首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrochemical studies were carried out in Mulugu-Venkatapur Mandals of Warangal district, Telangana state, India to find out the causes of high fluorides in groundwater and surface water causing a widespread incidence of fluorosis in local population. The fluoride concentration in groundwater ranges from 0.28 to 5.48 mg/l with a mean of 1.26 mg/l in pre-monsoon and 0.21 to 4.43 mg/l with a mean 1.45 mg/l in post-monsoon. About 32% and 34% of samples in pre and post-monsoon containing fluoride concentrations that exceed the permissible limit. The Modified Piper diagram reflects that, water belong to Ca+2-Mg+2-HCO3 - to Na+-HCO3 - facies. Negative chloroalkali indices in both the seasons prove that ion exchange took place between Na+ & K+ with Ca+2 and Mg+2 in aquatic solution in host rock. Different plots for major ions and molar ratios suggest that weathering of silicate rocks and water-rock interaction is responsible for major ion chemistry of water. High fluoride content in groundwater attributed to continuous water-rock interaction during the process of percolation with fluorite bearing country rocks under arid, low precipitation, and high evaporation conditions. The low calcium content in rocks and soils, and the presence of high content of sodium bicarbonate in soils and waters are important factors favouring high levels of fluoride in waters. The basement rocks provide abundant mineral sources of fluoride in the form of amphibole, biotite, fluorite, mica and apatite.  相似文献   

2.
Hydrochemical studies were conducted in Chinnaeru river basin of Nalgonda district, Andhra Pradesh, India, to explore the causes of high fluorides in groundwater and surface water causing a widespread incidence of fluorosis in local population. The concentration of fluoride in groundwater ranges from 0.4 to 2.9 and 0.6 to 3.6 mg/l, stream water ranges from 0.9 to 3.5 and 1.4 to 3.2 mg/l, tank water ranges from 0.4 to 2.8 and 0.9 to 2.3 mg/l, for pre- and post-monsoon periods, respectively. The modified Piper diagram reflects that the water belongs to Ca2+–Mg2+–HCO3 ? to Na+–HCO3 ? facies. Negative chloroalkali indices in both the seasons prove that ion exchange between Na+ and K+ in aquatic solution took place with Ca2+ and Mg2+ of host rock. The interpretation of plots for different major ions and molar ratios suggest that weathering of silicate rocks and water–rock interaction is responsible for major ion chemistry of groundwater/surface water. High fluoride content in groundwater was attributed to continuous water–rock interaction during the process of percolation with fluorite bearing country rocks under arid, low precipitation, and high evaporation conditions. The low calcium content in rocks and soils, and the presence of high levels of sodium bicarbonate are important factors favouring high levels of fluoride in waters. The basement rocks provide abundant mineral sources of fluoride in the form of amphibole, biotite, fluorite, mica and apatite.  相似文献   

3.
Mineralogical and geochemical studies were undertaken in the volcanic area of Biancavilla (Catania, Italy) with the aim of explaining the nature of the high As and F contents of the area’s rocks. As and F contents in soils and groundwater were also investigated. The metasomatised benmoreite lavas show fluorine and arsenic concentrations up to about 3,000 and 1,000 mg/kg, respectively. Mineralogical analyses show that fluorine occurs mostly in fluoro-edenite and apatite-(CaF) crystals, both abundantly present in the altered rocks, while As is exclusively attributed to the apatite-(CaF) crystals. Specifically, arsenic was observed only at the borders of these apatite crystals. Leaching tests and sequential extraction procedures were carried out to evaluate the potential remobilisation of As and F by the mineral phases and the eventual risks induced by their spreading. The results of the leaching tests suggest that As is almost totally associated with the ‘easily reducible’ fraction and that it is released by the preferential dissolution of the arsenic enriched rims of apatite-(CaF) crystals. In soils, As concentration is relatively low (about 15 mg/kg, on average), while F ranges from 236 to 683 mg/kg. The underground waters supplying the town of Biancavilla show As and F contents lower than the allowed limits for drinking water, (As:10 μg/L, F:1–1.5 mg/L). The limited distribution of these rocks and the relatively limited mobilisation by the minerals both contribute to maintain low As and F values, in soils and groundwaters, despite the high values in metasomatised lava samples.  相似文献   

