首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The so-called S reflector is a group of bright, continuous reflections underlying the landward-tilted fault blocks of the west Galicia rifted margin, S has been interpreted as the brittle-ductile transition, the lop of an intrusion, a detachment fault, and the crust-mantle boundary. To constrain the internal structure of the reflector, we have carried out detailed analyses of these reflections. We compare the waveforms of the seafloor reflection and its first multiple, both to determine the amplitude of the seafloor reflection and to show (hat the seafloor is in effect a spike in the reflectivity series so that the seafloor reflection can be used as the far-field wavelet, including both source and receiver ghosts. We compare (he waveform of the seafloor and 5 and show that, within the resolution of our data, S is a reflection from a step increase in acoustic impedance. This result is confirmed through complex trace analysis, and in particular the determination of the apparent polarity of S, and the examination of the instantaneous frequency function: S is consistently positive polarity, and shows no significant frequency anomaly. Simple modelling shows that S is very unlikely to be a reflection from a thin layer. We thus conclude that S is probably a single steplike interface. From the varying frequency content of the data, we determine a value for the effective Q between S and the seafloor, and use this to assess the amplitude loss due to attenuation and scattering. We use a comparison between the seafloor and the S reflection to constrain the amplitude of S, and estimate a reflection coefficient for S of at least 0.2 in places, decreasing landwards. By analogy with structures developed in the highly extended regions of the western United States, we consider that the most likely interpretation of S is as a sharp west-dipping detachment fault separating a 'granitic' upper plate from a higher-velocity lower plate, locally probably serpentinized mantle.  相似文献   

2.
Air-borne radio-echo soundings of sub-polar glaciers in Svalbard have previously been carried out by Soviet scientists using high frequency radar units of 620 and 440 MHz. Later a British/Norwegian group made soundings with 60 MHz equipment. The high frequency radar units seemed to underestimate the ice thicknesses. The 60 MHz radar unit seemed to give more accurate results when compared to areas with gravity surveyed bed. However, both the Soviet and the British equipment seldom recorded bed-echoes in accumulation areas where firn soaking during summer and thus zero temperatures are likely to occur. A low-frequency impulse radar unit of 8 MHz, however, recorded bed echoes in these areas too. In the accumulation area of Kongsvegen depths down to 440 m were recorded. The glacier bed is thus close to sea level at approximately 12 km from the calving front. Soundings were carried out on Brøggerbreen. Lovenbreen and Kongsvegen. Subglacial maps were generated from the data. Internal reflections that were probably caused by englacial drainage channels could be observed. Frequent internal reflections close to the bed could be interpreted as an indication of temperate ice. However, we could not find any distinct upper level of these reflections.  相似文献   

3.
A fundamental geologic problem in the Steam-Assisted Gravity Drainage (SAGD) heavy oil developments in the McMurray Formation of Northern Alberta is to determine the location of shales in the reservoirs that may interfere with the steaming or recovery process. Petrophysical analysis shows that a key acoustic indicator of the presence of shale is bulk density. In theory, density can be derived from seismic data using Amplitude Versus Offset (AVO) analysis of conventional or multicomponent seismic data, but this is not widely accepted in practice. However, with billions of dollars slated for SAGD developments in the upcoming years, this technology warrants further investigation. In addition, many attributes can be investigated using modern tools like neural networks; so, the density extracted from seismic using AVO can be compared and combined with more conventional attributes in solving this problem. Density AVO attributes are extracted and correlated with “density synthetics” created from the logs just as the seismic stack correlates to conventional synthetics. However, multiattribute tests show that more than density is required to best predict the volume proportion of shale (Vsh). Vsh estimates are generated by passing seismic attributes derived from conventional PP, and multicomponent PS seismic, AVO and inversion from an arbitrary line following the pilot SAGD wells through a neural network. This estimate shows good correlation to shale proportions estimated from core. The results have encouraged the application of the method to the entire 3D.  相似文献   

