首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was made of the water chemistry, tissue nutrients and surface phosphatase activities of the 2-cm apices of three mosses in four upland streams in northern England, UK. This was part of a project to optimize methods for assessing nutrient fractions in environments with highly variable water chemistry. Aqueous N and P fractions showed the greatest variability followed by moss phosphatase activities, with nutrient composition of the shoot apices the least variable. There was no consistent pattern as to which aqueous N or P fraction was the most variable. The ratio between total inorganic N and total filtrable P ranged over three orders of magnitude in some streams. The interrelations between tissue N and P concentrations, tissue N:P ratio, phosphatase activities and aqueous variables showed:

(1) Significant +ve relationship between tissue N and aqueous NO3–N in some populations, but not between tissue P and aqueous P concentration;

(2) Significant +ve relationships between phosphatase activities and aqueous organic N, but none with aqueous organic P;

(3) Significant +ve relationships between phosphodiesterase:phosphomonoesterase activities and aqueous organic N;

(4) Significant −ve relationships between phosphatase activities and tissue P concentration;

(5) Significant +ve relationships between phosphatase activities and tissue N:P.

Both types of biological measurement are valuable for monitoring ambient nutrients in upland streams. Neither is clearly better than the other, so both should be included in surveys.  相似文献   


2.
The relationship between maximum concentration and longitudinal distance, independent of time, can determine the size of the area to be contaminated, under well-defined conditions of injection and flow in a saturated medium. The envelope curve for maximal concentrations is easily obtained as a function of the axial distance in non-dimensional variables in the cases of one- and two-dimensional uniform flow, as well as in those of radially symmetric converging or diverging flow.

Graphs providing relations between dimensionless variables (as described in the text) are given for the following cases:

1. (1) uniform flow with instantaneous discharge of a pollutant; measurement downstream of the injection point, no transverse dispersion;

2. (2) uniform flow with continuous injection of a pollutant; measurement downstream of the injection point, influence of transverse dispersion included;

3. (3) convergent radial flow towards a well; pollution caused by an instantaneous pointsource at some distance; and

4. (4) divergent radial flow from an injection point; pollution caused by instantaneous injection of a pollutant.

Résumé

L'expression de la concentration maximale en fonction de la distance et indépendamment du temps permet de déterminer l'extension d'une zone susceptible d'être contaminée lors de conditions bien définies d'injection d'un produit dangereux et d'écoulement en milieu saturé. La courbe enveloppe des maxima de concentration en fonction de la distance axiale est facilement exprimable sous forme adimensionnelle (abaques) dans le cas d'écoulements uniformes mono- et bi-dimensionnels (réponse dans l'axe), comme dans ceux d'écoulements purement cylindriques convergent ou divergent.  相似文献   


3.
Hans Jürgen Hahn   《Limnologica》2005,35(4):248-261
(1) A new method of sampling stygofauna is presented, along with some data derived from applications in the field. Numerous bores were sampled for fauna, water and bacteria, down to a depth of 7.50 m. Two or 3 unbaited traps were fixed to a central pole within the bore. The traps consist of an inert plastic chamber with holes in the upper parts and gaskets near the bottom and near the lid of each trap. The content of the traps was emptied monthly using a pump.

(2) While the taxonomic composition of the trap samples seemed to be comparable to the surrounding groundwater, estimation of abundances in the traps might differ, with a potential over-estimation in the traps, in particular in sparsely populated aquifers. Detailed comparative studies on the performance of the method are, as yet, lacking.

(3) Trap data of invertebrate communities reflect hydraulic changes, and highest abundances and taxa richness were found near the water table. They decreased rapidly with depth, implying that small-scale stratified sampling is possible.

(4) The technique is cheap, reliable, simple and rapid to use, and allows simultaneous sampling of hydro-chemical, faunal and microbial samples. The method seems to be suitable for a wide range of sub-surface waters, where the water table is shallower than 8 m.

