首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
雾霾天气个例气象条件对比分析   总被引:3,自引:0,他引:3  
应用常规观测资料、NCEP 1°×1°再分析资料和L波段探空资料从环流形势、扩散条件和边界层特征3个方面对2013年两次雾、霾天气个例进行对比分析,结果表明:500hPa西北气流冷平流、地面弱风场、垂直速度呈弱上升-下沉的垂直分层特点和逆温是两次雾、霾天气出现和维持的共同特征。地面西北风、850hPa弱冷平流、近地层浅薄的接地逆温(100~200m)和湿层与霾天气对应,地面偏东风、850hPa暖平流、925hPa以下深厚的悬浮逆温(400m)和湿层与雾天气对应,霾过程较雾过程逆温强度强,上升运动高度高。消散时雾较霾下沉运动中心高度低,强度弱;霾消散时接地逆温特征变化不大,雾消散时悬浮逆温有底部抬升和大气稳定层结向中性层结转变的变化特征;但均有下沉气流接地、垂直风切变较强和高层低露点干空气下传到地面的特点。  相似文献   

2.
利用常规高空和地面气象观测资料、湘潭市空气质量监测数据并结合HYSPLIT4后向轨迹模式对2020年10月28—31日污染天气特征及成因进行分析。结果表明此次污染过程分为3个阶段:第1阶段为北方偏二次型传输阶段,此阶段北风风力较大,在强北风的推动下华北地区污染物(PM2.5)向南传输影响湘潭;第2阶段为大气高湿静稳条件下本地源(工业源、移动源、扬尘源、生物质燃烧源)排放累积阶段,此阶段地面转均压场,整层大气湿度接近饱和并出现弱降水,气态污染物在污染过程中发生二次转化,颗粒物吸湿增长,且近地面出现逆温,不利于污染物的垂直扩散,导致边界层内的污染物不断累积,污染加重,推高了湘潭的PM2.5浓度峰值;第3阶段为污染物缓慢清除阶段,随着新一波冷空气影响湘潭地区,水平扩散条件逐步改善,且上游空气质量优良,本地污染物得到有利扩散,此次污染过程结束。  相似文献   

3.
应用常规观测资料、污染物浓度资料和NCEP 1°×1°再分析资料从环流形势、边界层特征和扩散条件等方面对2013年和2016年两次持续性霾重污染过程进行对比分析。结果表明:①2013年过程和2016年过程在500hPa高空上分别为阻塞环流型和纬向环流型,关中地区受偏西气流影响、地面气压场较弱、大气层结均比较稳定;②2013年过程西安贴地逆温层顶高度低、相对湿度大、气温低、不利于大气垂直湍流交换,污染物容易堆积,这也是2013年过程比2016年过程重污染持续时间长、污染浓度高的原因之一;③两次过程西安平均风速均小于2m/s,具有显著的低风速特征,且东北风为其主导风向。持续东北风引起上游污染传输和低风速导致的本地污染累积是造成2013年过程污染浓度更高的重要因素;④2013年过程结束是受强冷空气影响,来自高空的干洁大气下沉到地面,置换了边界层的污染空气,使空气质量得到根本改善;而2016年过程是受高原槽东移影响,雨雪天气的沉降作用使得霾消散。  相似文献   

4.
利用气象、环境、卫星遥感火点监测等资料,从环流形势、气象要素、污染物和污染传输特征等方面对哈尔滨2018年4月4日夜间至5日白天罕见重度霾天气成因进行分析。结果表明,此次重度霾天气首要污染物为PM2.5,污染最重时PM2.5浓度高达507μg?m-3,秸秆焚烧是污染物的主要来源,既有本地源又有外地源,利用HYSPLIT模型模拟出这次重度霾天气污染传输特征。重度霾时段,近地面风速小,为1.5m·s-1左右,最小为0.1m·s-1,风向呈弱气旋性辐合、湿度增大有利于形成霾。低层存在较强的贴地逆温,逆温层顶高度约为100m,逆温强度约为1.5℃/100m,不利于污染物在垂直方向上扩散。地面均压场和高空弱高压脊、暖锋锋区和暖平流为这次重度霾天气提供了有利的大气环流背景条件。  相似文献   