4.
Summary. In this paper we discuss some aspects of estimating t * from short-period body waves and present some limits on t* (f) models for the central and south-western United States (CUS and SWUS). We find that for short-period data, with frequencies above 1 or 2 Hz, while the average spectral shape is stable, the smaller details of the spectra are not; thus, only an average t *, and not a frequency-dependent t *, can be derived from such information. Also, amplitudes are extremely variable for short-period data, and thus a great deal of data from many stations and azimuths must be used when amplitudes are included in attenuation studies.
The predictions of three pairs of models for t* (f) in the central and south-western United States are compared with time domain observations of amplitudes and waveforms and frequency domain observations of spectral slopes to put bounds on the attenuation under the different parts of the country. A model with the t * values of the CUS and SWUS converging at low frequencies and differing slightly at high frequencies matches the spectral domain characteristics, but not the time domain amplitudes and waveforms of short-period body waves. A model with t * curves converging at low frequencies, but diverging strongly at high frequencies, matches the time domain observations, but not the spectral shapes. A model with nearly-parallel t* (f) curves for the central and south-western United States satisfies both the time and frequency domain observations.
We conclude that use of both time and frequency domain information is essential in determining t* (f) models. For the central and south-western United States, a model with nearly-parallel t* (f) curves, where Δ t *∼ 0.2 s, satisfies both kinds of data in the 0.3–2 Hz frequency range.  相似文献   

5.
i
Displacements of Love waves generated by a two-dimensional point source in a layered medium have been studied earlier by Sezawa & Sato by the method of successive reflections at the boundaries. In this paper the same problem has been worked out by using Green's function. The paper deals with the study of attenuation of Love waves of low periods in the coastal region. Experimental observations show that Love waves of smaller periods can be obtained only in the island observing stations. A slight intervention of the continental boundary is sufficient to attenuate lower period Love waves giving a hint thereby that attenuation of lower periods takes place perhaps at the continental margin. Taking a simplified configuration for the continental boundary and using Green's function technique, the displacement of Love waves due to a point source has been obtained and it has been shown that attenuation of Love waves of smaller periods takes place in the continental margin due to the slope of the boundary.  相似文献   

6.
Summary. Factors influencing the seismic response characteristics of marine profiling systems are reviewed. The single frequency case is used to illustrate the influence of different frequencies on the response, as well as the towing depths of the source and receiver, and the geometry of a linear receiving array. The more realistic case of band-limited source waveforms is considered, using frequency spectra calculated from theoretically derived airgun signals. The results show that the number and shape of sidelobes of the profiling system response, as well as the filtering characteristics for reflections arising from reflectors in the vertical plane perpendicular to the axis of the receiver array are determined by the depths of the source and receiver and the relative amplitudes of the frequencies in the source waveform. These factors, along with the configuration of the hydrophone elements in the receiver array, determine the frequency and amplitude attenuation of reflections in the vertical plane containing the receiver array.
The filtering characteristics of the system both in and out of the vertical plane containing the receiver array are discussed, with implications for discriminating between off-axis and in-plane reflections. A plan view of the response of the system is constructed in the time domain for various profiling configurations and sources of different frequency content at a given time. This example shows how useful the resulting pictures are for optimizing acquisition parameters in profiling experiments.  相似文献   

7.
The phase velocity and the attenuation coefficient of compressional seismic waves, propagating in poroelastic, fluid-saturated, laminated sediments, are computed analytically from first principles. The wavefield is found to be strongly affected by the medium heterogeneity. Impedance fluctuations lead to poroelastic scattering; variations of the layer compressibilities cause inter-layer flow (a 1-D macroscopic local flow). These effects result in significant attenuation and dispersion of the seismic wavefield, even in the surface seismic frequency range, 10–100 Hz. The various attenuation mechanisms are found to be approximately additive, dominated by inter-layer flow at very low frequencies. Elastic scattering is important over a broad frequency range from seismic to sonic frequencies. Biot's global flow (the relative displacement of solid frame and fluid) contributes mainly in the range of ultrasonic frequencies. From the seismic frequency range up to ultrasonic frequencies, attenuation due to heterogeneity is strongly enhanced compared to homogeneous Biot models. Simple analytical expressions for the P -wave phase velocity and attenuation coefficient are presented as functions of frequency and of statistical medium parameters (correlation lengths, variances). These results automatically include different asymptotic approximations, such as poroelastic Backus averaging in the quasi-static and the no-flow limits, geometrical optics, and intermediate frequency ranges.  相似文献   

8.
Summary. Using a single scattering approximation, we derive equations for the scattering attenuation coefficients of P- and S -body waves. We discuss our results in the light of some recent energy renormalization approaches to seismic wave scattering. Practical methods for calculating the scattering attenuation coefficients for various earth models are emphasized. The conversions of P - to S -waves and S- to P -waves are included in the theory. The earth models are assumed to be randomly inhomogeneous, with their properties known only through their average wavenumber power spectra. We approximate the power spectra with piecewise constant functions, each segment of which contributes to the net, frequency-dependent, scattering attenuation coefficient. The smallest and largest wavenumbers of a segment can be plotted along with the wavevectors of the incident and scattered waves on a wavenumber diagram. This diagram gives a geometric interpretation for the frequency behaviour associated with each spectral segment, including a 'transition' peak that is due entirely to the wavenumber limits of the segment. For regions of the earth where the inhomogeneity spectra are concentrated in a band of wavenumbers, it should be possible to observed such a peak in the apparent attenuation of seismic waves. We give both the frequency and distance limits on the accuracy of the theoretical results.  相似文献   