Keywords: Stygofauna; Groundwater; Phreatic traps; Sampling method; Hydrological exchange  相似文献   


4.
The formation and development of a salt plume (salinity up to 800 mg Cl 1−1) in the inner part of the Coastal Plain aquifer of Israel is analyzed. Massive groundwater exploitation during the 1950s caused a large drop in the water level and formation of a hydrologic depression in the Be'er Toviyya-Kefar Warburg area. The depression reached a maximal depth during the late 1960s; thereafter a reduction in the rate of pumpage led to restoration of water levels and shallowing of the depression, until its complete disappearance towards the end of the 1980s. A spot of high salinity first appeared in 1956, following a deep drawdown in the water levels. This saline plume has been continuously expanding with increasing salinity concentrations (200–800 mg Cl 1−1) in its center. The average rate of radial expansion was about 50 m year−1. The expansion and salinization did not cease as the depression disappeared. Rather, equalization of water levels in wells situated within the plume area with those of situated along its margins resulted in the salinization of the latter within a period of 1 year.

Mass balances for water and chloride contents were made for the period 1967–1990. Taking into consideration the storage change, pumpage, natural replenishment and artificial recharge, the lateral inflow to the depression is estimated as 60 × 106 m3. Upon addition of the chloride balance, and taking into consideration the chloride concentrations of the surrounding fresh water and the apparent possible end-member of the saline source (based on geochemical considerations), the saline inflow is estimated as (40–60) × 106 m3. These estimates indicate that a large amount of saline water penetrated into the aquifer, of about half of the natural replenishment of the study area, with an estimated salinity of 1900–2700 mg Cl 1−1.

It is suggested that the salt plume was formed as a result of a drop in water level combined with a flow of underlying saline water bodies from deeper strata. The chemical composition of the groundwater points to the existence of two saline water bodies of Ca-chloride composition and a marine Br/Cl ratio: (1) saline water with low Na/Cl (0.6), So4/Cl, and B/Cl ratio; (2) saline water with higher Na/Cl (> 0.6), So4/Cl, and B/Cl ratios. These chemical compositions resemble Ca-chloride saline waters found in other locations in the Coastal Plain aquifer and in underlying formations. The saline water bodies may occur in either pockets at the bottom of the aquifer or lumachelle and sandstone layers of high hydraulic conductivity in underlying sediments.  相似文献   


5.
The Sole Source Aquifer Program has helped prevent contamination of many community drinking water supplies. If an aquifer supplies the sole or principal source of a community's drinking water, a local ground water user may petition the Environmental Protection Agency (EPA) under the Safe Drinking Water Act for its designation and protection as a "sole source aquifer." Since 1974, residents and officials of 65 communities and multi-community areas have petitioned and received assistance from the EPA to prevent contamination of their local ground water source of drinking water. This designation means that EPA may review federal financially assisted projects to determine if they would contaminate the aquifer and cause a public health hazard. If they could cause contamination, EPA can request that the project be modified or stopped. The significance of this program in terms of population served and funds affected has been substantial, indicating the Sole Source Aquifer Program has been an important local tool for protecting ground water used as a source of drinking water. Information is given on three different examples of sole source aquifer designations protected under this program: the New Jersey Coastal Plain Aquifer System, the Great Miami River Buried Valley Aquifer System (Ohio), and the Eastern Snake River Plain Aquifer (Idaho), serving populations of 543,000, 921,000, and 275,000, respectively. In all three examples, preventing ground water contamination through the Sole Source Aquifer Program has protected the community drinking water supply.  相似文献   

6.
Nitrate-contaminated ground water beneath and adjacent to an intensive swine ( Sus scrofa domesticus ) production facility in the Middle Coastal Plain of North Carolina was analyzed for δ15N of nitrate (δ15N-NO3). Results show that the isotopic signal of animal waste nitrogen is readily identifiable and traceable in nitrate in this ground water. The widespread land application of animal wastes from intensive livestock operations constitutes a potential source of nitrogen contamination to natural water throughout large regions of the United States and other countries. The site of the present study has been suspected as a nitrate contamination source to nearby domestic supply wells and has been monitored for several years by government and private water quality investigators through sampling of observation wells, ditches, and streams. δ15N of nitrate allowed direct identification of animal waste-produced nitrate in 11 of 14 wells sampled in this study, as well as recognition of nitrate contributions from non-animal waste agricultural sources in remaining wells.  相似文献   