5.
利用2016年12月14日—2017年1月3日安徽寿县国家气候观象台大气边界层垂直探测资料、地面自动气象站资料、污染物浓度资料及天气图资料,对该地区两次重污染的积累和清除过程进行了分析,得到以下结论:1)两次重污染过程均起源于地面弱风(风速3 m/s)、高湿(相对湿度80%)等不利气象条件,导致污染物局地积累。再通过大风、降水、大雾过程等有利的扩散、沉降条件,对污染物进行清除。2)天气形势在重污染积累过程中起到了重要作用。主要特征表现为,高低空层结稳定,且低空处于湿区内部,多受暖舌控制或伴有暖平流。第一次重污染清除过程中,控制寿县地区的天气系统逐渐转变为低压,风向转为偏东风,并伴有降水天气。第二次污染物清除过程,则是大雾湿沉降和逆温层消除共同导致。3)重污染积累过程中边界层高度均偏低,最大高度也仅为500 m,对污染物垂直扩散范围有所限制,进而影响局地污染物浓度。重污染过程逆温现象多发,近地层逆温主要发生在夜间和清晨,逆温强度最强可达3℃/(100 m),污染物在逆温层低层和底部之下堆积。  相似文献   

6.
利用长株潭地区地面空气质量监测资料、常规地面气象资料及NCEP再分析资料和MODIS火点监测资料,结合HYSPLIT4后向轨迹模式,对2014年10月1718日长株潭地区一次严重霾天气过程的空气污染特征和成因进行综合分析。研究表明,长株潭地区此次严重霾天气污染事件的主要污染物为PM2.5,安徽南部和江西西北部地区秸秆焚烧产生的颗粒物,经高空偏东北气流引导输送到长株潭地区,是这次大范围烟霾天气的主要来源。长株潭地区西部高空槽区宽广,槽前西南气流较为强盛,地面受均压场控制,水平风速弱,为严重霾污染天气的维持提供了有利的环流条件。中低层逆温和大气底层湿度的增加,使污染物粒子不断累积;近地面连续静(小)风和风向的频繁转变,不利于污染物粒子的水平扩散;中下层弱的下沉气流、较低的混合层高度有利于污染物的垂直累积,为此次重度霾污染天气的发展、加强提供了有利的气象条件。  相似文献   

7.
利用2017-2019年空气质量监测数据,采用HYSPLIT后向轨迹模式、聚类分析、潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),对运城市秋冬季大气PM2.5传输路径、对应重污染的天气形势和潜在源区进行分析。结果表明:(1)运城近地层盛行偏东风时污染频率高,弱的偏东风和西南风时,污染物浓度较大。秋冬季PM2.5后向轨迹西北方向最多达53.53%,偏东方向最少为11.25%,偏西方向和西南方向介于两者之间,分别为16.61%和12.06%。(2)不同轨迹对应天气形势不同,西北和偏西轨迹下,500 hPa高度场上为两槽一脊或偏西气流,700~850 hPa受脊前西北气流影响,地面为高压前底部型或均压场型;西南轨迹下,500 hPa高度场上为偏西气流,700~850 hPa运城处于槽前西南气流,地面气压场为高压前底部(底部)或均压场。(3)运城PM2.5潜在源区主要位于陕西南部、四川东部和新疆东南、甘肃的东南部等地区,说明影响运城秋冬季PM2.5的浓度除了来自汾渭平原西南部的颗粒物区域输送,来自西北方向新疆、甘肃的远距离颗粒物传输也是重要来源。  相似文献   

