共查询到20条相似文献,搜索用时 15 毫秒
1.
《Marine pollution bulletin》2009,58(6-12):460-466
Polychlorinated biphenyls (PCBs) are known as neurotoxic chemicals and possibly alter animal behavior. We previously reported that PCB-exposure induced abnormal schooling behavior in Japanese medaka (Oryzias latipes). This abnormal behavior might be caused by the functional alteration of central or terminal nervous system. To understand the mechanism(s) of behavioral change by PCB-exposure, we analyzed the gene expression profiles in the brain of medaka exposed to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) or a PCB mixture (Kanechlor-400: KC-400) using a cDNA microarray that we constructed. Twelve FLF-II strain medaka (six individuals per treatment) were dietary exposed to PCB126 (0.01 μg/g b.w./day) or KC-400 (1 μg/g b.w./day) for three weeks. For the control, six fish were fed a control diet. After the exposure period, fish were dissected, and the brain samples were collected. The samples from control fish were pooled and used as a common reference in the microarray experiment. Microarray data were normalized by the LOWESS method, and we screened the genes whose expression levels were altered more than 1.5-fold. Gene expression profiling showed 97 down-regulated and 379 up-regulated genes in the brain of medaka exposed to PCB126. KC-400 exposure suppressed 15 genes and induced 266 genes in medaka brain. Among these genes, the expression levels of 7 and 188 genes were commonly down- or up-regulated, respectively in both treatment groups. On the other hand, 31 gene expressions were significantly different between PCB126 and KC-400 treatment groups, and three out of 31 genes were received opposite effects. In addition, the microarray data showed that thyroid hormone-responsive genes were up-regulated by PCB-exposure, which may imply that PCBs or their metabolites mimic thyroid hormone effects in the brain of PCB-exposed medaka. 相似文献
2.
Kei Nakayama Naomi Sei Yuji Oshima Kosuke Tashiro Yohei Shimasaki Tsuneo Honjo 《Marine pollution bulletin》2008,57(6-12):460
Polychlorinated biphenyls (PCBs) are known as neurotoxic chemicals and possibly alter animal behavior. We previously reported that PCB-exposure induced abnormal schooling behavior in Japanese medaka (Oryzias latipes). This abnormal behavior might be caused by the functional alteration of central or terminal nervous system. To understand the mechanism(s) of behavioral change by PCB-exposure, we analyzed the gene expression profiles in the brain of medaka exposed to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) or a PCB mixture (Kanechlor-400: KC-400) using a cDNA microarray that we constructed. Twelve FLF-II strain medaka (six individuals per treatment) were dietary exposed to PCB126 (0.01 μg/g b.w./day) or KC-400 (1 μg/g b.w./day) for three weeks. For the control, six fish were fed a control diet. After the exposure period, fish were dissected, and the brain samples were collected. The samples from control fish were pooled and used as a common reference in the microarray experiment. Microarray data were normalized by the LOWESS method, and we screened the genes whose expression levels were altered more than 1.5-fold. Gene expression profiling showed 97 down-regulated and 379 up-regulated genes in the brain of medaka exposed to PCB126. KC-400 exposure suppressed 15 genes and induced 266 genes in medaka brain. Among these genes, the expression levels of 7 and 188 genes were commonly down- or up-regulated, respectively in both treatment groups. On the other hand, 31 gene expressions were significantly different between PCB126 and KC-400 treatment groups, and three out of 31 genes were received opposite effects. In addition, the microarray data showed that thyroid hormone-responsive genes were up-regulated by PCB-exposure, which may imply that PCBs or their metabolites mimic thyroid hormone effects in the brain of PCB-exposed medaka. 相似文献
3.
kif7 is a member of the kinesin superfamily members which are molecular motor proteins that move along microtubules in a highly regulated manner through ATP hydrolysis. In this paper, we report on the cloning of the Oryziasmelastigmakif7 (omkif7) using primers designed according to the Japanese medaka (Oryziaslatipes) database. The cloned omkif7 has an open reading frame of 3762bp and is deduced to encode a polypeptide of 1254 amino acids that possesses the putative ATP-binding and microtubule-binding motifs in its motor domain at the N-terminal region. We characterized the cloned omkif7 by comparison with the zebrafish kif7. Both omkif7 and zebrafish kif7 are shown to be expressed in all embryonic stages and adult tissues examined with higher expression level in the testis and ovary. Whole-mount in situ hybridization revealed that the expression of omkif7 is ubiquitous during the early stages of embryonic development, but became more restrictive and localized to the brain, fin bud and eye at later development. This study suggested that the brackish O.melastigma can serve as a good seawater model organism for developmental studies by utilizing the resources developed from its close relative of the Japanese medaka. 相似文献
4.