7.
Sequential analysis of hydrochemical data for watershed characterization   总被引:4,自引:0,他引:4  
Thyne G  Güler C  Poeter E 《Ground water》2004,42(5):711-723
A methodology for characterizing the hydrogeology of watersheds using hydrochemical data that combine statistical, geochemical, and spatial techniques is presented. Surface water and ground water base flow and spring runoff samples (180 total) from a single watershed are first classified using hierarchical cluster analysis. The statistical clusters are analyzed for spatial coherence confirming that the clusters have a geological basis corresponding to topographic flowpaths and showing that the fractured rock aquifer behaves as an equivalent porous medium on the watershed scale. Then principal component analysis (PCA) is used to determine the sources of variation between parameters. PCA analysis shows that the variations within the dataset are related to variations in calcium, magnesium, SO4, and HCO3, which are derived from natural weathering reactions, and pH, NO3, and chlorine, which indicate anthropogenic impact. PHREEQC modeling is used to quantitatively describe the natural hydrochemical evolution for the watershed and aid in discrimination of samples that have an anthropogenic component. Finally, the seasonal changes in the water chemistry of individual sites were analyzed to better characterize the spatial variability of vertical hydraulic conductivity. The integrated result provides a method to characterize the hydrogeology of the watershed that fully utilizes traditional data.  相似文献   

8.
Pond‐cypress (Taxodium ascendens Brong.) is a dominant canopy species in depressional wetlands of the south‐eastern Coastal Plain. Unsustainable withdrawals from the karst Floridan aquifer system have caused premature decline and death of pond‐cypress trees, presumably owing to altered hydroperiods (which alter the flow of water and nutrients in trees). There has been no scientifically based means to determine sustainable yield from this regional aquifer system or to detect early stages of physical/ecological damage associated with groundwater mining and aquifer storage and recovery (ASR, which also can alter natural hydroperiods). In this study, the relationship between visual symptoms (indicators) of stress or premature decline, and spectral reflectance was evaluated using dried, milled branch tips collected from natural stands of mature pond‐cypress. Depressional systems evaluated represented four of the six aquifer system subregions where subsurface perturbations from groundwater mining: (i) were presumed not to be occurring (reference wetlands); (ii) may be occurring but are not documented; and (iii) have been confirmed. Sampled trees were assigned to one of three stress classes (1, no/minimal; 2, moderate; 3, severe) based on the visual indicators. Partial least squares–linear discriminant analysis of second derivative spectral transformations in the visible/shortwave near‐infrared (NIR) region (400–1100 nm) and the NIR region (1100–2500 nm) was used to evaluate the samples in assigned classes. Class 1 samples were discriminated from combined class 2 and 3 samples in the NIR region with 100% and 97% accuracy for consecutive winter sample periods (before bud‐break). The percentage of correctly classified samples in this spectral region was lower (85%) for summer samples (full leaf‐out). Second‐derivative models for the NIR region developed from the winter data sets predicted assigned classes for alternate winter's samples with an accuracy of 97% and 100%. High correlation between spectral reflectance of dried, milled branch tips collected from mature pond‐cypress in winter and visual indicators of premature decline suggests in situ pond‐cypress are hydroecological indicators of anthropogenic subsurface hydroperiod perturbations. This approach provides objective means for early detection of unsustainable aquifer yield and adverse impacts from ASR activities in the south‐eastern Coastal Plain. Used in conjunction with hydrological monitoring and modelling, the hydroecological indicators should provide the means with which sustainable yield in the south‐eastern Coastal Plain can be achieved and maintained. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Geochemical processes during five years of aquifer storage recovery   总被引:4,自引:0,他引:4  
A key factor in the long-term viability of aquifer storage recovery (ASR) is the extent of mineral solution interaction between two dissimilar water types and consequent impact on water quality and aquifer stability. We collected geochemical and isotopic data from three observation wells located 25, 65, and 325 m from an injection well at an experimental ASR site located in a karstic, confined carbonate aquifer in South Australia. The experiment involved five major injection cycles of a total of 2.5 x 10(5) m3 of storm water (total dissolved solids [TDS] approximately 150 mg/L) into the brackish (TDS approximately 2400 mg/L) aquifer. Approximately 60% of the mixture was pumped out during the fifth year of the experiment. The major effect on water quality within a 25 m radius of the injection well following injection of storm water was carbonate dissolution (35 +/- 6 g of CaCO3 dissolved/m3 of aquifer) and sulfide mineral oxidation (50 +/- 10 g as FeS2/m3 after one injection). < 0.005% of the total aquifer carbonate matrix was dissolved during each injection event, and approximately 0.2% of the total reduced sulfur. Increasing amounts of ambient ground water was entrained into the injected mixture during each of the storage periods. High 14C(DIC) activities and slightly more negative delta13C(DIC) values measured immediately after injection events show that substantial CO2(aq) is produced by oxidation of organic matter associated with injectant. There were no detectable geochemical reactions while pumping during the recovery phase in the fifth year of the experiment.  相似文献   

