首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamics of a charged relativistic particle in electromagnetic field of a rotating magnetized celestial body with the magnetic axis inclined to the axis of rotation is studied. The covariant Lagrangian function in the rotating reference frame is found. Effective potential energy is defined on the base of the first integral of motion. The structure of the equipotential surfaces for a relativistic charged particle is studied and depicted for different values of the dipole moment. It is shown that there are trapping regions for the particles of definite energies.  相似文献   

2.
We discuss the modes of the Alfve'n waves in the accretion disk with a toroidal magnetic field in black hole low mass X-ray binaries in a rotating frame.By solving the perturbed general relativistic magnetohydrodynamic equations in the rotating frame,we find two stable modes of the Alfve'n wave which are the same as those in the fiducial observer frame.This gives a feasible way to transform between the two different frames,which validates the possible Alfve'n wave modes in the accreting celestial bodies wit...  相似文献   

3.
An example of the self-consistent solution which belongs to the non-trivial solution, obtained in a previous paper (Kaburaki, 1985), is found in a nearly co-rotating inner magnetosphere. Though the stellar wind is neglected there compared with the co-rotatinal velocity, drift motion around the magnetic axis, which is a manifestation of inertial effects, is determined self-consistently with the electromagnetic field. In this process, explicit expressions for the energy integral in the rotating frame and for the density distribution are also obtained. These expressions contain a fundamental length, which is to be evaluated according to physical conditions of a magnetosphere and determines the asymptotic-kinetic energy of a plasma particle at infinity. The electric current associated with the drift motion is too small to alter the original magnetic field, but the electric field is modified by the inertial effects even in the inner magnetosphere. The integrated Ohm's law is used to describe a force balance in the rotating frame, in the limits of weak and strong magnetic field.  相似文献   

4.
The force-free magnetosphere around an obliquely rotating pulsar is studied. The basic equations reduce to two equations for two Euler potentials. One of the Euler potentials is regarded as a generalization of the stream function of the poloidal magnetic field lines in an axisymmetric rotator. Two divergence-free vectors become tangential to the surface on which this Euler potential is constant.  相似文献   

5.
We model a compact relativistic body with anisotropic pressures in the presence of an electric field. The equation of state is barotropic, with a linear relationship between the radial pressure and the energy density. Simple exact models of the Einstein–Maxwell equations are generated. A graphical analysis indicates that the matter and electromagnetic variables are well behaved. In particular, the proper charge density is regular for certain parameter values at the stellar center unlike earlier anisotropic models in the presence of charge. We show that the electric field affects the mass of stellar objects and the observed mass for a particular binary pulsar is regained. Our models contain previous results of anisotropic charged matter with a linear equation of state for special parameter values.  相似文献   

6.
The general-relativistic Ohm’s law for a two-component plasma which includes the gravitomagnetic force terms even in the case of quasi-neutrality has been derived. The equations that describe the electromagnetic processes in a plasma surrounding a neutron star are obtained by using the general relativistic form of Maxwell equations in a geometry of slow rotating gravitational object. In addition to the general-relativistic effect first discussed by Khanna and Camenzind (Astron. Astrophys. 307:665, 1996) we predict a mechanism of the generation of azimuthal current under the general relativistic effect of dragging of inertial frames on radial current in a plasma around neutron star. The azimuthal current being proportional to the angular velocity ω of the dragging of inertial frames can give valuable contribution on the evolution of the stellar magnetic field if ω exceeds 2.7×1017(n/σ) s−1 (n is the number density of the charged particles, σ is the conductivity of plasma). Thus in general relativity a rotating neutron star, embedded in plasma, can in principle generate axial-symmetric magnetic fields even in axisymmetry. However, classical Cowling’s antidynamo theorem, according to which a stationary axial-symmetric magnetic field can not be sustained against ohmic diffusion, has to be hold in the general-relativistic case for the typical plasma being responsible for the rotating neutron star.  相似文献   