8.
武威  顾佳佳  鲍玉辉 《湖北气象》2020,39(3):259-268
利用常规气象资料、颗粒物观测数据、NCEP 1°×1°分析资料、GDAS 1°×1°数据、激光雷达资料等,对2018年11月下旬河南漯河一次连续重污染天气过程成因与污染物传输特征进行了分析。结果表明:(1)本次污染与天气形势关系密切,前期受静稳纬向环流和地面均压场影响,有利污染积累;中期高空槽与地面变性高压引导弱冷空气东移南下,产生滞留效应,污染物迅速增加;后期因低层东路冷空气扩散与静稳形势恢复,污染继续积累增长,形成连续性重污染。(2)PM_(2.5)造成重污染时因辐射逆温持续稳定,导致污染加剧;PM_(10)重污染时因逆温层减弱消失,有利污染物输送沉降;混合重污染时因近地层湍流混合加强形成逆温,污染持续发展。(3)本次重污染天气主要有5条传输路径,西南路径和偏东路径污染比例较高,其轨迹短,高度在900 hPa以下,对PM_(2.5)近距离输送作用明显;西北路径和偏北路轨迹长,起始高度在700—600 hPa之间,高空中远距离输送以PM_(10)为主。(4)受静稳条件和近地层高湿影响,高消光带维持在600 m以下,较低边界层抑制垂直扩散,导致污染细颗粒物与沙尘积累并长时间共存。(5)本次重污染是本地污染累积和高空外源污染输送共同影响。除漯河本地污染贡献较高外,高潜在源区主要集中河南西南部、东北部以及与山东交界处,这也是本次持续性污染发展的重要原因。(6)重污染时地面偏北风占主导,其他方向风速较小,有利形成污染辐合以及污染物二次转化并加剧污染。  相似文献   

9.
武威  顾佳佳  鲍玉辉 《暴雨灾害》2020,37(3):259-268

利用常规气象资料、颗粒物观测数据、NCEP 1°×1°分析资料、GDAS 1°×1°数据、激光雷达资料等,对2018年11月下旬河南漯河一次连续重污染天气过程成因与污染物传输特征进行了分析。结果表明:(1)本次污染与天气形势关系密切,前期受静稳纬向环流和地面均压场影响,有利污染积累;中期高空槽与地面变性高压引导弱冷空气东移南下,产生滞留效应,污染物迅速增加;后期因低层东路冷空气扩散与静稳形势恢复,污染继续积累增长,形成连续性重污染。(2)PM2.5造成重污染时因辐射逆温持续稳定,导致污染加剧;PM10重污染时因逆温层减弱消失,有利污染物输送沉降;混合重污染时因近地层湍流混合加强形成逆温,污染持续发展。(3)本次重污染天气主要有5条传输路径,西南路径和偏东路径污染比例较高,其轨迹短,高度在900 hPa以下,对PM2.5近距离输送作用明显;西北路径和偏北路轨迹长,起始高度在700-600 hPa之间,高空中远距离输送以PM10为主。(4)受静稳条件和近地层高湿影响,高消光带维持在600 m以下,较低边界层抑制垂直扩散,导致污染细颗粒物与沙尘积累并长时间共存。(5)本次重污染是本地污染累积和高空外源污染输送共同影响。除漯河本地污染贡献较高外,高潜在源区主要集中河南西南部、东北部以及与山东交界处,这也是本次持续性污染发展的重要原因。(6)重污染时地面偏北风占主导,其他方向风速较小,有利形成污染辐合以及污染物二次转化并加剧污染。

  相似文献   

10.
利用常规地面观测资料及气象探空资料,分析了2016年11月3—5日关中地区霾天气过程,结果表明:高空500hPa锋区偏北,中纬度无明显冷空气活动,850hPa暖空气控制,地面弱气压场是导致关中地区霾出现的主要天气背景;近地层为正涡度平流,而925~850hPa为负涡度平流是大范围霾持续的动力结构;霾出现前有暖干空气向关中地区输送,而逆温层持续存在,是霾天气持续的重要原因;气压场稳定,风速偏小,大气混合层高度持续低于650m,致使大气水平和垂直交换能力弱,引发了此次霾天气。霾出现前后气象要素变化特征明显,可为霾的预报提供重要参考。  相似文献   

11.
利用空气质量历史监测数据、地面气象要素及激光雷达探测资料,综合分析了2019年1月10—15日长春市一次霾污染过程,探讨了污染过程中污染物和气象要素的变化特征与影响机制.结果表明:此次霾污染过程中12—13日污染最重,PM2.5和PM10质量浓度均超过150μg·m-3,气溶胶消光最强,超过70%的PM2.5/PM10...  相似文献   