10.
Mineral and thermal water chemistry from the Azores archipelago was investigated in order to discriminate among hydrochemical facies and isotopic groups and identify the major geochemical processes that affect water composition. A systematic geochemical survey of mineral and thermal water chemistry was carried out, incorporating new data as well as results from the literature. The Azores are a volcanic archipelago consisting of nine islands and samples were collected at São Miguel, Graciosa, Faial, São Jorge, Pico and Flores islands. Hydrothermal manifestations show the effects of active volcanism on several islands. Discharges are mainly related to active Quaternary central volcanoes, of basaltic to trachytic composition, but also some springs are related to older dormant or extinct volcanoes.Multivariate analysis – principal component and cluster analysis – enables classification of water compositions into 4 groups and interpretation of processes affecting water compositions. Groups 1 and 2 discharge from perched-water bodies, and mostly correspond to Na–HCO3 and Na–HCO3–Cl type waters. These groups comprise of cold, thermal (27 °C–75 °C) and boiling waters (92.2 °C–93.2 °C), with a wide TDS range (77.3–27, 145.7 mg/L). Group 3 is made of samples of dominated Na–SO4 from very acid boiling pools (pH range of 2.02–2.27) which are fed by steam-heated perched-water bodies. Group 4 is representative of springs from the basal aquifer system and corresponds to Na–Cl type fluids, with compositions dominated by seawater.Results are used to further develop a conceptual model characterizing the geochemical evolution of the studied waters. Mineral and thermal waters discharging from perched-water bodies are of meteoric origin and chemically evolve by absorption of magmatic volatiles (CO2) and by a limited degree of rock leaching. Existing data also suggest mixture between cold waters and thermal water. Water chemistry from springs that discharge from the basal aquifer system evolves by mixing with seawater; although, processes such as absorption of magmatic volatiles (CO2), rock leaching and mixture with hydrothermal waters are not excluded by the data because the actual composition of these waters deviates from that expected considering only conservative mixing between fresh and seawater.  相似文献   