4.
贵州西部氟中毒地区氟来源地质背景研究   总被引:1,自引:0,他引:1       下载免费PDF全文
贵州省西部广泛分布上二叠统煤系地层,燃煤型氟中毒严重影响当地居民的身体健康。引起氟中毒的氟是多来源的,影响氟中毒的因素是多方面的。高氟含量的岩石粘土岩、煤、页岩等是氟的初始来源体;高氟含量土壤是氟第二个层次的来源;高氟含量土壤中种植的农作物是第三个层次的来源;燃煤烟尘直接排放室内空气中和用燃煤烘烤食物等,使空气、食物和水中氟含量增高,是一重要的人为氟来源。人通过呼吸高氟含量的空气和食(饮)用高氟含量的食物(水)将氟沉淀在体内,造成氟中毒。  相似文献   

5.
Arsenic concentrations of less than 5 ppb to as large as 1,260 ppb in stream waters and from 5 ppm to 4,000 ppm in stream sediments were found in the Pedro Dome-Cleary Summit area, Alaska. Waters from three of 20 wells sampled had arsenic concentrations exceeding the U.S. Public Health Service recommended limit of 50 ppb. The high arsenic levels are a consequence of arsenic enrichment in the rocks of the area. Placer and lode-gold mining may increase the arsenic content of the waters by exposing arsenic-containing rocks to surface waters and by increasing the load of arsenic-rich sediments in the streams. Finding these disturbingly large concentrations of arsenic in the waters of the Fairbanks area was the major result of this work, inasmuch as a subsequent study (to be published) revealed arsenic concentrations as large as 10 ppm in domestic wells and prompted an extensive study by Federal and State agencies of the health hazard posed by these arsenic-rich waters.  相似文献   

6.
Plants and soils from central Euboea, were analyzed for Cr(totai), Cr(VI), Ni, Mn, Fe and Zn. The range of metal concentrations in soils is typical to those developed on Fe-Ni laterites and ultramafic rocks. Their bioavailability was expressed in terms of concentrations extractable with EDTA and 1 M HNO3, with EDTA having a limited effect on metal recovery. Cr(VI) concentrations in soils evaluated by alkaline digestion solution were lower than phytotoxic levels. Chromium and Ni — and occasionally Zn — in the majority of plants were near or above toxicity levels. Cr(VI) concentrations in plants were extremely low compared to total chromium concentrations. Cr(total) in ground waters ranged from <1 μg.L?1 to 130 μg.L?1, with almost all chromium present as Cr(VI). With the exception of Cr(total) and in some cases Zn, all elements were below regulatory limits for drinking water. On the basis of Ca, Mg, Cr(total) and Si ground waters were classified into three groups: Group(I) with Cr concentrations less than 1 μg.L?1 from a karstic aquifer; Group(II) with average concentrations of 24 μg.L?1 of Cr and relatively high Si associated with ophiolites; and Group(III) with Cr concentrations of up to 130 μg.L?1, likely due to anthropogenic activity. Group(III) is comparable to ground waters from Assopos basin, characterized by high Cr(VI) concentrations, probably due to industrial actrivities.  相似文献   

7.
The content and distribution of mercury in Holocene–Upper Pleistocene turbidites, hemipelagic sediments intercalating therein, as well as basement basalts are studied. Samples of sediments were taken from the core of Holes 858A, 858B, 858C, 858D, and 858F. Basalt samples were taken from Holes 858F and 858G drilled during Leg 139 ODP in the Middle Valley (Juan de Fuca Ridge) in the Dead Dog hydrothermal field with a high heat flow (4–20 W/m2) and numerous vents with temperature ranging from 234 to 276°C. Samples of sediments and basalts with the background Hg content were taken from the core of Holes 855A, 855C, and 855D are located beyond the hydrothermal system in the base of the fault scarp on the eastern Middle Valley. In rocks, the content of Hg and its occurrence form were determined by the atomic absorption spectrometry with thermal atomization method; the chemical composition, by the XFA and ICP-MS methods. Sections of the sedimentary cover and basalt basement are marked by an alternation of “layer cake” type units with low and high contents of Hg. Mercury occurs in rocks in the physically adsorbed and mineral forms. The Hg concentration in some parts of the sedimentary section is anomalously high: up to 9696 ppb in Hole 858B and 7260 ppb in Hole 858C. In metalliferous sediments, the Hg content is 3130 ppb. Its maximum content (up to 23200 ppb) is recorded in basalts.  相似文献   

