首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a Rayleigh distillation fractionation model, we calculate that the maximum isotope fractionation potentially achievable is less than 5% during the early stages of gas release from a sample. Our calculation corrects the erroneous conclusions of Gautheron and Moreira (2003), who re‐interpreted the plume‐like neon isotopic compositions found in metasomatic apatite from a south‐eastern Australian xenolith (Matsumoto et al., 1997) to be the result of Rayleigh‐type isotope fractionation of originally MORB‐type neon during stepheating gas extraction. We stress that the modelling of neon isotopic fractionation by Gautheron and Moreira (2003) is incorrect, and that the finding of a plume‐like neon isotopic composition in the apatite by Matsumoto et al. (1997) remains a quite valid and robust conclusion.  相似文献   

2.
Using the secondary spinel standard, the authors have precisely measured the Fe3+/∑ Fe values of spinels in mantle xenoliths from Cenozoic basalts in eastern China, and estimated the oxygen fugacities recorded by 63 mantle xenoliths through olivine-orthopyroxene-spinel oxygen barometry. The results indicate that the oxygen fugacities of the lithospheric mantle in eastern China are higher in the south than in the north. Among them, the oxygen fugacity of the North China craton lithospheric mantle is the lowest, similar to that of the oceanic mantle, while that of Northeast and South China are the same as that of the global continental mantle. The variations of mantle redox state in eastern China are mainly controlled by the C-O-H fluids derived from the asthenospheric mantle. According to the mantle oxidation state, it can be concluded that the C-O-H fluids in the lithospheric mantle of eastern China consist mainly of CO2 and minor H2O, but CH4-rich fluids should come from the asthenosphere where the ox  相似文献   

3.
Phanerozoic granitoids in South Korea are classified into four primary spatiotemporal groups showing geochemical and isotopic diversity. This study presents the first in situ Hf isotope data for zircons extracted from representative outcrops of each granitoid group. The core‐to‐rim variation in εHf values observed in some zircon grains provides evidence for open‐system processes influenced by the input of more primitive melts or interactions with pre‐existing crustal materials. A general core‐to‐rim decrease in Lu/Hf and Th/U ratios indicates a progressive compositional change in the melts during magmatic differentiation. Contrasting evolutionary paths demonstrated by zircon εHf values suggest that the Neoproterozoic to Palaeozoic crust including the Permian granitoids was recycled during the Cretaceous to Palaeogene magmatism in south‐eastern Korea, whereas the Palaeoarchaean to Palaeoproterozoic crust provided major source material for the Triassic to Jurassic granitoids in central Korea.  相似文献   

4.
U-Pb zircon age, geochemical, and Sr-Nd-Pb isotopic data of mafic dykes from eastern Shandong Province, eastern China is reported herein. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb zircon analyses of two samples from the investigated mafic dykes yield consistent ages ranging from 121.9 Ma ± 0.47 Ma to 122.9 Ma ± 0.61 Ma. The mafic dykes are characterized by high (87Sr/86Sr) i ranging from 0.7087 to 0.7089, low εNd(t) values ranging from -16.9 to -17.8, 206Pb/204Pb = 17.15 to 17.17, 207Pb/204Pb = 15.45 to 15.47, and 208Pb/204Pb = 37.59 to 37.68. Results from the current study suggest that the mafic dykes are derived from partial melting of ancient lithospheric mantle that was variably hybridized by melts derived from foundered lower crustal eclogite. The mafic dykes may have been generated through subsequent insignificant crystal fractionation and very minor crustal contamination during magma ascent. Combined with previous studies, the current findings provide new evidence that the intense lithospheric thinning beneath the eastern Shandong Province of eastern China occurred at ~120 Ma, and that this condition was caused by the removal of the lower lithosphere (mantle and lower crust).  相似文献   