11.
The coupled spatial investigation of the geometrical and geochemical properties of a chalk karstic aquifer provides information on the degree to which geologic structure controls aquifer functioning and groundwater quality. Major ion concentrations in the chalk aquifer of the Haute-Normandie region (France) were measured at a high spatial resolution (more than 100 sampling sites over a 6000 km2 area) and mapped. The first observation is a continuity of the geochemical properties, in spite of the karstic properties of the aquifer principal components analysis of geochemical maps revealed two types of spatial distributions: ions with an autochthonous origin (Ca2+, HCO3), and ions with a principally allochthonous origin (Cl, Na+, , ). Mg2+ was categorised as both autochthonous (chalk dissolution) and allochthonous (brought in by infiltration of Tertiary deposits). To better understand the spatial distribution of the geochemistry, the aquifer geochemistry was compared to the physical properties of the aquifer, in particular aquifer thickness (representing aquifer geometry) and piezometric level (representing aquifer flow). Use of spatial correlation between the geochemical and the geometrical properties provided insight regarding the directional structure of the data and give evidence of directional relations between geochemical and geometrical properties. The degree of mineralisation (principally composed of Ca2+ and ions) increased along the direction of flow, corresponding to an increase in chalk dissolution rate along the flowpath. The steepest mineralisation gradients were related to an increase in the Mg/Ca ratio, evidence of longer residence times and corresponding to zones where aquifer flow capacity is limited because of a decrease of the thickness of the flow section (anticlines or faults). These results highlight the dominant role played by the geometry and the structural context in controlling aquifer geochemistry.  相似文献   

12.
SUMMARY

The Coastal Plain aquifer of Israel, of Plio-Pleistocene Age, stretches from Binyamina in the North to the Gaza Strip in the South-a distance of about 112 km and has an average width of about 15 Km. The allowed withdrawal is estimated at about 200 MCM/year.

As a result of an average yearly withdrawal of 426 MCM/year during the last 10 years the water levels dropped to a dangerously low position (-2)-(-4) m below sea level at distances of 3–5 Km from the coast, causing sea water intrusion which, in Tel Aviv and Emek Hefer, endangered water supply wells.

As a counter-measure, artificial groundwater recharge through wells was practiced in Emek Hefer since 1959. Recharge was practiced in 7 wells at a rate of 6 MCM/year, the water coming from adjacent Cretaceous limestone aquifers.

In Tel Aviv a fresh water barrier was established in 1964 by injecting Lake Kinereth water into 17 wells during winter at a rate of 6 MCM/winter. In the rest of the Coastal Plain water was injected to the aquifer through about 40–45 wells at a total yearly rate of about 10–12 MCM.

Recharge by spreading is practiced in Yavneh at a rate of about 10–13 MCM per winter, also recharge by spreading is practiced with flood water of Nahal Shikma at a rate of up to 8 MCM/winter.  相似文献   

13.
Fine sediment is a dynamic component of the fluvial system, contributing to the physical form, chemistry and ecological health of a river. It is important to understand rates and patterns of sediment delivery, transport and deposition. Sediment fingerprinting is a means of directly determining sediment sources via their geochemical properties, but it faces challenges in discriminating sources within larger catchments. In this research, sediment fingerprinting was applied to major river confluences in the Manawatu catchment as a broad‐scale application to characterizing sub‐catchment sediment contributions for a sedimentary catchment dominated by agriculture. Stepwise discriminant function analysis and principal component analysis of bulk geochemical concentrations and geochemical indicators were used to investigate sub‐catchment geochemical signatures. Each confluence displayed a unique array of geochemical variables suited for discrimination. Geochemical variation in upstream sediment samples was likely a result of the varying geological source compositions. The Tiraumea sub‐catchment provided the dominant signature at the major confluence with the Upper Manawatu and Mangatainoka sub‐catchments. Subsequent downstream confluences are dominated by the upstream geochemical signatures from the main stem of Manawatu River. Variability in the downstream geochemical signature is likely due to incomplete mixing caused in part by channel configuration. Results from this exploratory investigation indicate that numerous geochemical elements have the ability to differentiate fine sediment sources using a broad‐scale confluence‐based approach and suggest there is enough geochemical variation throughout a large sedimentary catchment for a full sediment fingerprint model. Combining powerful statistical procedures with other geochemical analyses is critical to understanding the processes or spatial patterns responsible for sediment signature variation within this type of catchment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Regional estimates of aquifer recharge are needed in data-scarce regions such as the Basin of Mexico, where nearly 20 million people are located and where the Basin’s aquifer system represents the main water source. In order to develop the spatio-temporal estimates of aquifer recharge and to analyze to what extent urban growth has affected aquifer recharge, this work presents a daily soil water balance which uses different vegetation and soil types as well as the effect of topography on climatological variables and evapotranspiration. The soil water balance was applied on a daily time step in the Basin of Mexico for the period 1975–1986, obtaining an annually-lumped potential recharge flow of 10.9–23.8 m3/s (35.9–78.1 mm) in the entire Basin, while the monthly values for the year with the largest lumped recharge value (1981 = 78.1 mm) range from 1 m3/s (0.3 mm) in December to 87.9 m3/s (23.7 mm) in June. As aquifer recharge in the Basin mainly occurs by subsurface flow from its enclosing mountains as Mountain Block Recharge, urban growth has had a minimal impact on aquifer recharge, although it has diminished recharge in the alluvial plain.  相似文献   