8.
文章利用海南岛SOTER数据库及自动土地评价模型ALES评价结果,对海南岛4种主要母岩上发育的土壤类型、土壤性质及香蕉种植适宜性与母质的关系进行了分析。海南岛不同母岩上土壤类型的发育呈现多样性,土壤类型的分布明显受到母岩类型、成土年龄、成土环境等因素的影响。酸性火成岩上主要发育有雏形土和富铁土,基性岩上则主要是发育良好的铁铝土,碎屑岩上主要是雏形土,而海相沉积物由于土壤形成时间的差异出现了多样的土壤类型。在海南岛湿热的气候条件下,原生母岩上发育的土壤,尽管成土母岩成分各不相同,但一些土壤性质已经没有明显差别,如交换性钙、镁、钠等,部分土壤化学性质如交换性钾的含量继承了母岩特性。各种母岩上发育的土壤,在自然条件下,适宜香蕉种植的比例都很低,但基性火成岩和海积物上发育的土壤,更容易受到人为管理措施的影响,如果满足一定的技术和经济投入,海南岛热带作物的种植潜力可以得到进一步的挖掘。  相似文献   

9.
《Applied Geochemistry》1995,10(3):357-367
Fluorine is a common minor constituent of formation waters throughout the Alberta Basin, and it was detected in each of the 469 samples analyzed for it. Contents range up to 22 mg/l, with an arithmetic mean of 1.83 mg/l and a median value of 1.20 mg/I. There is a trend toward increased mean and median contents of F from the shallower, cooler, less saline formation waters to the deeper, hotter, more saline formation waters. This trend parallels a trend of increasing saturation with respect to fluorite, with most of the less saline formation waters being undersaturated with respect to fluorite. At the same time, the major portion of F occurs as F in the less saline formation waters, with increasing amounts held as MgF+ as the Ca content, ionic strength and temperature increase. Complexes between Al and F, and VO and F account for only a relatively minor portion of the complexed F. A significant portion of the F in high-salinity formation waters from marine strata could well have originated from the initial seawater. However, it is speculated that water-rock reactions with bentonite or bentonitic shales may have to be invoked to account for the very high contents of F in the less saline formation waters from some of the shallow, cooler, non-marine aquifers of the Upper Cretaceous post-Colorado aquifer-aquitard system. Finally, it is possible to use knowledge of the distribution of F in formation waters from individual aquifers to check on the “correctness” of F determinations (primarily when formation waters of similar composition show saturation with respect to fluorite), and in the same case to predict the F content of formation waters in the Alberta Basin for which only the appropriate major ions have been determined.  相似文献   

10.
In order to assess the geological environment impact of a city landfill by the Yangtze River, soils from different depths in the dumpsite were sampled and analyzed. It was found that pollutants content at the site was distinctly higher than that in nearby environments. The content of heavy metals, such as Cd, Hg, As, Pb and Cu, reduces as depth increases; the content of elements F, Cl and N is the contrary. Pollutants migration driven by underground water flow was analyzed, considering the hydro-geological conditions of the site. It is believed that, due to leaching after rainfall infiltration, pollutants in the garbage layer migrates deeper, the cohesive soil in the underlying surface prevents them from spreading to the deeper aquifer; additionally, the high pressure tolerance of the deep groundwater is a key factor in preventing pollutants from entering the aquifer. Furthermore, human control has reduced the annual fluctuation range of water level in nearby rivers, weakening the hydrodynamic relations with phreatic water, and thus reducing the spreading of pollutants to nearby surface waters.  相似文献   

