change area, SCE (Shoreline Change Envelope) and NSM (Net Shoreline Movement) were applied to analyze the variation of the ice shelf front. The results shows that, the ice front of Amery ice shelf has advanced since 1997 and the total outward extension distance of the ice front was about 20 to 25 km while the advance area reached 3.03×103 km2. Ross ice shelf and Filchner-Ronne ice shelf continued to advance after ice calving events under the driver action of glacier. However, the advance area was less than the retreat area and the net change area is respectively -9.39×103 km2 and -5.86×103 km2. The retreat distance of the collapse area were up to 53 km and 39 km in the two biggest ice shelves.  相似文献   

20.
《Quaternary Science Reviews》2007,26(5-6):598-626
Ice-free areas Antarctica reveal a multi-million year history of landscape evolution, but most attention up to now has focused on the Transantarctic Mountains. The Amery Oasis in the northern Prince Charles Mountains borders the Lambert Glacier—Amery Ice Shelf System that drains 1 million km2 of the East Antarctic Ice Sheet, and therefore provides a record of fluctuations of both local and regional ice since the ice sheet first formed in early Oligocene time. This glacial record has been deciphered by (i) geomorphological mapping from aerial photographs and on the ground, (ii) documenting the relationship between thick well-dated, uplifted glaciomarine strata and the underlying palaeolandscape, (iii) examining surficial sediment facies, and (iv) surface-exposure dating using 10Be and 26Al. The SE Amery Oasis records at least 10 million years of landscape evolution beginning with a pre-late Miocene phase of glacial erosion, followed by deposition of glaciomarine strata of the Battye Glacier Formation (Pagodroma Group) in late Miocene time. A wet-based ice sheet next expanded over the SE Amery Oasis, following which deposition of the glaciomarine Pliocene Bardin Bluffs Formation (Pagodroma Group) took place. Both formations were uplifted; by at least 500 and 200 m, respectively. Their tops are characterised by geomorphological surfaces upon which intensive periglacial activity took place. Higher-level bedrock areas were subjected to deep weathering and tor-formation. Early Pleistocene time was characterised by expansion of a cold-based ice sheet across the whole area, but it left little more than patches of sandy gravel and erratic blocks. Late Pleistocene expansion of local ice (the Battye Glacier) saw deposition of moraine-mound complexes on low ground around Radok Lake and ice-dammed lake phenomena. Subglacial drainage of the lake escaped to the east exhuming the sediment-filled gorges. Holocene landscape modification has been relatively superficial. Overall, the landscape of the Amery Oasis evolved primarily under the influence of wet-based (probably polythermal) glaciers in Miocene and Pliocene times, whereas the Quaternary Period was characterised mainly by cold-based glaciers that had comparatively little impact on the landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号