7.
The jets observed to emanate from many compact accreting objects may arise from the twisting of a magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, hydromagnetic jets, which have a significant mass flux and have energy and angular momentum carried by both matter and electromagnetic field and, Poynting jets, where the mass flux is small and energy and angular momentum are carried predominantly by the electromagnetic field. Here, we describe recent theoretical work on the formation of relativistic Poynting jets from magnetized accretion disks. Further, we describe new relativistic, fully electromagnetic, particle-in-cell (PIC) simulations of the formation of jets from accretion disks. Analog Z-pinch experiments may help to understand the origin of astrophysical jets.  相似文献   

8.
Plasma magnetosphere surrounding rotating magnetized neutron star in the braneworld has been studied. For the simplicity of calculations Goldreich-Julian charge density is analyzed for the aligned neutron star with zero inclination between magnetic field and rotation axis. From the system of Maxwell equations in spacetime of slowly rotating star in braneworld, second-order differential equation for electrostatic potential is derived. Analytical solution of this equation indicates the general relativistic modification of an accelerating electric field and charge density along the open field lines by brane tension. The implication of this effect to the magnetospheric energy loss problem is underlined. It was found that for initially zero potential and field on the surface of a neutron star, the amplitude of the plasma mode created by Goldreich-Julian charge density will increase in the presence of the negative brane charge. Finally we derive the equations of motion of test particles in magnetosphere of slowly rotating star in the braneworld. Then we analyze particle motion in the polar cap and show that brane tension can significantly change conditions for particle acceleration in the polar cap region of the neutron star.  相似文献   

9.
B. C. Low 《Solar physics》1980,65(1):147-165
This is a study of the relationship between a magnetic field and its embedding plasma in static equilibrium in a uniform gravity. The ideal gas law is assumed. A system invariant in a given direction is treated first. We show that an exact integral of the equation for force balance across field lines can be derived in a closed form. Using this integral, exact solutions can be generated freely by integrating directly for the distributions of pressure, density and temperature necessary to keep a given magnetic field in equilibrium. Particular solutions are presented for illustration with the solar atmosphere in mind. Extending the treatment to the general system depending on all three spatial coordinates, we arrive at the general form of a theorem of Parker that a magnetic field in static equilibrium must possess certain symmetries. We derive an equation involving the Euler potentials of the magnetic field stipulating these necessary symmetries. Only those magnetic fields satisfying this equation can be in static equilibrium and for these fields, the endowed symmetries make the construction of exact solutions an essentially two dimensional problem as exemplified by the special case of invariance in a given direction.  相似文献   

10.
11.
We investigate the effect of mass on the radiation of a relativistically rotating neutron star. The method of Haxton and Ruffini is used to find the radiation flux from a relativistically rotating neutron star. By extending the idea of a point charge orbiting a black hole, a pulsar is modeled by simulating a relativistically rotating magnetic dipole embedded within a neutron star. The resulting equations retain the mass of the neutron star, thereby introducing effects of general relativity on the radiation from the dipole. We present exact solutions to the modeling equation as well as plots of energy spectra at different rotational velocities and inclination angles. We also present plots of total energy versus mass and two tables containing a comparison of energy ratios. These demonstrate that, for realistic neutron star masses, the high speed enhancement of the radiation is always more than compensated by the frame dragging effect, leading to a net reduction of radiation from the star. It is found that the inclusion of mass not only reduced the special relativistic enhancement, but negates it entirely as the mass of the neutron star approaches the mass limit.  相似文献   

12.
The relativistic equations of motion are derived for N self-gravitating, rotating finite bodies. These equations are then applied to the near-Earth satellite orbit determination problem. The apparent change of the shape of the Earth from the Earth centered frame to the Solar System barycentric frame changes the value of the Newtonian potential term in the metric. This in turn leads to a simplification of the equations of motion in the barycentric frame.  相似文献   

13.
It is shown that low frequency electrostatic ion mode couples with electromagnetic shear Alfven mode in a dense plasma containing strongly coupled non-degenerate ion and relativistic degenerate electron fluids. By employing the appropriate fluid equations, a linear dispersion equation is obtained which shows modifications due to ion correlations and electron relativistic degeneracy. The results are discussed in the ultra-relativistic and weak-relativistic limits and implications of the results in dense degenerate plasmas of astrophysical origin (e.g., white dwarf stars) are pointed out with possible consequences.  相似文献   