9.
张景哲 《地理研究》1982,1(4):10-16
长期来在城市总体规划中,总是按照“盛行风原则”把工业区布置在城市的下风侧,但却并不一定能达到预期的效果.本文阐明了“盛行风原则”的缺点,并自气候学的角度出发,综合考虑影响城市大气污染的各重要气象因素,提出了利用多年常规气象观测记录,计算风的污染指数和不同风向的污染指数频率的公式.按污染指数频率即可确定吹哪一个方向的风时可能出现大气污染的机率最大,从而可以按这一风向把工业区布置在城市的下风侧.  相似文献   

10.
中国地震发生频率与烈度的空间分布   总被引:7,自引:1,他引:7  
考虑不同区域地震记录具有时间长度不等的特点,对“震中分布分震级网格点密集值”算法进行改进,结合 GIS 的空间分析方法将地震目录中的点数据空间化为能反映地震发生频率的栅格数据;依据地震震级和烈度的关 系以及地震烈度在空间上的椭圆衰减模型,选择逼近和近似的计算手段,并结合空间插值方法得到中国地震烈度 分布的栅格图。从地震频率分布结果上看,大致以宁夏、甘肃、四川和云南为界,中国西部地区3 级以上的地震发生 频率要高于东部地区;从地震烈度分布结果看,中国甘肃、陕西、宁夏、山西、河北、四川、云南等位于地震带内的区 域在发生地震时产生的烈度较高。  相似文献   

11.
Inversion of seismic attributes for velocity and attenuation structure   总被引:1,自引:0,他引:1  
We have developed an inversion formuialion for velocity and attenuation structure using seismic attributes, including envelope amplitude, instantaneous frequency and arrival times of selected seismic phases. We refer to this approach as AFT inversion for amplitude, (instantaneous) frequency and time. Complex trace analysis is used to extract the different seismic attributes. The instantaneous frequency data are converted to t * using a matching procedure that approximately removes the effects of the source spectra. To invert for structure, ray-perturbation methods are used to compute the sensitivity of the seismic attributes to variations in the model. An iterative inversion procedure is then performed from smooth to less smooth models that progressively incorporates the shorter-wavelength components of the model. To illustrate the method, seismic attributes are extracted from seismic-refraction data of the Ouachita PASSCAL experiment and used to invert for shallow crustal velocity and attenuation structure. Although amplitude data are sensitive to model roughness, the inverted velocity and attenuation models were required by the data to maintain a relatively smooth character. The amplitude and t * data were needed, along with the traveltimes, at each step of the inversion in order to fit all the seismic attributes at the final iteration.  相似文献   

12.
The onshore–offshore correlation of sedimentary successions is a common problem in basin analysis, but it becomes critical for the full understanding of the Messinian salinity crisis (MSC), a complex array of palaeoenvironmental events which affected the Mediterranean basin at the end of the Miocene. The outcrop records show that the Messinian stratigraphic architectures may be highly complex as the deposits of the different MSC evolutionary stages can be lithologically similar and separated by erosional surfaces and/or morphostructural highs. The correct definition of the nature and stratigraphic position of Messinian deposits in offshore areas through seismic data may be almost impossible, especially where core data are sparse. To bridge the gap between onshore and offshore records, we have built synthetic seismic sections from well‐constrained outcrop successions. Our results provide useful insights and warnings for the interpretation of offshore data, pointing out that MSC units having different age, nature and depositional settings, may show similar seismic facies and geometries. Conversely, the same deposit may result in different seismic facies, either with parallel and high‐amplitude reflections or even transparent or chaotic due to interference patterns of seismic reflections related to dominant frequency. It follows that a correct interpretation of the nature and age of deep‐seated Messinian deposits can only be obtained through the integration of seismic and core data, and considering the onshore record. The application of our approach to the Balearic Promontory results in an alternative interpretation with respect to previous models. We show that this offshore area has good analogues in the onshore of the Betic Cordillera and includes both shallow and intermediate depth sub‐basins that underwent a strong post‐Messinian subsidence.  相似文献   