5.
采用镍锍火试金法结合ICP—MS分析了碱锅玄武岩和乌拉哈达高镁安山岩样品中的Ir.Ru、Rh、Pt和Pd的含量。原始地幔标准化后的PGE分布模式呈正斜率型,Pd/Ir值高于相应的地幔比值,表明铂族元素发生了分异,这是由于在部分熔融过程中,Ir存在于地幔矿物相尖晶石和合金中,而Pd赋存于硫化物中造成的,乌拉哈达高镁安山岩中的铂族元素还可能在结晶分异过程中受到先期结晶的矿物相和合金的影响。阜新火山岩Pt的负异常可能是包含Pt的金属合金残留在地幔中造成。  相似文献   

6.
Feng Guo  Weiming Fan  Ming Zhang 《Lithos》2004,78(3):291-305
K-Ar dating, major- and trace-element and Sr-Nd isotopic analyses were carried out for early Cretaceous (122-127 Ma) lamprophyres from the Sulu orogen in eastern China. The results show strong fractionation in rare-earth elements with (LREE) >100 times chondrite, but HREE <10 times chondrite, indicating the presence of residual garnet in the melting source. These rocks are characterized by significant LILE and LREE enrichment but Nb and Ta depletion with moderate Zr/Hf (39.8-50.8 with regard to 36 for primitive mantle) and Nb/Ta (17.8-23.0, compared with 17.5 for primitive mantle) fractionations, probably as a consequence of carbonate- and rutile-rich melt metasomatism induced by dehydration and/or melting of subducted continental slab at mantle depths. Age-correlated Sr-Nd isotope ratios show moderate ranges of 87Sr/86Sr(i) from 0.70787 to 0.70934 and −17.2 to −11.6 of εNd(t). The lamprophyres from the Sulu orogen were derived from decompression melting of such a metasomatized lithospheric mantle that was mainly composed of phlogophite garnet peridotites and experienced crystal fractionation of a mineral assemblage of olivine+clinopyroxene±plagioclase en route to the surface. Such geochemical and isotopic signatures are also prevalent in the contemporaneous basaltic lavas in the Dabie-Sulu belt, suggesting predominant enrichment processes by carbonate- and rutile-rich metasomatic assemblage beneath the continental collisional belt.  相似文献   

7.
Based on the Rb-Sr isochron dating results, this paper suggests that the alkaline intrusive belt at the east foot of the Taihang-Da Hinggan Mountains were formed between 135 and 122 Ma. And the alkaline intrusives in the north and south sections of this belt have entirely different Sr, Nd and Pb isotopic characteristics, i.e., all the rocks in the south section have positive εSr(t) and negative εNd(t) values and all those in the north have the opposite values. On the εSr(t) versus εNd(t) correlation diagram, the samples from the south are concentrated along the enriched mantle evolution trend lines and nearby, while those from the north fall along the depleted mantle trend lines and nearby. On the Pb isotope composition diagram, most of the samples from the south section fall on the mantle Pb evolution line and nearby, while those from the north lie between the Pb evolution lines of the mantle and the erogenic belt. The above-stated isotopic characteristics not only indicate that the source rocks of  相似文献   