12.
2013年1月持续性霾天气中影响污染程度的气象条件分析   总被引:3,自引:3,他引:3  
利用南京本站气象观测记录、环保局监测数据以及NCEP/NCAR再分析资料,分析2013年1月持续性污染天气过程的大气环流背景,并结合南京地区探空资料、风廓线雷达资料以及激光雷达资料,分析这次持续性污染过程中空气质量属良好、轻度污染、中度污染、重度污染典型个例的大气垂直特征和边界层内气象条件的差异。得到如下结论:2013年1月份北方冷空气活动较弱,南京地区大气层结稳定,近地层风速小,污染物气象扩散条件差。加之近地层以弱偏东风为主,水汽较多,有利于污染物颗粒直径增大。大气垂直结构以及边界层内水平风速均对大气污染程度起到一定影响。AQI与逆温层高度存在显著负相关关系;大气污染时,1000 m以下出现逆温结构,且逆温层越低、越厚,污染程度越大;重度污染时,近地层出现贴地逆温层,厚度为700m左右。逆温层高度下降,PM10颗粒物高浓度区高度也明显下降,近地层污染物浓度对垂直方向上污染物浓度正响应的高度降低。在空气质量良好时, 150~1500m存在风速大值区,且风无空,湍流作用明显,有利于污染物和周围的洁净空气相混合而得到稀释,加速污染物的垂直扩散进程。当中度污染日和典型重度污染日时,150~1500 m之间并不存在大风速区。此外, PM10的300μg·m-3高浓度垂直高度延伸至300 m附近时,近地层PM2.5明显上升至100μg·m-3以上,高浓度区数值越大,近地层PM2.5越大。  相似文献   

13.
2018年11月23日至12月3日,华北平原出现了一次较长时间的雾霾天气。利用常规气象观测资料、NCEP/NCAR再分析资料和污染物浓度资料,以河南省濮阳市为例,对此过程的大尺度环流背景场、边界层内气象要素特征、动力因素和污染状况等进行综合分析,分3个阶段探讨此过程形成的原因和维持机制。结果表明:(1)雾霾发生在高空纬向环流背景下,华北处于高压脊前西北气流中,频繁受下滑短波槽影响。(2)冷空气活动偏弱,中低层维持暖脊控制,使边界层内出现较强逆温,制约低层水汽和污染物的垂直扩散。(3)地面处于均压场或锋后弱冷高压控制,弱风条件不利于污染物的水平扩散。(4)前期大雾形成时,强逆温层在900 hPa以下的贴地高度,能见度很低,污染严重;中期霾严重时,较强逆温层上移至900—850 hPa,并出现双层逆温,能见度虽较好,污染仍然严重;后期的雾霾主要由高湿度环境中污染物聚集吸湿增长造成。(5)中低空弱的下沉气流及近地面辐合风场是雾霾天气得以发展维持的动力因子。  相似文献   

14.
哈尔滨冬季重污染日气象特征   总被引:4,自引:0,他引:4       下载免费PDF全文
以2000-2009年中国环境保护部公布的空气质量日报中空气污染指数大于200的日期作为重污染日,从气象因素方面分析哈尔滨冬季重污染日发生的原因。结果表明:哈尔滨冬季重污染日20时地面风速为1级或静风;85 %的重污染日在850 hPa层以下有逆温现象,最大逆温强度出现在地面与925 hPa之间,为0.73 ℃/100 m;95 %的重污染日在850 hPa层以下有下沉运动。重污染的典型地面形势包括高压边缘型、高压中心型和低压边缘型三类。高压边缘型和高压中心型表现为大气对污染物的水平、垂直输送均为不利,而低压边缘型表现为有利于污染物的垂直输送。天气形势特征的归类,可为开展空气污染预报提供参考。  相似文献   

15.
利用地面图、高空天气图(850 hPa、500 hPa)以及气象要素对2006—2008年秋季(9—11月)广州市4次典型的大气污染过程进行研究,分析其大气污染过程的特征及其相对应的天气系统、与气象要素之间的关系。结果表明,广州市秋季重大气污染多数发生在:(1)广州受冷空气影响或回暖期,持续小风或出现静风会导致污染物大量积聚,且多出现能见度明显下降;(2)由于偏北风的输送作用,处于下风向的万顷沙站较易出现重大气污染过程,表现出明显的区域性污染输送特征;(3)冷高压脊、回流天气形势、台风外围下沉气流影响期间;(4)近地面层出现逆温层或等温层。  相似文献   