11.
Levels of heavy metals are found in soils and waters of the major tributary valleys of the Jordan Valley. Heavy metal content in soils irrigated by treated waste water were measured for a 40 km reach of Zarqa River. Soil samples from eight different sites along the upper course of this river were analyzed to determine the concentration of selected heavy metals (CO, Cr, Cu, Pb, Ni, Zn). Silt forms the major component of the soils with an average of 54%. Clay fractions show an increase with depth from 17 to 41%. Trends in particle size distribution and metal contents were compared across sample sites. Samples contained moderate to considerable levels of Pb and Ni. Concentrations of Cu and Cr ranged between 33–59 and 65–90 ppm, respectively. These values represent a slight to moderate class of pollution. The concentration of Cr shows a decrease with depth and distance from the waste water plant. Cu, Zn, and Ni show increasing concentrations with depth but Pb and CO do not. The concentrations of the measured heavy metals increases near the waste water treatment plant but decreases with distance from the plant due to precipitation in the stream bed and dilution with stream water. This decline in metal content with distance from the treatment plant suggests that most metals reaching floodplain soils may derive from the same source. Although current metal concentrations are low to moderate, floodplain surface soils in this area should be regarded as a potential source for future heavy metal pollution downstream.  相似文献   

12.
Copper content was analyzed in the parent rocks, soils, natural waters, and plants of the taiga and steppe terrains of Transbaikalia. The concentration of copper appeared to be low in the taiga terrains compared with the steppe ones. Extensive biogenic accumulation of copper was detected in the plants of steppe communities. It was shown that copper is selectively absorbed by different plant species from the same habitat and by a single species in different environment conditions.  相似文献   

13.
The geochemical characteristics of hydrothermal waters from the Phlegraean Fields (P.F.) (Naples, Italy) were analysed for minor and trace elements, selectively mobilised in hydrothermal systems such as B, F, Hg, As, Pb and Tl.The water samples, collected from a shallow aquifer likely to be fed by deeper fluids, showed various geochemical features, resulting from the mixing of three components: (1) surface waters of meteoric origin; (2) hot deep waters deriving from water-rock interaction and including deep waters of marine origin; (3) magmatic fluids rising from the local magma chamber, lying a few kilometres below the town of Pozzuoli.This setting, although very complex, provides a reliable means of studying the distribution of the investigated trace elements. In particular, within the Phlegraean area, high contents of B (0.1-48 mg/l), F (0.5-8 mg/l), As (16-6050 μg/l) and Hg (0.7-232 μg/l) were observed. The levels of thallium in the springs close to Solfatara (about 7 μg/l) were in line with those normally recorded in hydrothermal areas, whereas high levels of this element (up to 23.3 μg/l) were identified in other wells of the study area. Lead (1.3 to 29.1 μg/l) appears to be anomalous with respect to its normal content in groundwater (about 1 μg/l), owing to the presence of high-density brines at depth, which enhance the solubility of Pb in volcanic rocks under hydrothermal conditions.The distribution of the investigated trace elements in the Phlegraean Fields thermal area is probably related to the different ascent pathways of the fluids. Clearly, apart from the influence exerted by anomalous thermal conditions, each element shows a different behaviour, depending on its geochemical affinity with mineral phases and as a consequence of the different enthalpy values, which determine ion partitioning in gaseous phases.Based on geochemical evidences and on the distribution of minor and trace elements, the source processes of the investigated hydrothermal waters were defined. Five main groups were identified: (1) acid sulphate waters, resulting from mixing of meteoric water with magmatic gases (mainly H2S); (2) high sulphate-chloride waters, from a deep reservoir located in the major upflow zone; (3) waters associated with significant degassing of magmatic CO2; (4) waters from a deep geothermal neutral chloride reservoir, resulting from heating of marine water modified by water-rock interaction processes; (5) cold waters from the inner area, influenced by low-temperature, water-rock interaction processes.  相似文献   

14.
Occurrence of fluoride (F) in groundwater has drawn worldwide attention, since it has considerable impact on human health. In Ethiopia high concentrations of F in groundwaters used for community water supply have resulted in extensive dental and skeletal fluorosis. As a part of a broader study, the distribution of F in groundwater has been investigated, and compared with bedrock geology and pertinent hydrochemical variables. The result indicates extreme spatial variations. High F concentration is often associated with active and sub-active regional thermal fields and acidic volcanics within high temperature rift floor. Variations in F can also be related to changes in calcium concentration resulting from dissolution of calcium minerals and mixing with waters of different chemical composition originated from variable hydrogeological environment across the rift valley. The concentration of F dramatically declines from the rift towards the highlands with the exception of scattered points associated with thermal springs confined in local volcanic centers. There are also interactions of F-rich alkaline lakes and the surrounding groundwater. Meteoric waters recharging volcanic aquifers become enriched with respect to F along the groundwater flow path from highland recharge areas to rift discharge areas. Locally wells drilled along large rift faults acting as conduits of fresh highland waters show relatively lower F. These areas are likely to be possible sources of better quality waters within the rift. The result of this study has important implications on site selection for water well drilling.  相似文献   