8.
The Binchuan area of Yunnan is located in the western part of the Emeishan large igneous province in the western margin of the Yangtze Block.In the present study,the Wuguiqing profile in thickness of about 1440 m is mainly composed of high-Ti basalts,with minor picrites in the lower part and andesites,trachytes,and rhyolites in the upper part.The picrites have relatively higher platinum-group element(PGE) contents(ΣPGE=16.3-28.2 ppb),with high Cu/Zr and Pd/Zr ratios,and low S contents(5.03-16.9 ppm),indicating the parental magma is S-unsaturated and generated by high degree of partial melting of the Emeishan large igneous province(ELIP) mantle source.The slightly high Cu/Pd ratios(11 000-24 000) relative to that of the primitive mantle suggest that 0.007%sulfides have been retained in the mantle source.The PGE contents of the high-Ti basalts exhibit a wider range(ΣPGE=0.517-30.8 ppb).The samples in the middle and upper parts are depleted in PGE and haveεNd(260 Ma) ratios ranging from -2.8 to -2.2,suggesting that crustal contamination of the parental magma during ascent triggered sulfur saturation and segregation of about 0.446%-0.554% sulfides,and the sulfide segregation process may also provide the ore-forming material for the magmatic Cu-Ni-PGE sulfide deposits close to the studied basalts.The samples in this area show Pt-Pd type primitive mantle-normalized PGE patterns,and the Pd/Ir ratios are higher than that of the primitive mantle(Pd/Ir=1),indicating that the obvious differentiation between Ir-group platinum-group elements(IPGE) and Pd-group platinum-group elements(PPGE) are mainly controlled by olivine or chromites fractionation during magma evolution.The Pd/Pt ratios of most samples are higher than the average ratio of mantle(Pd/Pt=0.55),showing that the differentiation happened between Pt and Pd.The differentiation in picrites may be relevant to Pt hosted in discrete refractory Pt-alloy phase in the mantle;whereas the differentiation in the high-Ti basalts is probably associated with the fractionation of Fe-Pt alloys,coprecipitating with Ir-Ru-Os alloys.Some high-Ti basalt samples exhibit negative Ru anomalies,possibly due to removal of laurite collected by the early crystallized chromites.  相似文献   

9.
The Madi rare metal granite is a complex massif, which contains a variety of rare metals, such as Nb, Ta, Li, and Be. In this paper, the geochemical characteristics of the granite were obtained by multi-collector inductively coupled mass spectrometry (MC-ICP-MS). The precise crystalline age of the granite was obtained from monazite U-Pb dating, and the source of the granite was determined using Li-Nd isotopes. The Madi rare metal granite is a high-K (calc-alkaline), peraluminous, S-type granite. The U-Pb monazite age indicates that the crystalline age of the granite is 175.6 Ma, which is Early Jurassic. The granite is characterized by a relatively wide range of δ7Li values (+2.99‰ to +5.83‰) and high lithium concentrations (181 ppm to 1022 ppm). The lithium isotopic composition of the granite does not significantly correlate with the degree of magmatic differentiation. An insignificant amount of lithium isotope fractionation occurred during the granitic differentiation. The lithium isotopic composition of the granite significantly differs from that of the wall rock, but it is very similar to that of a primitive mantle peridotite xenolith (mean δ7Li value +3.5‰). The plot of Li concentration versus δ7Li indicates that the Li isotopic composition of the granite is similar to that of island arc lavas. Based on the above-described evidence, the granite was mainly derived from the crust, but it was contaminated by a deep granitic magma.  相似文献   

10.
A 2‐D crustal velocity model has been derived from a 1997 364 km north‐south wide‐angle seismic profile that passed from Ordovician volcanic and volcaniclastic rocks (Molong Volcanic Belt of the Macquarie Arc) in the north, across the Lachlan Transverse Zone into Ordovician turbidites and Early Devonian intrusive granitoids in the south. The Lachlan Transverse Zone is a proposed west‐northwest to east‐southeast structural feature in the Eastern Lachlan Orogen and is considered to be a possible early lithospheric feature controlling structural evolution in eastern Australia; its true nature, however, is still contentious. The velocity model highlights significant north to south lateral variations in subsurface crustal architecture in the upper and middle crust. In particular, a higher P‐wave velocity (6.24–6.32 km/s) layer identified as metamorphosed arc rocks (sensu lato) in the upper crust under the arc at 5–15 km depth is juxtaposed against Ordovician craton‐derived turbidites by an inferred south‐dipping fault that marks the southern boundary of the Lachlan Transverse Zone. Near‐surface P‐wave velocities in the Lachlan Transverse Zone are markedly less than those along other parts of the profile and some of these may be attributed to mid‐Miocene volcanic centres. In the middle and lower crust there are poorly defined velocity features that we infer to be related to the Lachlan Transverse Zone. The Moho depth increases from 37 km in the north to 47 km in the south, above an underlying upper mantle with a P‐wave velocity of 8.19 km/s. Comparison with velocity layers in the Proterozoic Broken Hill Block supports the inferred presence of Cambrian oceanic mafic volcanics (or an accreted mafic volcanic terrane) as substrate to this part of the Eastern Lachlan Orogen. Overall, the seismic data indicate significant differences in crustal architecture between the northern and southern parts of the profile. The crustal‐scale P‐wave velocity differences are attributed to the different early crustal evolution processes north and south of the Lachlan Transverse Zone.  相似文献   

