首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
We study the interaction between dark energy(DE) and dark matter in the scope of anisotropic Bianchi type-I space-time. First we derive the general form of the DE equation of state(EoS) parameter in both non-interacting and interacting cases and then we examine its future by applying a hyperbolic scale factor. It is shown that in the non-interacting case, depending on the value of the anisotropy parameter K,the DE EoS parameter varies from phantom to quintessence whereas in the interacting case the EoS parameter varies in the quintessence region. However, in both cases, the DE EoS parameter ωdeultimately(i.e. at z =-1) tends to the cosmological constant(ωde=-1). Moreover, we fix the cosmological bound on the anisotropy parameter K by using recent observational data about the Hubble parameter.  相似文献   

2.
3.
The paper deals with a spatially homogeneous and isotropic FRW space-time filled with perfect fluid and dark energy components. The two sources are assumed to interact minimally, and therefore their energy momentum tensors are conserved separately. A special law of variation for the Hubble parameter proposed by Berman (Nuovo Cimento B 74:182, 1983) has been utilized to solve the field equations. The Berman’s law yields two explicit forms of the scale factor governing the FRW space-time and constant values of deceleration parameter. The role of dark energy with variable equation of state parameter has been studied in detail in the evolution of FRW universe. It has been found that dark energy dominates the universe at the present epoch, which is consistent with the observations. The physical behavior of the universe has been discussed in detail.  相似文献   

4.
The paper deals with a spatially homogeneous and anisotropic Bianchi type-I universe filled with two minimally interacting fluids; matter and holographic dark energy components. The nature of the holographic dark energy for Bianchi type-I space time is discussed. An exact solution to Einstein’s field equations in Bianchi type-I line element is obtained using the assumption of linearly varying deceleration parameter. Under the suitable condition, it is observed that the anisotropy parameter of the universe approaches to zero for large cosmic time and the coincidence parameter increases with increasing time. We established a correspondence between the holographic dark energy models with the generalised Chaplygin gas dark energy model. We also reconstructed the potential and dynamics of the scalar field which describes the Chaplygin cosmology. Solution of the field equations shows that a big rip type future singularity will occur for this model. It has been observed that the solutions are compatible with the results of recent observations.  相似文献   

5.
In this work, we have considered the spatially homogeneous and anisotropic Bianchi type-II universe filled with two interacting fluids; dark matter and holographic dark energy components. Assuming the proportionality relation between one of the components of shear scalar and expansion scalar which yields time dependent deceleration parameter, an exact solution to Einstein’s field equations in Bianchi type-II line element is obtained. We have investigated geometric and kinematics properties of the model and the behaviour of the holographic dark energy. It is observed that the mean anisotropic parameter is uniform through the whole evolution of the universe and the coincidence parameter increases with increasing time. The solutions are also found to be in good agreement with the results of recent observations. We have applied the statefinder diagnostics method to study the behaviour of different stages of the universe and to differentiate the proposed dark energy model from the ΛCDM model. We have also established a correspondence between the holographic dark energy model and the tachyon scalar field dark energy model. We have reconstructed the potential and the dynamics of the tachyon scalar field, which describes accelerated expansion of the universe.  相似文献   

6.
In this paper we study the evolution of the dark energy parameter within the scope of a spatially homogeneous and isotropic Friedmann-Robertson-Walker (FRW) model filled with barotropic fluid and dark energy by revisiting the recent results (Amirhashchi et al. in Chin. Phys. Lett. 28:039801, 2011a). To prevail the deterministic solution we select the scale factor which generates a time-dependent deceleration parameter (DP), representing a model which generates a transition of the universe from the early decelerating phase to the recent accelerating phase. We consider the two cases of an interacting and non-interacting two-fluid (barotropic and dark energy) scenario and obtained general results. The cosmic jerk parameter in our derived model is also found to be in good agreement with the recent data of astrophysical observations under the suitable condition. The physical aspects of the models and the stability of the corresponding solutions are also discussed.  相似文献   

7.
Dust-ion-acoustic (DIA) waves in an unmagnetized dusty plasma system consisting of inertial ions, negatively charged immobile dust, and superthermal (kappa distributed) electrons with two distinct temperatures are investigated both numerically and analytically by deriving Korteweg–de Vries (K-dV), modified K-dV (mK-dV), and Gardner equations along with its double layers (DLs) solutions using the reductive perturbation technique. The basic features of the DIA Gardner solitons (GSs) as well as DLs are studied, and an analytical comparison among K-dV, mK-dV, and GSs are also observed. The parametric regimes for the existence of both the positive as well as negative SWs and negative DLs are obtained. It is observed that superthermal electrons with two distinct temperatures significantly affect on the basic properties of the DIA solitary waves and DLs; and depending on the parameter μ c (the critical value of relative electron number density μ e1), the DIA K-dV and Gardner solitons exhibit both compressive and rarefactive structures, whereas the mK-dV solitons support only compressive structures and DLs support only the rarefactive structures. The present investigation can be very effective for understanding and studying various astrophysical plasma environments (viz. Saturn magnetosphere, pulsar magnetosphere, etc.).  相似文献   