16.
利用中国国家地面站逐小时气象观测资料、中国环境监测总站空气质量逐时监测数据、ECMWF0.125°(纬度)×0.125°(经度)再分析资料及青岛市八关山自动站常规要素逐小时数据,对2018年1月15~22日青岛市一次重度污染雾—霾天气过程的特征及其影响因子进行分析。结果表明:PM10为首要污染物,污染过程中青岛市48 h输入污染源前期主要为北方干冷气团与江淮湿空气在山东半岛北部汇聚堆积,后期则主要包括山东省内局地大气污染物排放。雾—霾期间,500 hPa中高纬地区受乌拉尔山阻塞高压和中西伯利亚冷低压控制,宽广的东亚横槽稳定维持,青岛上空以平直西风气流为主,地面等压线稀疏,风速小;随着横槽转竖,纬向型环流转为经向型,冷空气大举南下,风速急增,降雪发生,雾—霾迅速消散。在静稳的大气环流背景下,当近地逆温层内弱风或持续吹陆风,对流层低层上升和下沉运动较弱,水汽条件较好时,有利于雾—霾维持。综合分析雾—霾各阶段PM2.5浓度和相对湿度与能见度间的关系发现,霾阶段两因子影响力相当;雾阶段能见度主要受相对湿度的影响;静稳条件下PM2.5浓度累积增加是影响雾、霾混合阶段能见度的主要因子。  相似文献   

17.
利用常规气象数据、颗粒物观测数据、全球大气同化系统GDAS数据、NCEP再分析资料、ERA5再分析资料等,结合数理统计、轨迹聚类、天气学分析等方法对2015—2019年秋冬季漯河重污染特征、污染输送及潜在源区分布进行分析,并通过一次典型重污染个例进行证明。结果表明:近5 a秋冬季漯河重污染过程发生频次高、持续时间长、污染程度重,AQI、PM_(2.5)变化趋势不明显,PM_(10)浓度下降趋势明显,PM_(2.5)/PM_(10)比值逐年递增,以PM_(2.5)重污染为主。秋冬季漯河主要有6种气团输送路径,东北路、偏东路轨迹短、移速慢且高度低,近距离近地层污染输送特征明显,为重要重污染通道;西北路远距离下沉沉降输送和西南轨迹近距离输送下的AQI均值及重污染概率较低,对漯河重污染贡献不高。漯河潜在源区来源复杂、范围广、强度大,其污染潜在源主要分布在河南中东部、尤其是东北部,对应东北路径、偏东路径等气团轨迹。重污染时地面偏北风是其主导风,尤其是2—4 m·s^(-1)之间偏北到东北风最为显著。两次跨区域输送表明,北路或东北路近地层输送是AQI峰值维持发展的重要原因。  相似文献   

18.
王继康  花丛  桂海林  张恒德 《气象》2017,43(7):804-812
利用常规气象数据和空气质量模式CAMx对2016年1月15—19日一次冷空气影响下郑州、武汉、南京的大气污染物传输过程进行了分析。观测发现,本次过程中武汉和南京在地面锋线到达后出现明显的PM2.5浓度的快速增长。通过分析发现,两地在1000~950 hPa高度层上偏北风的侵入带来上风向的大气污染物,同时在垂直方向上锋区内的稳定性层结抑制了大气污染物的扩散,两种作用共同导致污染物快速增长。在冷空气主体影响下,尤其是950~900 hPa高度层上弱风区消失后,污染物得到清除。大气污染物的传输作用主要发生在1000~950 hPa高度上。模式PM2.5来源示踪模拟结果表明,武汉(17日夜间至18日)和南京(17日夜间)在本次污染物快速增长过程中区域污染物输入的贡献在51%和58%左右。由于模式对PM2.5传输过程的低估,区域输送贡献率仍存在不确定性。但是,与1月15—19日平均相比, PM2.5的本地贡献明显减少,上风区域贡献明显增加。  相似文献   

19.
利用成都地区环境空气质量指数资料、常规气象观测资料和ECMWF第五代全球再分析资料(ERA5),对2017年成都市冬季一次持续重雾霾过程的成因进行分析,并利用HYSPLIT后向轨迹模式分析此次污染物的来源。结果表明:此次重雾霾过程的成因是高低空相配合的不利环流形势,风速较低,垂直切变小,层结稳定,对流层中低层存在干暖空气构成逆温层,抑制了污染物的扩散。根据模式的结果,此次污染气团主要来源于较远距离的西北地区、四川盆地西南地区及盆地内部流转的气团。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号