11.
New U–Pb zircon ages and Sr–Nd isotopic data for Triassic igneous and metamorphic rocks from northern New Guinea help constrain models of the evolution of Australia's northern and eastern margin. These data provide further evidence for an Early to Late Triassic volcanic arc in northern New Guinea, interpreted to have been part of a continuous magmatic belt along the Gondwana margin, through South America, Antarctica, New Zealand, the New England Fold Belt, New Guinea and into southeast Asia. The Early to Late Triassic volcanic arc in northern New Guinea intrudes high‐grade metamorphic rocks probably resulting from Late Permian to Early Triassic (ca 260–240 Ma) orogenesis, as recorded in the New England Fold Belt. Late Triassic magmatism in New Guinea (ca 220 Ma) is related to coeval extension and rifting as a precursor to Jurassic breakup of the Gondwana margin. In general, mantle‐like Sr–Nd isotopic compositions of mafic Palaeozoic to Tertiary granitoids appear to rule out the presence of a North Australian‐type Proterozoic basement under the New Guinea Mobile Belt. Parts of northern New Guinea may have a continental or transitional basement whereas adjacent areas are underlain by oceanic crust. It is proposed that the post‐breakup margin comprised promontories of extended Proterozoic‐Palaeozoic continental crust separated by embayments of oceanic crust, analogous to Australia's North West Shelf. Inferred movement to the south of an accretionary prism through the Triassic is consistent with subduction to the south‐southwest beneath northeast Australia generating arc‐related magmatism in New Guinea and the New England Fold Belt.  相似文献   

12.
The Newer Volcanics Province of south‐eastern Australia is often overlooked, though it comprises a multitude of volcanic features worthy of exploration. The province contains > 416 eruption centres varying in nature from simple to complex, ranging from lava shields and scoria cones to some of the largest maar volcanoes in the world. Explorable caves and lava tubes showcase well‐preserved lava flow features, while the province is a fossickers dream, containing abundant mantle xenolith and megacryst collecting localities. As the most recent eruption was ~5000 bp at Mt. Gambier, the Newer Volcanics is considered an active province, and may yet provide Australia with more eruptions, adding to the glorious volcanic features of the wonderful landscape.  相似文献   

13.
Seventeen basalts from Ocean Drilling Program (ODP) Leg 183 to the Kerguelen Plateau (KP) were analyzed for the platinum-group elements (PGEs: Ir, Ru, Rh, Pt, and Pd), and 15 were analyzed for trace elements. Relative concentrations of the PGEs ranged from ∼0.1 (Ir, Ru) to ∼5 (Pt) times primitive mantle. These relatively high PGE abundances and fractionated patterns are not accounted for by the presence of sulfide minerals; there are only trace sulfides present in thin-section. Sulfur saturation models applied to the KP basalts suggest that the parental magmas may have never reached sulfide saturation, despite large degrees of partial melting (∼30%) and fractional crystallization (∼45%).First order approximations of the fractionation required to produce the KP basalts from an ∼30% partial melt of a spinel peridotite were determined using the PELE program. The model was adapted to better fit the physical and chemical observations from the KP basalts, and requires an initial crystal fractionation stage of at least 30% olivine plus Cr-spinel (49:1), followed by magma replenishment and fractional crystallization (RFC) that included clinopyroxene, plagioclase, and titanomagnetite (15:9:1). The low Pd values ([Pd/Pt]pm < 1.7) for these samples are not predicted by currently available Kd values. These Pd values are lowest in samples with relatively higher degrees of alteration as indicated by petrographic observations. Positive anomalies are a function of the behavior of the PGEs; they can be reproduced by Cr-spinel, and titanomagnetite crystallization, followed by titanomagnetite resorption during the final stages of crystallization. Our modeling shows that it is difficult to reproduce the PGE abundances by either depleted upper or even primitive mantle sources. Crustal contamination, while indicated at certain sites by the isotopic compositions of the basalts, appears to have had a minimal affect on the PGEs. The PGE abundances measured in the Kerguelen Plateau basalts are best modeled by melting a primitive mantle source to which was added up to 1% of outer core material, followed by fractional crystallization of the melt produced. This reproduces both the abundances and patterns of the PGEs in the Kerguelen Plateau basalts. An alternative model for outer core PGE abundances requires only 0.3% of outer core material to be mixed into the primitive mantle source. While our results are clearly model dependent, they indicate that an outer core component may be present in the Kerguelen plume source.  相似文献   