13.
Imbricate reflections commonly occur in the glacigenic section of seismic profiles from the Bjørnøya Trough. This was the main drainage pathway for fast‐flowing ice‐streams from the former Barents Sea and Scandinavian ice sheets. Industry three‐dimensional (3D) seismic data from the southern flank of the Bjørnøya Trough are used here to investigate these imbricate reflections. Integration of vertical seismic sections with 3D plan view images and attribute maps reveal that imbricate reflections at the SW Barents Sea Margin are mega‐scale sediment blocks with a glacigenic origin. Imbricate reflections in two regions to the east of the survey appear on plan‐view as well‐developed lineations of U‐shaped crescents; however, following detailed analysis of their location, geometry and relation to sailing direction during data acquisition, we can demonstrate that these are seismic artefacts. These artefacts are related to the straight parts of east–west‐trending plough marks on the sea floor, having a dip direction that is directly related to the sailing direction of the ship during seismic acquisition. By analysing both real glacigenic imbrications and false imbrications or artefacts, we are able to demonstrate the critical distinguishing criterion.  相似文献   

14.
Offset-dependent characteristics of seismic scattering are useful for characterizing fractured reservoirs. We use two models that have different background medium properties and different azimuthal AVO responses to study elastic wave propagation and scattering in gas-saturated, heterogeneously fractured reservoirs. Heterogeneous fracture density distributions are built through stochastic modelling. Synthetic seismograms are generated by 3-D finite difference modelling, and waveforms along crack-normal and strike directions are considered in this paper. The multiple signal classification (MUSIC) frequency estimator is used in waveform estimation to provide frequency-domain attributes related to seismic wave scattering by fracture heterogeneity. Our results indicate that the strength of the scattering field is a function of the background medium. The strength also increases with increasing fracture scatterer density and with decreasing correlation length of spatial variations of fracture density. The scattering field is weak at the top of the fractured reservoir. The first-order results are dominated by velocity anisotropy of the mean fracture density field. However, the base of the fractured reservoir corresponds to a strong scattering field on which fracture heterogeneity has a larger effect and is characterized by the loss of coherence.  相似文献   

15.
Generalized Born scattering of elastic waves in 3-D media   总被引:1,自引:0,他引:1  
It is well known that when a seismic wave propagates through an elastic medium with gradients in the parameters which describe it (e.g. slowness and density), energy is scattered from the incident wave generating low-frequency partial reflections. Many approximate solutions to the wave equation, e.g. geometrical ray theory (GRT), Maslov theory and Gaussian beams, do not model these signals. The problem of describing partial reflections in 1-D media has been extensively studied in the seismic literature and considerable progress has been made using iterative techniques based on WKBJ, Airy or Langer type ansätze. In this paper we derive a first-order scattering formalism to describe partial reflections in 3-D media. The correction term describing the scattered energy is developed as a volume integral over terms dependent upon the first spatial derivatives (gradients) of the parameters describing the medium and the solution. The relationship we derive could, in principle, be used as the basis for an iterative scheme but the computational expense, particularly for elastic media, will usually prohibit this approach. The result we obtain is closely related to the usual Born approximation, but differs in that the scattering term is not derived from a perturbation to a background model, but rather from the error in an approximate Green's function. We examine analytically the relationship between the results produced by the new formalism and the usual Born approximation for a medium which has no long-wavelength heterogeneities. We show that in such a case the two methods agree approximately as expected, but that in a media with heterogeneities of all wavelengths the new gradient scattering formalism is superior. We establish analytically the connection between the formalism developed here and the iterative approach based on the WKBJ solution which has been used previously in 1-D media. Numerical examples are shown to illustrate the examples discussed.  相似文献   

16.
Summary. Multichannel seismic reflection sections recorded across Vancouver Island have revealed two extensive zones of deep seismic reflections that dip gently to the northeast, and a number of moderate northeasterly dipping reflections that can be traced to the surface where major faults are exposed. Based on an integrated interpretation of these data with information from gravity, heat flow, seismicity, seismic refraction, magnetotelluric and geological studies it is concluded that the lower zone of gently dipping reflections is due to underplated oceanic sediments and igneous rocks associated with the current subduction of the Juan de Fuca plate, and that the upper zone represents a similar sequence of accreted rocks associated with an earlier episode of subduction. The high density/high velocity material between the two reflection zones is either an underplated slab of oceanic lithosphere or an imbricated package of mafic rocks. Reprocessing of data from two of the seismic lines has produced a remarkable image of the terrane bounding Leech River fault, with its dip undulating from >60° near the surface to 20° at 3 km depth and ∼38° at 6 km depth.  相似文献   