8.
The present work deals with the accretion of two minimally interacting fluids: dark matter and a hypothetical isotropic fluid as the holographic dark energy components onto black hole and wormhole in a spatially homogeneous and anisotropic Bianchi type-V universe. To obtain an exact solution of the Einstein’s field equations, we use the assumption of linearly varying deceleration parameter. Solution describes effectively the actual acceleration and indicates a big rip type future singularity of the universe. We have studied the evolution of the mass of black hole and the wormhole embedded in this anisotropic universe in order to reproduce a stable universe protected against future-time singularity. It is observed that the accretion of these dark components leads to a gradual decrease and increase of black hole and wormhole mass respectively. Finally, we have found that contrary to our previous case (Sarkar in Astrophys. Space. Sci. 341:651, 2014a), the big rip singularity of the universe with a divergent Hubble parameter of this dark energy model may be avoided by a big trip.  相似文献   

9.
The present work deals with a spatially homogeneous and anisotropic Kantowski-Sachs space time filled with two minimally interacting fluids; dark matter and a hypothetical anisotropic fluid as the holographic dark energy components. To obtain an exact solution of the Einstein’s field equations, we used the assumption of linearly varying deceleration parameter. We have investigated geometric and kinematic properties of the model and the role of the anisotropic holographic dark energy in the evolution of the Kantowski-Sachs universe. Under the suitable condition, it is observed that the anisotropy parameter of the universe and the skewness parameter of the holographic dark energy approaches to zero for large cosmic time and the universe can achieve flatness for some particular moments throughout its entire lifetime. Results show that the coincidence parameter $( \Re= \frac{\rho_{\varLambda}}{\rho_{M}} )$ increases with increasing time and a big rip type future singularity will occur for this model. We have also applied the statefinder diagnostics method to study the behavior of different stages of the universe and to differentiate the proposed dark energy model from the ΛCDM model. Since in this model, the universe has a finite life time and passes through a significant time when the dark energy and the matter energy densities are roughly comparable, so considering $\frac{1}{ \Re_{0}} <\Re < \Re_{0}$ , where ?0 is any fixed ratio, we have calculated the fraction of total life time of the universe when the universe passes through the coincidental stage for this future singularity. The results are found to be consistent with recent cosmological observations.  相似文献   

10.
The solution of three new interesting studies,a rotating anisotropic twofluid universe coupled with radiation and a scalar field,are studied here,where the anisotropic pressure is generated by the presence of two non-interacting perfect fluids which are in relative motion with respect to each other.In this problem,special discussion is made of the physically interesting class of models in which one fluid is a perfect comoving radiative fluid which is taken to model the cosmic microwave background and the se...  相似文献   

11.
The present work deals with irreversible thermodynamics of universe containing interacting dark fluids. Recent observational evidences reveal that the universe is dominated by two dark components-dark matter and dark energy. The interaction between them leads to spontaneous heat flow between the horizon and the fluid system and as a result the system will no longer be in thermal equilibrium. In this paper dark matter is chosen as pressureless dust while modified Chaplygin gas has been considered as dark energy. In two separate cases we have considered the universe to be bounded by apparent horizon and event horizon and the validity of generalized second law of thermodynamics in the context of irreversible thermodynamics has been studied for both the cases.  相似文献   

12.
13.
We study the correspondence between the interacting new agegraphic dark energy and the polytropic gas model of dark energy in the non-flat FRW universe. This correspondence allows us to reconstruct the potential and the dynamics for the scalar field of the polytropic model, which describe accelerated expansion of the universe.  相似文献   

14.
15.
16.
17.
18.
A special law of variation for Hubble’s parameter is presented in a spatially homogeneous and anisotropic Bianchi type-I space-time that yields a constant value of deceleration parameter. Using the law of variation for Hubble’s parameter, exact solutions of Einstein’s field equations are obtained for Bianchi-I space-time filled with perfect fluid in two different cases where the universe exhibits power-law and exponential expansion. It is found that the solutions are consistent with the recent observations of type Ia supernovae. A detailed study of physical and kinematical properties of the models is carried out.  相似文献   

19.
The properties of locally rotationally symmetric Bianchi type-II perfect fluid space-times are analyzed in Barber’s second self-creation theory by using a special law of variation for Hubble’s parameter that yields a constant value of deceleration parameter. By assuming the equation of state p=γ ρ, many new solutions are obtained for different era—Zel’dovich, radiation, vacuum and vacuum energy dominated. The solutions with power-law and exponential expansion are discussed. A detailed study of geometrical and physical parameters is carried out. The nature of singularity is also clarified in each case.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号