15.
Field-based experiments were designed to investigate the release of naturally occurring, low to moderate (< 50 microg/L) arsenic concentrations to well water in a confined sandstone aquifer in northeastern Wisconsin. Geologic, geochemical, and hydrogeologic data collected from a 115 m2 site demonstrate that arsenic concentrations in ground water are heterogeneous at the scale of the field site, and that the distribution of arsenic in ground water correlates to solid-phase arsenic in aquifer materials. Arsenic concentrations in a test well varied from 1.8 to 22 microg/L during experiments conducted under no, low, and high pumping rates. The quality of ground water consumed from wells under typical domestic water use patterns differs from that of ground water in the aquifer because of reactions that occur within the well. Redox conditions in the well can change rapidly in response to ground water withdrawals. The well borehole is an environment conducive to microbiological growth, and biogeochemical reactions also affect borehole chemistry. While oxidation of sulfide minerals appears to release arsenic to ground water in zones within the aquifer, reduction of arsenic-bearing iron (hydr)oxides is a likely mechanism of arsenic release to water having a long residence time in the well borehole.  相似文献   

16.
Vulnerability indicators of sea water intrusion   总被引:5,自引:0,他引:5  
In this paper, simple indicators of the propensity for sea water intrusion (SWI) to occur (referred to as "SWI vulnerability indicators") are devised. The analysis is based on an existing analytical solution for the steady-state position of a sharp fresh water-salt water interface. Interface characteristics, that is, the wedge toe location and sea water volume, are used in quantifying SWI in both confined and unconfined aquifers. Rates-of-change (partial derivatives of the analytical solution) in the wedge toe or sea water volume are used to quantify the aquifer vulnerability to various stress situations, including (1) sea-level rise; (2) change in recharge (e.g., due to climate change); and (3) change in seaward discharge. A selection of coastal aquifer cases is used to apply the SWI vulnerability indicators, and the proposed methodology produces interpretations of SWI vulnerability that are broadly consistent with more comprehensive investigations. Several inferences regarding SWI vulnerability arise from the analysis, including: (1) sea-level rise impacts are more extensive in aquifers with head-controlled rather than flux-controlled inland boundaries, whereas the opposite is true for recharge change impacts; (2) sea-level rise does not induce SWI in constant-discharge confined aquifers; (3) SWI vulnerability varies depending on the causal factor, and therefore vulnerability composites are needed that differentiate vulnerability to such threats as sea-level rise, climate change, and changes in seaward groundwater discharge. We contend that the approach is an improvement over existing methods for characterizing SWI vulnerability, because the method has theoretical underpinnings and yet calculations are simple, although the coastal aquifer conceptualization is highly idealized.  相似文献   