17.
Summary. A variety of near-regional (300 km) data, including spectral amplitudes of Pg , surface-wave forms, and close-in (5–10 km) accelerograms have been used to build an elastic seismic source model for a 1-Mton explosion in tuff at near-regional distances. The model consists of: (1) a pressure pulse which injects 3 × 1012 cm3 of volume into the medium, (2) a vertical, upward force impulse that imparts 1018 dyn-s of momentum to the medium, each source component having a time duration of 0.6 s and a depth of 1.3 km. The force impulse appears to be required by two considerations: (a) the striking similarity, apart from sign, of explosion surface waves with those of their cavity collapses, (b) the observation of considerable SV energy leaving the source of the 1-Mton explosions JORUM and HANDLEY . Scaling curves have been constructed which fit the proposed source model. These scaling curves employ: very slow decrease, as (yield)−0.10 of the primary corner frequency; decay as (frequency)4 or (frequency)3 to high frequency. While these scaling curves are unconventional, they appear to be the only ones which can satisfy the near-regional data. The slow scaling with yield of the spectral carner frequency suggests that it is caused by something other than the equivalent elastic radius, e.g. the time duration of motion at the source. The results, at odds with similar studies at teleseismic distances, suggest that significantly different equivalent elastic sources are required at near-regional (as compared with teleseismic) distances; therefore, the effect of the upward impulse might not be seen at teleseismic distances. Consequently, these results probably do not pertain to the seismic discrimination problem at teleseismic distances.  相似文献   

18.
Investigation of teleseismic P -wave recordings at a temporary network in the Eastern Carpathians, equipped with predominantly short-period sensors, is compared with synthetic modelling of anelastic attenuation of teleseismic waves in the upper mantle. Using the t * approach, we examine variations of amplitude decrease over frequency for teleseismic recordings in the frequency band 0.5–1.5 Hz. The results reveal a consistent pattern of increased t * values in the centre of the network, in the Vrancea region at the bend of the Carpathian Arc, although the magnitude of the observed variation in t * is much higher than expected. Synthetic t * parameter computations for the same event-receiver configurations reproduce the observed pattern in terms of relative variations. However, the amplitude of the synthetic t * values explains only 10–20 per cent of the observed variation in t *. t * is not a direct measure for anelastic attenuation but rather for a combination of anelastic and other attenuating effects such as scattering and amplitude fluctuation related to velocity inhomogeneities. If regional amplitude variations are solely attributed to anelastic attenuation, all other effects are mapped into Q . We discuss the role of anelastic attenuation and other effects in the case of the Eastern Carpathians and conclude that t * is an unsuitable parameter to characterize anelastic attenuation in the Eastern Carpathians.  相似文献   

19.
The derivation of seismic reflection and transmission coefficients is generally based on the assumption that the medium parameters behave as step functions of depth, at least in a finite region around the interface. However, outliers observed in well logs generally behave quite differently from step functions. In this paper we represent an interface by a self-similar singularity, embedded between two homogeneous half-spaces, and we derive its frequency-dependent normal-incidence reflection and transmission coefficients. For ω  → 0 the expressions for the coefficients reduce to those for a discrete boundary between two homogeneous half-spaces; for ω → ∞ they become frequency-independent. These asymptotic expressions have a relatively simple form and depend on the singularity exponent α .
  The exact as well as the asymptotic expressions are used to evaluate the time-domain reflection and transmission responses of a self-similar interface. Finally, we use a numerical method to model the response of a smoothed version of a self-similar interface (note that the velocity of a smoothed singularity remains finite). It turns out that smoothing has hardly any effect on the response, provided that the smoothing does not affect the scales corresponding to the seismic frequency range.  相似文献   

20.
Summary. The character of multi-offset reflections from the deep crust in the Mojave Desert are examined to reveal the physical nature of the reflecting structures. We focus on distinguishing classical abrupt discontinuities, such as traditional models of the Conrad and Moho boundaries, from more unusual structures. Finite-difference modeling and simple interference relations show that pre-critical reflections exhibiting an increase in peak frequency with offset arise from thinly-layered horizontal structures, while reflections from step discontinuities show no change in frequency with offset. In the deep crust thin layers may result from sill intrusion or fault motion.
The sense of changes in Poisson's ratio and the relative strength of density changes determine whether reflection amplitudes will increase or decrease with offset. A simple linear regression on pre-critical reflection amplitudes against offset is adequate to separate reflections arising from increases in Poisson's ratio from those arising from decreases in Poisson's ratio and/or density changes. The latter condition may be the result of strong anisotropy or the presence of pore fluid. Comparisons of the properties of major deep reflectors across the Mojave Desert suggest that the effects of tectonic motion and fluid injection have penetrated all levels of the crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号