15.
Fluoride (F) contamination study had been carried out to see its allocation in Kurmapalli watershed, Nalgonda district, Andhra Pradesh, India. The study area is located about 60 km SE of Hyderabad city. The groundwater is the main source of water for their living. The groundwater in villages and its surrounding are affected by fluoride contamination and consequently the majority of the people living in these villages has health hazards and is facing fluorosis. The purpose of this study is to identify the wells with high F, raise awareness in people, study the water chemistry, and also find out the source of F in groundwater. A total of 32 groundwater samples were collected from different wells in both shallow aquifers and deeper fractures zones during October 2004. The chemical analysis of groundwater has been done. Fluoride values vary from 0.7 to 19.0 mg/l. It is noted that the maximum value (19.0 mg/l) is one of the highest values found in groundwater in India and 78% of the total samples show F concentrations that exceeds the permissible limit value (1.5 mg/l). The highest value of F is found at Madanapur bore well which is located at central part of the watershed. The F value of this bore well was monitored from October 2004 to October 2006. During this period the F concentration varies from 17.8 to 21.0 mg/l with mean 19.3 mg/l. There is no correlation of F with chemical parameters except calcium. The Ca has shown inverse proportional with F. Water–rock interaction studies were also carried out to understand the behavior of F in groundwater at prominent F affected areas. Rock samples were collected and analyzed, and found their enrichment of F. The anthropogenic possibility of F is almost negligible. The rocks of this area are enriched in F from 460 to 1,706 mg/kg. It is indicated that the rock–water interaction is the main source of F in groundwater. The highest values of F are found in middle part of the region and are related to the occurrence of fluoride rich rocks and their chemical kinetic behavior with groundwater.  相似文献   

16.
The central Main Ethiopian Rift suffers a severe water quality problem, characterized by an anomalously high fluoride (F) content that causes an endemic fluorosis disease. The current study, conducted in the Ziway–Shala lakes basin, indicates that the F content exceeds the permissible limit for drinking prescribed by the World Health Organization (WHO; 1.5 mg/l) in many important wells (up to 20 mg/l), with even more extreme F concentration in hot springs and alkaline lakes (up to 97 and 384 mg/l respectively). The groundwater and surface water from the highlands, typically characterized by low total dissolved solids (TDS) and Ca (Mg)–HCO3 hydrochemical facies, do not show high F content. The subsequent interaction of these waters with the various rocks of the rift valley induces a general increase of the TDS, and a variation of the chemical signature towards Na–HCO3 compositions, with a parallel enrichment of F. The interacting matrixes are mainly rhyolites consisting of volcanic glass and only rare F-bearing accessory minerals (such as alkali amphibole). Comparing the abundance and the composition of the glassy groundmass with other mineral phases, it appears that the former stores most of the total F budget. This glassy material is extremely reactive, and its weathering products (i.e. fluvio/volcano-lacustrine sediments) further concentrate the fluoride. The interaction of these “weathered/reworked” volcanic products with water and carbon dioxide at high pH causes the release of fluoride into the interacting water. This mainly occurs by a process of base-exchange softening with the neo-formed clay minerals (i.e. Ca–Mg uptake by the aquifer matrix, with release of Na into the groundwater). This is plausibly the main enrichment mechanism that explains the high F content of the local groundwater, as evidenced by positive correlation between F, pH, and Na, and inverse correlation between F and Ca (Mg). Saturation indices (SI) have been calculated (using PHREEQC-2) for the different water groups, highlighting that the studied waters are undersaturated in fluorite. In these conditions, fluoride cannot precipitate as CaF2, and so mobilizes freely without forming other complexes. These results have important implications for the development of new exploitation strategies and accurate planning of new drilling sites. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Over the last few years there has been growing concern over the mobilisation of anthropogenically derived, atmospherically deposited Pb from upland blanket peat soils to receiving surface waters. The near-surface layer of blanket peat soils of the Peak District, southern Pennines, UK, is severely contaminated with high concentrations of Pb. Erosion of peat soils in this upland area may be releasing large quantities of previously deposited Pb into the fluvial system. Samples of fluvial sediments (suspended, floodplain, streamside fan, trash-line and channel bed) were collected from a severely eroding blanket peat catchment in the Peak District in order to investigate Pb contamination of fluvial sediments, to determine the mechanism for fluvial Pb transport and to determine if erosion of contaminated peat soils in the catchment is releasing Pb into the fluvial system. Concentrations of Pb associated with fluvial sediments are considerably higher than those in the catchment geology, but not as high as those in peat soils in the catchment. Intra- and inter-storm variability in the Pb content of suspended sediments can be explained by differences in organic matter content of these sediments and differences in erosion processes operating within the catchment. High Pb concentrations are associated with suspended sediments that have a high organic matter content. The results of this study suggest that organic matter is the principle vector for sediment-associated Pb in the fluvial system. Erosion of contaminated peat soils in the Peak District is releasing Pb into the fluvial system. The extent to which this is a problem in other peatland environments is an area requiring further research.  相似文献   