14.
We present new He-Ne data for geothermal fluids and He-Ne-Ar data for basalts from throughout the Icelandic neovolcanic zones and older parts of the Icelandic crust. Geothermal fluids, subglacial glasses, and mafic phenocrysts are characterized by a wide range in helium isotope ratios (3He/4He) encompassing typical MORB-like ratios through values as high as 36.8 RA (where RA = air 3He/4He). Although neon in geothermal fluids is dominated by an atmospheric component, samples from the northwest peninsula show a small excess of nucleogenic 21Ne, likely produced in-situ and released to circulating fluids. In contrast, geothermal fluids from the neovolcanic zones show evidence of a contribution of mantle-derived neon, as indicated by 20Ne enrichments up to 3% compared to air. The neon isotope composition of subglacial glasses reveals that mantle neon is derived from both depleted MORB-mantle and a primordial, ‘solar’ mantle component. However, binary mixing between these two endmembers can account for the He-Ne isotope characteristics of the basalts only if the 3He/22Ne ratio of the primordial mantle endmember is lower than in the MORB component. Indeed, the helium to neon elemental ratios (4He/21Ne∗ and 3He/22Nes where 21Ne∗ = nucleogenic 21Ne and 22Nes = ‘solar’-derived 22Ne) of the majority of Icelandic subglacial glasses are lower than theoretical values for Earth’s mantle, as observed previously for other OIB samples. Helium may be depleted relative to neon in high-3He/4He ratio parental melts due to either more compatible behavior during low-degree partial melting or more extensive diffusive loss relative to the heavier noble gases. However, Icelandic glasses show higher 4He/40Ar∗ (40Ar∗ = radiogenic Ar) values for a given 4He/21Ne∗ value compared to the majority of other OIB samples: this observation is consistent with extensive open-system equilibrium degassing, likely promoted by lower confining pressures during subglacial eruptions of Icelandic lavas. Taken together, the He-Ne-Ar systematics of Icelandic subglacial glasses are imprinted with the overlapping effects of helium depletion in the high-3He/4He ratio parental melt, binary mixing of two distinct mantle components, degassing fractionation and interaction with atmospheric noble gases. However, it is still possible to discern differences in the noble gas characteristics of the Icelandic mantle source beneath the neovolcanic zones, with MORB-like He-Ne isotope features prevalent in the Northern Rift Zone and a sharp transition to more primitive ‘solar-like’ characteristics in central and southern Iceland.  相似文献   