《Marine pollution bulletin》2009,58(6-12):425-432
kif7 is a member of the kinesin superfamily members which are molecular motor proteins that move along microtubules in a highly regulated manner through ATP hydrolysis. In this paper, we report on the cloning of the Oryzias melastigma kif7 (omkif7) using primers designed according to the Japanese medaka (Oryzias latipes) database. The cloned omkif7 has an open reading frame of 3762bp and is deduced to encode a polypeptide of 1254 amino acids that possesses the putative ATP-binding and microtubule-binding motifs in its motor domain at the N-terminal region. We characterized the cloned omkif7 by comparison with the zebrafish kif7. Both omkif7 and zebrafish kif7 are shown to be expressed in all embryonic stages and adult tissues examined with higher expression level in the testis and ovary. Whole-mount in situ hybridization revealed that the expression of omkif7 is ubiquitous during the early stages of embryonic development, but became more restrictive and localized to the brain, fin bud and eye at later development. This study suggested that the brackish O.melastigma can serve as a good seawater model organism for developmental studies by utilizing the resources developed from its close relative of the Japanese medaka. 相似文献
5.
Nakayama K Sei N Handoh IC Shimasaki Y Honjo T Oshima Y 《Marine pollution bulletin》2011,63(5-12):366-369
The effects of polychlorinated biphenyls (PCBs) on liver function and their differences between sexes were analyzed in Japanese medaka (Oryzias latipes) exposed to PCB126 or Kanechlor-400 (KC-400) using microarray. PCB exposure induced vitellogenin 1 expression in female medaka while suppressing choriogenin genes, which suggests that the effects of PCBs on estrogen-responsive genes do not occur directly through an estrogen receptor-mediated pathway. Reduction of androgen receptor alpha expression was also observed, and the gene expression pattern in PCB-exposed males changed to become more similar to that of females. Furthermore, changes in glycolysis-related genes indicate that PCB exposure might enhance glucose production via gluconeogenesis in the liver of medaka. Taken together, our results suggest that PCBs disrupt the endocrine system, especially androgen function, and may have the potential to cause demasculinizing effects. Additionally, induction of gluconeogenesis might be a response to maintain glucose levels consumed as a result of PCB exposures. 相似文献
6.
《Marine pollution bulletin》2012,64(5-12):366-369
The effects of polychlorinated biphenyls (PCBs) on liver function and their differences between sexes were analyzed in Japanese medaka (Oryzias latipes) exposed to PCB126 or Kanechlor-400 (KC-400) using microarray. PCB exposure induced vitellogenin 1 expression in female medaka while suppressing choriogenin genes, which suggests that the effects of PCBs on estrogen-responsive genes do not occur directly through an estrogen receptor-mediated pathway. Reduction of androgen receptor alpha expression was also observed, and the gene expression pattern in PCB-exposed males changed to become more similar to that of females. Furthermore, changes in glycolysis-related genes indicate that PCB exposure might enhance glucose production via gluconeogenesis in the liver of medaka. Taken together, our results suggest that PCBs disrupt the endocrine system, especially androgen function, and may have the potential to cause demasculinizing effects. Additionally, induction of gluconeogenesis might be a response to maintain glucose levels consumed as a result of PCB exposures. 相似文献
7.
Carney MW Erwin K Hardman R Yuen B Volz DC Hinton DE Kullman SW 《Marine pollution bulletin》2008,57(6-12):255-266
Polycyclic aromatic hydrocarbons (PAHs) are widespread persistent pollutants that readily undergo biotic and abiotic conversion to numerous transformation products in rivers, lakes and estuarine sediments. Here we characterize the developmental toxicity of four PAH transformation products each structural isomers of hydroxynaphthoic acid: 1H2NA, 2H1NA, 2H3NA, and 6H2NA. Medaka fish (Oryzias latipes) embryos and eleutheroembryos were used to determine toxicity. A 96-well micro-plate format was used to establish a robust, statistically significant platform for assessment of early life stages. Individual naphthoic acid isomers demonstrated a rank order of toxicity with 1H2NA>2H1NA>2H3NA>6H2NA being more toxic. Abnormalities of circulatory system were most pronounced including pericardial edema and tube heart. To determine if HNA isomers were AhR ligands, spatial-temporal expression and activity of CYP1A was measured via in vivo EROD assessments. qPCR measurement of CYP1A induction proved different between isomers dosed at respective concentrations affecting 50% of exposed individuals (EC50s). In vitro, all ANH isomers transactivated mouse AhR using a medaka CYP1A promoter specific reporter assay. Circulatory abnormalities followed P450 induction and response was consistent with PAH toxicity. A 96-well micro-plates proved suitable as exposure chambers and provided statistically sound evaluations as well as efficient toxicity screens. Our results demonstrate the use of medaka embryos for toxicity analysis thereby achieving REACH objectives for the reduction of adult animal testing in toxicity evaluations. 相似文献
8.
Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish 总被引:1,自引:0,他引:1
Iron-based nanotechnologies are increasingly used for environmental remediation; however, toxicologic impacts of iron nanoparticles on the aquatic ecosystem remain poorly understood. We treated larvae of medaka fish (Oryzias latipes) with thoroughly characterized solutions containing carboxymethyl cellulose (CMC)-stabilized nanoscale zerovalent iron (nZVI), aged nanoscale iron oxides (nFe-oxides) or ferrous ion (Fe[II]) for 12-14 days' aqueous exposure to assess the causal toxic effect(s) of iron NPs on the fish. With the CMC-nZVI solution, the dissolved oxygen level decreased, and a burst of reactive oxygen species (ROS) was generated as Fe(II) oxidized to ferric ion (Fe[III]); with the other two iron solutions, these parameters did not significantly change. CMC-nZVI and Fe(II) solutions caused acute lethally and sublethally toxic effects in medaka larvae, with nFe-oxide-containing solutions causing the least toxic effects. We discuss modes of toxic action of iron NPs and chronic toxic effects in terms of hypoxia, Fe(II) toxicity and ROS-mediated oxidative damage. 相似文献
9.
《Marine pollution bulletin》2012,64(5-12):339-346
Iron-based nanotechnologies are increasingly used for environmental remediation; however, toxicologic impacts of iron nanoparticles on the aquatic ecosystem remain poorly understood. We treated larvae of medaka fish (Oryzias latipes) with thoroughly characterized solutions containing carboxymethyl cellulose (CMC)-stabilized nanoscale zerovalent iron (nZVI), aged nanoscale iron oxides (nFe-oxides) or ferrous ion (Fe[II]) for 12–14 days’ aqueous exposure to assess the causal toxic effect(s) of iron NPs on the fish. With the CMC-nZVI solution, the dissolved oxygen level decreased, and a burst of reactive oxygen species (ROS) was generated as Fe(II) oxidized to ferric ion (Fe[III]); with the other two iron solutions, these parameters did not significantly change. CMC-nZVI and Fe(II) solutions caused acute lethally and sublethally toxic effects in medaka larvae, with nFe-oxide-containing solutions causing the least toxic effects. We discuss modes of toxic action of iron NPs and chronic toxic effects in terms of hypoxia, Fe(II) toxicity and ROS-mediated oxidative damage. 相似文献
10.
《Marine pollution bulletin》2012,64(5-12):86-90
Hepatic lipidosis is a non-specific biomarker of effect from pollution exposure in fish. Fatty liver is often misdiagnosed or overlooked in histological assessments due to the decreasing application of specific fat procedures and stains. For example, ethanol dehydration in standard paraffin processing removes lipids, leaving vacuoles of which the precise nature is unknown. Lipids can be identified using osmium post-fixation in semi-thin resin sections or transmission electron microscopy. However, both are expensive and technically demanding procedures, often not available for routine environmental risk assessment and monitoring programs. The current emphasis to reduce and refine animal toxicity testing, requires refinement of the suite of histopathological techniques currently available to maximize information gained from using fish for toxicity testing and as bio-indicators of environmental quality. This investigation has successfully modified an osmium post-fixation technique to conserve lipids in paraffin-embedded tissues using medaka (Oryzias latipes) eleutheroembryos and eggs (embryos) as lipid rich models. 相似文献
11.
The development of a cDNA array of coral genes and its application to investigate changes in coral gene expression associated with stressful conditions is described. The array includes both well-characterized and previously unidentified coral genes from Acropora cervicornis and Montastraea faveolata. Corals were exposed to either natural or anthropogenic stressors to elicit the expression of stress genes for isolation and incorporation onto the array. A total of 32 genes involved in protein synthesis, apoptosis, cell signaling, metabolism, cellular defense and inflammation were included on the array. Labeled cDNA from coral (Montastraea faveolata) exposed to elevated seawater temperature, salinity and ultraviolet light was tested against the microarray to determine patterns of gene expression associated with each stressor. Carbonic anhydrase, thioredoxin, a urokinase plasminogen activator receptor (uPAR) and three ribosomal genes demonstrated differential expression across all replicates on the array and between replicate colonies. Specific gene expression patterns produced in response to different stressors demonstrate the potential for gene expression profiling in characterizing the coral stress response. 相似文献
12.