14.
Nonlinear Alfvén wave in a hot rotating and strongly magnetized electron-positron plasma is considered. Using relativistic two fluid equations, the dispersion relation for Alfvén wave in the rotating plasma is obtained. Large amplitude Alfvén solitons are found to exist in the rotating pulsar plasma. Rotational effects on solitons are discussed.  相似文献   

15.
Waves propagating in the relativistic electron-positron or ions plasma are investigated in a frame of two-fluid equations using the 3+1 formalism of general relativity developed by Thorne, Price and Macdonald (TPM). The plasma is assumed to be freefalling in the radial direction toward the event horizon due to the strong gravitational field of a Schwarzschild black hole. The local dispersion relations for transverse and longitudinal waves have been derived, in analogy with the special relativistic formulation as explained in an earlier paper, to take account of relativistic effects due to the event horizon using WKB approximation.  相似文献   

16.
A simple mechanichal problem of the force-free motion of a relativistic bead inside a rotating pipe is examined. A relevant change of shape of the pipe is considered. The force-free motion of the bead along the rotating pipe is examined as the motion in a differentially rotating medium. The differential rotation proves to be resembling a well known case of the Couette flow without outer cylinder. The determination of vectoral fields (magnetic field) in the rotating charged mediums (plasma) is problematic for the laboratory observer. Therefore the same problem is examined in the framework of general relativity, that is the physical quantities are considered in the inertial frame and non-inertial frame with no rotational in homogeneity. The problematic character of the determination of the physical quantity in the differentially rotating madium relative to the inertial observer is explained. It is shown that at certain large distances from the rotation center the pipe does not rotate. However, at rather small distances its shape takes on the appearance of an expanded spiral-like configuration. A possible relevance of the obtained results to the motion of a relativistic plasma flows in pulsar magnetosphere is pointed out. The areas of Crab pulsar's dipole radiation are estimated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
We perform a detailed physical analysis for a class of exact solutions for the Einstein–Maxwell equations. The linear equation of state consistent with quark stars has been incorporated in the model. The physical analysis of the exact solutions is performed by considering the charged anisotropic stars for the particular nonsingular exact model obtained by Maharaj, Sunzu and Ray. In performing such an analysis we regain masses obtained by previous researchers for isotropic and anisotropic matter. It is also indicated that other masses and radii may be generated which are in acceptable ranges consistent with observed values of stellar objects. A study of the mass-radius relation indicates the effect of the electromagnetic field and anisotropy on the mass of the relativistic star.  相似文献   

18.
We obtain equilibrium solutions for rotating compact stars, including special relativistic effects. The gravity is assumed to be Newtonian, but we use the active mass density, which takes into account all energies such as the motion of the fluid, internal energy and pressure energy in addition to the rest-mass energy, in computing the gravitational potential using Poisson's equation. Such a treatment could be applicable to neutron stars with relativistic motions or a relativistic equation of state. We applied Hachisu's self-consistent field (SCF) method to find spheroidal as well as toroidal sequences of equilibrium solutions. Our solutions show better agreement with general relativistic solutions than the Newtonian relativistic hydrodynamic approach, which does not take into account the active mass. Physical quantities such as the peak density and equatorial radii in our solutions agree with the general relativistic ones to within 5 per cent. Therefore our approach can be used as a simple alternative to the fully relativistic one when a large number of model calculations is necessary, as it requires much fewer computational resources.  相似文献   

19.
A finite amplitude linearly polarized electromagnetic wave propagating in a relativistic plasma, is found to generate the longitudinal d.c. as well as the oscillating electric field at the second harmonic. In a plasma consisting of only electrons and positrons, these fields cannot be generated.The evolution of the electromagnetic waves is governed by the non-linear Schrödinger equation which shows that the electromagnetic solitons are always possible in ultra-relativistic plasmas (electron-ion or electron-positron) but in a plasma with relativistic electrons and nonrelativistic ions, these solitons exist only if 1(KT e/meC2)<(2m i/15me);m e andm i being the electron and ion mass andT e the electron temperature. Both the d.c. electric field and the solitons provide a nonlinear mechanism for anomalous acceleration of the particles. This model has direct relevance to some plasma processes occurring in pulsars.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号