17.
In the Western United States, demand for water is often out of balance with limited water supplies. This has led to extensive water rights conflict and litigation. A tool that can reliably forecast natural aquifer discharge months ahead of peak water demand could help water practitioners and managers by providing advanced knowledge of potential water‐right mitigation requirements. The timing and magnitude of natural aquifer discharge from the Eastern Snake Plain Aquifer (ESPA) in southern Idaho is accurately forecast 4 months ahead of the peak water demand, which occurs annually in July. An ARIMA time‐series model with exogenous predictors (ARIMAX model) was used to develop the forecast. The ARIMAX model fit to a set of training data was assessed using Akaike's information criterion to select the optimal model that forecasts aquifer discharge, given the previous year's discharge and values of the predictor variables. Model performance was assessed by application of the model to a validation subset of data. The Nash‐Sutcliffe efficiency for model predictions made on the validation set was 0.57. The predictor variables used in our forecast represent the major recharge and discharge components of the ESPA water budget, including variables that reflect overall water supply and important aspects of water administration and management. Coefficients of variation on the regression coefficients for streamflow and irrigation diversions were all much less than 0.5, indicating that these variables are strong predictors. The model with the highest AIC weight included streamflow, two irrigation diversion variables, and storage.  相似文献   

18.
A. Issar 《Journal of Hydrology》1983,60(1-4):175-183
The chemical and isotopical (18O-deuterium) composition of the thermomineral water emerging around Lake Kinneret is shown to be similar to that of the saline water found in deep oil-exploration wells in the Coastal Plain of Israel, and different from the water found near the Dead Sea.

It is suggested that an ancient brine which is filling the deep non-flushed aquifers is driven from the south towards the Rift Valley by a piston action and is mixed with paleo and contemporaneous meteoric water before emerging as thermomineral springs.  相似文献   


19.
Non-point source pollution of ground water systems has become a national concern in recent years. Researchers and regulatory agencies are investigating the source and processes of the contamination. Agricultural best management practices (BMPs) traditionally developed to reduce non-point source pollution of surface water resources are being investigated for their impact on ground water quality. This study used the CREAMS model to simulate the long-term effects of seven different BMPs on nitrate nitrogen (NO3-N) loadings to a shallow, unconfined ground water system. Two representative watersheds, 5.8 and 8.9 hectares (14.3 and 22 acres) in area, in the Coastal Plain physiographic region of Maryland were selected for study. Soils in these watersheds belong to the Matapeake silt loam series and have moderate infiltration capacity. Results from this study indicated that BMPs used in conjunction with winter cover (barley) reduced NO3-N leaching to the ground water system. It was also found that turfgrass reduced surface losses of water and nitrogen, but increased leaching losses of water and NO3-N significantly. All of the BMPs simulated in this study resulted in leachate NO3-N concentrations exceeding 10 ppm, the U.S. EPA health standard for public drinking water, indicating a need for alternate practices for reducing nitrate leaching.  相似文献   

20.
Pope JP  Burbey TJ 《Ground water》2004,42(1):45-58
Measurement and analysis of aquifer-system compaction have been used to characterize aquifer and confining unit properties when other techniques such as flow modeling have been ineffective at adequately quantifying storage properties or matching historical water levels in environments experiencing land subsidence. In the southeastern coastal plain of Virginia, high-sensitivity borehole pipe extensometers were used to measure 24.2 mm of total compaction at Franklin from 1979 through 1995 (1.5 mm/year) and 50.2 mm of total compaction at Suffolk from 1982 through 1995 (3.7 mm/year). Analysis of the extensometer data reveals that the small rates of aquifer-system compaction appear to be correlated with withdrawals of water from confined aquifers. One-dimensional vertical compaction modeling indicates measured compaction is the result of nonrecoverable hydrodynamic consolidation of the fine-grained confining units and interbeds, as well as recoverable compaction and expansion of coarse-grained aquifer units. The calibrated modeling results indicate that nonrecoverable specific storage values decrease with depth and range from 1.5 x 10(-5)/m for aquifer units to 1.5 x 10(-4)/m for confining units and interbeds. The aquifer and Potomac system recoverable specific storage values were all estimated to be 4.5 x 10(-6)/m, while the confining units and interbeds had values of 6.0 x 10(-6)/m. The calibrated vertical hydraulic conductivity values of the confining units and interbeds ranged from 6.6 x 10(-4) m/year to 2.0 x 10(-3) m/year. These parameter values will be useful in future management and modeling of ground water in the Virginia Coastal Plain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号