13.
C.C. Fong Y.F. Shi W.K. Yu F. Wei J.P. van de Merwe Alice K.Y. Chan R. Ye Doris W.T. Au Rudolf S.S. Wu M.S. Yang 《Marine pollution bulletin》2014
A recent study demonstrated that 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) may have an adverse effect on the reproduction in marine medaka (Oryzias melastigma), but the molecular mechanisms remain largely unknown. In this study, we investigated the protein expression profiles of male and female gonads of O. melastigma exposed to dietary BDE-47 at two dosages (0.65 and 1.30 μg/g/day, respectively) for 21 days. Extracted proteins were labeled with iTRAQ and analyzed on a MALDI TOF/TOF analyzer, as results, 133 and 144 unique proteins were identified in testis and ovary, respective, and they exerted dose- and sex-dependent expression patterns. In testis, among the 42 differentially expressed proteins; down-regulation of histone variants and parvalbumins implicated BDE-47 may disrupt the spermatogenesis and induce sterility in fishes. In ovary, 38 proteins were differentially expressed; the elevation of vitellogenins and apolipoprotein A–I expression indicated BDE-47 acts as an estrogen-mimicking compound and led to reproductive impairment in O. melastigma. 相似文献
14.
The mode of action of PAHs that causes fish developmental malformations is unclear. The embryotoxicity of marine medaka (Oryzias melastigma) was investigated after individual exposure to three- to five-ring PAHs Phe, Py, and BaP or co-exposure with α-ANF for 18 days. We found that the relationships between EROD induction and developmental deformities of embryos showed a various pattern under different exposure scenarios of Phe, Py, and BaP, which suggested possibly different modes of action in determining the developmental toxicities. As for co-exposure scenarios of each PAH combined with ANF, it showed potentially synergistic effects. The inhibited CYP1A mediated enzyme activity by ANF after co-exposure did not effectively alleviate developmental toxicity of embryo. It showed potentially synergistic effects after co-exposure of marine fish embryos to CYP1A inhibitors and PAH-type CYP1A inducers. Heart deformities in the early life stages of marine medaka were recommended as a biomarker for indicating the extent of PAH pollution. 相似文献
15.
Nga Yu Ho Vincent Wai Tsun Li Wing Lin Poon Shuk Han Cheng 《Marine pollution bulletin》2008,57(6-12):425
kif7 is a member of the kinesin superfamily members which are molecular motor proteins that move along microtubules in a highly regulated manner through ATP hydrolysis. In this paper, we report on the cloning of the Oryzias melastigma kif7 (omkif7) using primers designed according to the Japanese medaka (Oryzias latipes) database. The cloned omkif7 has an open reading frame of 3762bp and is deduced to encode a polypeptide of 1254 amino acids that possesses the putative ATP-binding and microtubule-binding motifs in its motor domain at the N-terminal region. We characterized the cloned omkif7 by comparison with the zebrafish kif7. Both omkif7 and zebrafish kif7 are shown to be expressed in all embryonic stages and adult tissues examined with higher expression level in the testis and ovary. Whole-mount in situ hybridization revealed that the expression of omkif7 is ubiquitous during the early stages of embryonic development, but became more restrictive and localized to the brain, fin bud and eye at later development. This study suggested that the brackish O.melastigma can serve as a good seawater model organism for developmental studies by utilizing the resources developed from its close relative of the Japanese medaka. 相似文献
16.
17.
Nakayama K Kitamura S Murakami Y Song JY Jung SJ Oh MJ Iwata H Tanabe S 《Marine pollution bulletin》2008,57(6-12):445-452
Heavy oil contamination is one of the most important environmental issues. Toxicities of polycyclic aromatic hydrocarbons (PAHs), including immune toxicities, are well characterized, however, the immune toxic effects of heavy oil, as a complex mixture of PAHs, have not been investigated. In the present study, we selected Japanese flounder (Paralichthys olivaceus) as a model organism, and observed alteration of immune function by the exposure to heavy oil. To analyze the expression profiles of immune system-related genes, we selected 309 cDNAs from our flounder EST library, and spotted them on a glass slide. Using this cDNA array, alteration of gene expression profiles was analyzed in the kidneys of flounders exposed to heavy oil. Six Japanese flounders (mean body weight: 197 g) were acclimated to laboratory conditions at 19-20 degrees C. Three fish were exposed to heavy oil C (bunker C) at a concentration of 3.8 g/L for 3 days, and the others were kept in seawater without heavy oil and used as the control. After the exposure period, the fish were transferred into control seawater and maintained for 4 days, and then they were dissected and their kidneys were removed. Total RNA was extracted from the kidney samples to use in gene expression analyses. The microarray detected alteration of immune system-related genes in the kidneys of heavy oil-exposed flounders, including down-regulation of immunoglobulin light chain, CD45, major histocompatibility complex class II antigens and macrophage colony-stimulating factor precursor, and up-regulation of interleukin-8 and lysozyme. These results suggest that pathogen resistance may be weakened in heavy oil-exposed fish, causing a subsequent bacterial infection, and then proinflammatory genes may be induced as a defensive response against the infection. Additionally, we found candidate genes for use as biomarkers of heavy oil exposure, such as N-myc downstream regulated gene 1 and heat shock cognate 71 kDa proteins. 相似文献
18.