15.
 Agali–Coimbatore dolerite dykes constitute an important Proterozoic magmatic event that affected the south Indian shield. Rb-Sr whole rock isotope data yield an “errorchron” of 2369±400 Ma (2σ error) which is within error of the reported 2030±65 Ma K-Ar age. The dyke magmas were evolved Fe-rich tholeiitic melts produced by fractionation of clinopyroxene, orthopyroxene and olivine in the initial stages. Plagioclase became a fractionation phase during the latter stages of crystallization. The dykes characteristically have high 87Sr/86Sri (0.703–0.706) and are enriched in large-ion lithophile and light rare earth elements relative to primordial mantle values and show negative Nb anomalies. These compositional characteristics are interpreted as source mantle characteristics whereas some crustal effects are visible in some samples with high initial 87Sr/86Sr. Peridotite with minor hydrous metasomatic phases like amphibole (and phlogopite) within the shallow lithospheric mantle could be a potential source material for the dykes. However, at this stage we cannot convincingly differentiate whether the source of the parent magmas is solely lithospheric or a product of asthenosphere-lithosphere mixing. The δ18O values of the dykes range from +5.2 to +7.2 per mil (vs standard mean oceanic water). Initial Nd isotope values at the time of dyke intrusion (ɛNd at t=2.0 Ga) range from −2.3 to −4.8. Whole rocks define a correlation on an Sm-Nd isochron plot with a slope equivalent to an age of 3.15±0.53 Ga (2σ error); Sm-Nd crustal residence ages average at 2.87 Ga. The isochron age does not appear to be the result of systematic mixing with an older crustal component. These results together with trace element geochemistry suggest that the south Indian mantle lithosphere developed by addition of enriched melts/fluids at about 3.0 Ga synchronously with major crustal gene- ration in the south Indian shield. Received 20 June 1994/Accepted: 17 May 1995  相似文献   

16.
Petrological, geochemical and radiogenic isotopic data on ophiolitic‐type rocks from the Marlborough terrane, the largest (~700 km2) ultramafic‐mafic rock association in eastern Australia, argue strongly for a sea‐floor spreading centre origin. Chromium spinel from partially serpentinised mantle harzburgite record average Cr/(Cr + Al) = 0.4 with associated mafic rocks displaying depleted MORB‐like trace‐element characteristics. A Sm/Nd isochron defined by whole‐rock mafic samples yields a crystallisation age of 562 ± 22 Ma (2σ). These rocks are thus amongst the oldest rocks so far identified in the New England Fold Belt and suggest the presence of a late Neoproterozoic ocean basin to the east of the Tasman Line. The next oldest ultramafic rock association dated from the New England Fold Belt is ca530 Ma and is interpreted as backarc in origin. These data suggest that the New England Fold Belt may have developed on oceanic crust, following an oceanward migration of the subduction zone at ca540 Ma as recorded by deformation and metamorphism in the Anakie Inlier. Fragments of late Neoproterozoic oceanic lithosphere were accreted during progressive cratonisation of the east Australian margin.  相似文献   

17.
The Parnell Quartz Monzonite in the Pilbara Block of Western Australia is a Proterozoic (1731 ± 14 Ma) pluton characterized by high modal K‐feldspar and a greater abundance of hornblende relative to biotite, as is typical of Phanerozoic monzonitic rocks in eastern Australia. The only geochemical features reflecting its setting in an Archaean terrain are high Na2O, Ni and Cr. The pluton is zoned, with an increase in K‐feldspar, quartz and biotite and a decrease in plagioclase and hornblende from margin to core. Chemically, this zoning is reflected by systematic variation of CaO, K2O, Na2O, Sr and Rb, but ferromagnesian elements have irregular trends, implying preferential extraction of feldspars relative to mafic minerals during differentiation of the magma. The unusual geochemical trends are explained by a model involving ‘in situ’ feldspar fractionation of a K‐rich residual liquid from a mafic crystalline mush.

A parent magma similar to the average rock composition of the pluton is deduced because high ferromagnesian trace element abundances preclude extensive fractionation of mafic minerals. Geochemical and isotopic constraints suggest that the ultimate source was chemically similar to a shoshonitic basaltic andesite, that must have been emplaced beneath the eastern margin of the Pilbara Block in the Early Proterozoic. Subsequent partial melting of this postulated underplated source at ~ 1700 Ma to produce the Parnell Quartz Monzonite was probably associated with tectonism in the Gregory Range Complex.  相似文献   

18.
Australia's Eastern Highlands are a conspicuous manifestation of a tectonic regime that has been previously shown to go back at least 65 Ma. This review of the Mesozoic stratigraphy of eastern Australia gives evidence of a very different regime before 95 Ma, related to the presence of a plate boundary close to the present east coast of the continent.