18.
Hydrogeochemical investigations were carried out in the Dashtestan, the eastern part of Borazjan, with a focus on fluoride content. The study area is underlain by a complex geology that is dominated by three lithological units, namely marl, alluvial sediments, and carbonate rocks. To assess the major geochemical factors controlling the fluoride enrichment in water, 37 groundwater and 12 surface water samples were collected from the three lithological units. Fluoride concentrations ranged up to 3?mg/L, and average concentrations varied from 1.12 (in carbonate aquifers) to 1.73 (in alluvial aquifers) to 1.82?mg/L (in marl aquifers). To study the influence of rocks and soils on groundwater quality, an additional 41 soil and rock samples were also taken and analyzed for fluoride. The order of average fluoride content in both rocks and soils is: marl?>?alluvial sediments?>?limestone, which confirms that marl is a likely source of fluoride.  相似文献   

19.
晋南临汾-运城盆地土壤氟含量及其影响因素   总被引:2,自引:1,他引:2  
通过对临汾-运城盆地表层土壤F含量的空间变化规律和影响因素的研究,发现土壤平均含F量为520mg/kg,高于全国土壤背景值。表层土壤中F的空间分布不均匀,呈现出由盆地四周向盆地中心递增的趋势。研究表明,土壤F含量的分布主要受控于粉粒和有机质等土壤理化性质、元素间的相互作用、F的吸附特性等因素,人为因素对其也有一定影响。有机质和粉粒等土壤理化性质对土壤F含量的影响较大,说明研究区土壤F含量与F的特殊化学性质和母岩类型有关。因子分析发现,研究区表层土壤F的分布可能受自然地质作用和人为作用2种因素的影响,N、Cd、Se、Cu、Zn、Mo可能代表了F的原始共生元素;土壤F的含量随Mo、Zn、Fe、Mg等元素含量的增加而增加,可能与Fe3 离子在土壤中的吸附作用有关;而F-与OH-的配位置换作用可能是造成土壤中F-吸附的主导因素。  相似文献   

20.
The major part of groundwater in India is found in granitic aquifers. Fluoride in groundwater from a crystalline aquifer in a semi-arid region of granitic rocks in India, known as Maheshwaram watershed, was analyzed for spatial and temporal variability during 1999–2002 to assess the effect of hydrogeological factors on fluoride concentration. Samples were collected from 32 representative wells in the area for the pre- and post-monsoon seasons and analyzed for F content. The CHESS computer program was used to calculate ionic activities of aqueous species and the mineral saturation index (SI) for calcite and fluorite. The GARDENIA computer program was used to calculate the recharge values in the study area. The influences of dissolution kinetics of fluoride minerals and recharge from rainfall on fluoride concentration were of interest and results clearly indicate that fluoride content in groundwater depends on the interaction period of groundwater with host rock. Results could also be utilized for designing remedial measures particularly with dilution method in an optimal way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号