《Marine pollution bulletin》2009,58(6-12):445-452
Heavy oil contamination is one of the most important environmental issues. Toxicities of polycyclic aromatic hydrocarbons (PAHs), including immune toxicities, are well characterized, however, the immune toxic effects of heavy oil, as a complex mixture of PAHs, have not been investigated. In the present study, we selected Japanese flounder (Paralichthys olivaceus) as a model organism, and observed alteration of immune function by the exposure to heavy oil. To analyze the expression profiles of immune system-related genes, we selected 309 cDNAs from our flounder EST library, and spotted them on a glass slide. Using this cDNA array, alteration of gene expression profiles was analyzed in the kidneys of flounders exposed to heavy oil. Six Japanese flounders (mean body weight: 197 g) were acclimated to laboratory conditions at 19–20 °C. Three fish were exposed to heavy oil C (bunker C) at a concentration of 3.8 g/L for 3 days, and the others were kept in seawater without heavy oil and used as the control. After the exposure period, the fish were transferred into control seawater and maintained for 4 days, and then they were dissected and their kidneys were removed. Total RNA was extracted from the kidney samples to use in gene expression analyses. The microarray detected alteration of immune system-related genes in the kidneys of heavy oil-exposed flounders, including down-regulation of immunoglobulin light chain, CD45, major histocompatibility complex class II antigens and macrophage colony-stimulating factor precursor, and up-regulation of interleukin-8 and lysozyme. These results suggest that pathogen resistance may be weakened in heavy oil-exposed fish, causing a subsequent bacterial infection, and then proinflammatory genes may be induced as a defensive response against the infection. Additionally, we found candidate genes for use as biomarkers of heavy oil exposure, such as N-myc downstream regulated gene 1 and heat shock cognate 71 kDa proteins. 相似文献
19.
Kei Nakayama Shin-Ichi Kitamura Yasunori Murakami Jun-Young Song Sung-Ju Jung Myung-Joo Oh Hisato Iwata Shinsuke Tanabe 《Marine pollution bulletin》2008,57(6-12):445
Heavy oil contamination is one of the most important environmental issues. Toxicities of polycyclic aromatic hydrocarbons (PAHs), including immune toxicities, are well characterized, however, the immune toxic effects of heavy oil, as a complex mixture of PAHs, have not been investigated. In the present study, we selected Japanese flounder (Paralichthys olivaceus) as a model organism, and observed alteration of immune function by the exposure to heavy oil. To analyze the expression profiles of immune system-related genes, we selected 309 cDNAs from our flounder EST library, and spotted them on a glass slide. Using this cDNA array, alteration of gene expression profiles was analyzed in the kidneys of flounders exposed to heavy oil. Six Japanese flounders (mean body weight: 197 g) were acclimated to laboratory conditions at 19–20 °C. Three fish were exposed to heavy oil C (bunker C) at a concentration of 3.8 g/L for 3 days, and the others were kept in seawater without heavy oil and used as the control. After the exposure period, the fish were transferred into control seawater and maintained for 4 days, and then they were dissected and their kidneys were removed. Total RNA was extracted from the kidney samples to use in gene expression analyses. The microarray detected alteration of immune system-related genes in the kidneys of heavy oil-exposed flounders, including down-regulation of immunoglobulin light chain, CD45, major histocompatibility complex class II antigens and macrophage colony-stimulating factor precursor, and up-regulation of interleukin-8 and lysozyme. These results suggest that pathogen resistance may be weakened in heavy oil-exposed fish, causing a subsequent bacterial infection, and then proinflammatory genes may be induced as a defensive response against the infection. Additionally, we found candidate genes for use as biomarkers of heavy oil exposure, such as N-myc downstream regulated gene 1 and heat shock cognate 71 kDa proteins. 相似文献