During the prior regime, cratonic sedimentation in eastern Australia was dominated by labile sediment from an andesitic orogen coincident with the coast north of Brisbane during the Cretaceous, and further offshore in the Jurassic. Whereas the plate boundary north of Brisbane appears to have been simply convergent, that south to Bass Strait may have experienced prolonged oblique‐slip, manifested in the Jurassic by alkaline volcanism within the SE Highlands terrain.

Following a Cenomanian (95–90 Ma) phase of transition, during which the eastern Australian plate boundary may have resembled that margining western North America at present, the plate boundary migrated away from mainland Australia, as is evidenced by the subsequent dominance of quartzose sedimentation on the craton, and the fission‐track and palaeomagnetic evidence of rapidly falling geotherms in the Late Cretaceous. The Eastern Highlands were initiated around 90 Ma ago, and the crestline subsequently migrated west from an initial location at the present coastline.

The geography and history of the Eastern Highlands are inconsistent with concepts of continental margin development based on analogues outside the Pacific realm. The Highlands are an intrinsic element of a continent formerly fronting the Pacific Ocean, but now abutting a back‐arc basin.  相似文献   

19.
The North China Craton (NCC), which is composed of the eastern NCC and the western NCC sutured by the Palaeoproterozoic Trans‐North China Orogen, is one of the oldest continental nuclei in the world and the largest cratonic block in China. The eastern NCC is widely known for its significant lithospheric thinning and destruction during the Late Mesozoic. Models on the destruction of the eastern NCC can be principally grouped into two: (1) thermal/mechanical and/or chemical erosion, and (2) lower crustal and (or) lithospheric delamination. The erosion model suggests that the NCC lithospheric thinning resulted from chemical and/or mechanical interactions of lithospheric mantle with melts or hydrous fluids derived from the asthenosphere, whereas the delamination model proposes lithospheric destruction through foundering of eclogitic lower crust together with lithospheric mantle into the underlying convecting mantle. However, those models lack seismic evidence to explain the destruction process. Here, we analyse the crustal structure and upper mantle discontinuity by employing the H–k stacking technique of receiver function as well as the depth domain receiver function. Our results indicate deep mantle upwelling and lower crustal delamination beneath the eastern NCC, and suggest that either or both of these processes contributed to the unique lithospheric thinning and destruction of the eastern NCC. © 2013 The Authors. Geological Journal published by John Wiley & Sons, Ltd.  相似文献   

20.
赵勇伟  樊祺诚 《岩石学报》2012,28(4):1119-1129
哈拉哈河-绰尔河第四纪火山地处重力梯度带上的大兴安岭中段。火山岩主要类型为钠质系列碱性橄榄玄武岩。火山岩大离子亲石元素和轻稀土元素相对富集,轻重稀土分异程度弱((La/Yb)N=8~12),稀土元素和微量元素配分曲线与大同碱性玄武岩平行,总体上表现出与OIB相似的特征。在Sr-Nd-Pb同位素组成特征上表现出亏损地幔的特点(εNd=4.8~5.9),接近MORB的源区范围。哈拉哈河-绰尔河第四纪火山岩岩浆由轻稀土富集的石榴子石二辉橄榄岩低程度(8%~15%)部分熔融产生,火山岩高MgO(>9%)、Ni(>200×10-6)和Mg#(60~70),表明它们是较原始的岩浆,岩浆上升过程经历了橄榄石和辉石为主的弱分离结晶作用,没有受到地壳物质明显混染。区域伸展作用引发软流圈地幔上涌是哈拉哈河-绰尔河第四纪火山的岩浆成因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号