首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Metamorphic garnet commonly contains needle‐like rutile inclusions as well as equant rutile inclusions that surround quartz inclusions and range in size from submicrometer to nanometer. Although the origin of these equant rutile inclusions, that is, exsolution or non‐exsolution, has important implications for petrological and tectonic processes, the crystallographic characteristics of these inclusions have rarely been studied because of the small sizes and analytical difficulties involved. Here, we report the crystallographic characteristics pertinent to the genetic origin of minute equant rutile inclusions in cloudy, nearly spherically shaped garnet domains with Ti‐depleted compositions surrounding quartz inclusions in ultrahigh‐pressure garnet from several diamondiferous Erzgebirge quartzofeldspathic gneissic rock samples. TEM analyses show that the equant rutile crystals in cloudy garnet domains are partially bounded by the low‐energy {100}rt ± {110}rt ± {101}rt facets and have rather random crystallographic orientation relationships (CORs) with the garnet host, with preferential alignment of low‐energy lattice planes, for example, {100}rt//{112}grt, for some rutile crystals. Although the rather random CORs are unlikely to be attributed to solid‐state exsolution subjected to the stringent topotactic garnet lattice constraints, the characteristic subhedral {100}rt ± {110}rt ± {101}rt crystal forms of rutile can be rationalized by a metasomatic dissolution‐reprecipitation mechanism via a fluid phase. In this scenario, the quartz+fluid inclusions in garnet were first subjected to decompression microcracking during rock exhumation, followed by dissolution of Ti‐bearing garnet matrix at the crack tips or along the crack surfaces and subsequent reprecipitation of rutile, apatite, gahnite, akdalaite, and Ti‐depleted garnet. The rapid coalescence between rutile and garnet crystals in fluid or direct attachment of rutile crystals onto the dissolving crack surfaces would then yield the rather random CORs as reported here. These results, along with previous work on rutile needles, indicate rather diverse genesis of rutile inclusions in various crystal forms, thus shedding light on the controversial exsolution origin for other inclusion suite/microstructure in minerals.  相似文献   

2.
内蒙古大青山地区石榴混合花岗质岩石地球化学特征及成因   总被引:11,自引:0,他引:11  
内蒙古大青山地区太古宙孔兹岩系在发生麻粒岩相变质作用的同时,榴云片麻岩岩组中的石榴黑云片麻岩在近水平剪切构造变形过程中发生部分熔融,形成了石榴混合花岗质岩石。现有证据表明,它们形成于新太古代晚期,在矿物组成、地球化学特征上,大体继承了石榴黑云片麻岩,而它们的结构和地球化学特征尤其是REE分布型式的变异又反映了其部分熔融和演化。尽管该石榴混合花岗质岩体规模小,但在矿物组成、结构和地球化学特征上显示出明显的不均一性,形成了高K2O低Na2O、CaO,稀土元素总量低,具正Eu异常和低K2O高Na2O、CaO,稀土元素总量高,具负Eu异常的两类石榴混合花岗质岩石。综合研究发现,这两类石榴混合花岗质岩石的形成与部分熔融及随后的流动过程中熔体与残留体的逐渐分离有关,前者残留体、残留矿物相极少,富长英质;而后者残留体和残留矿物相对较多,因而富镁铁质,并且控制REE行为的矿物相如石榴石和独居石、磷灰石、锆石等相对富集,从而造成了两类石榴混合花岗质岩石稀土元素分布型式的差异,与桑干地区成因相似、成熟度较高的古元古代花岗岩具有较大差别。  相似文献   

3.
焦淑娟  郭敬辉  彭松柏 《岩石学报》2013,29(5):1740-1758
根据石榴石不同的结构和化学特征,在大容山-十万大山岩套旧州岩体中共识别出四种不同成因类型的石榴石:岩浆型、转熔型、变质型和由于上升岩浆中溶解-再沉淀机制导致的从转熔型向岩浆型转变的过渡型石榴石.由于含不同的微域矿物组合,麻粒岩包体被分为两类.根据微区矿物组合识别,变质期次确定和变质反应分析,结合矿物化学和相平衡模拟计算,得到了两类麻粒岩包体内不同矿物组合的温压条件.麻粒岩包体源区的温压条件为800 ~ 830℃和7.2~8.0kbar,以含石榴石的矿物组合为代表,反映了源区部分熔融作用的晚期阶段.岩浆上升过程中石榴石或黑云母首先反应形成了Opx+ Crd反应边组合,温压条件为810~860℃和4.6~5.2kbar.花岗岩中岩浆型堇青石的形成也可能基本与此同期.进一步减压在850℃和3.1~3.8kbar时形成了Spl+ Crd组合.综合这些数据可以确定一条顺时针的P-T轨迹以减压为主但伴随轻微的升温,随后为一个近等压冷却过程.这是由寄主花岗质岩浆上升和侵位造成的.本研究与有效的年代学资料相结合,暗示了花岗质岩浆和麻粒岩包体是下地壳源区部分熔融的结果,形成时代为250~ 260Ma,可能受到了同期峨眉山地幔柱的热影响.  相似文献   

4.
Spinel + cordierite + K‐feldspar + plagioclase + glass form coronas around garnet in metapelitic xenoliths at El Hoyazo and Mazarrón, two localities of the Neogene Volcanic Province (NVP) of SE Spain. The presence of fresh glass (quenched melt) in all phases shows that corona development occurred under partial melting conditions. Algebraic analysis of mass balance in the NCKFMASH system suggests the reaction Grt + Sil + Bt + Pl = Spl + Crd + Kfs + melt as the most plausible model for the development of coronas in the El Hoyazo sample, and indicates that biotite was required as reactant for the formation of cordierite. The P–T conditions for the formation of coronas are estimated at ~820 ± 50 °C, 4.5 ± 0.6 kbar at El Hoyazo, and ~820 ± 50 °C, 4.0 ± 0.4 kbar at Mazarrón. The El Hoyazo xenoliths record a complex P–T history, characterized by early melt production during heating and additional melting during decompression. A local cooling event characterized by minor retrograde reaction and melt crystallization preceded ascent and eruption. This study shows that detailed xenolith analysis may be used to track magma evolution in a chamber.  相似文献   

5.
Metamorphic equilibration requires chemical communication between minerals and may be inhibited through sluggish volume diffusion and or slow rates of dissolution in a fluid phase. Relatively slow diffusion and the perceived robust nature of chemical growth zoning may preclude garnet porphyroblasts from readily participating in low‐temperature amphibolite facies metamorphic reactions. Garnet is widely assumed to be a reactant in staurolite‐isograd reactions, and the evidence for this has been assessed in the Late Proterozoic Dalradian pelitic schists of the Scottish Highlands. The 3D imaging of garnet porphyroblasts in staurolite‐bearing schists reveals a good crystal shape and little evidence of marginal dissolution; however, there is also lack of evidence for the involvement of either chlorite or chloritoid in the reaction. Staurolite forms directly adjacent to the garnet, and its nucleation is strongly associated with deformation of the muscovite‐rich fabrics around the porphyroblasts. “Cloudy” fluid inclusion‐rich garnet forms in both marginal and internal parts of the garnet porphyroblast and is linked both to the production of staurolite and to the introduction of abundant quartz inclusions within the garnet. Such cloudy garnet typically has a Mg‐rich, Mn‐poor composition and is interpreted to have formed during a coupled dissolution–reprecipitation process, triggered by a local influx of fluid. All garnet in the muscovite‐bearing schists present in this area is potentially reactive, irrespective of the garnet composition, but very few of the schists contain staurolite. The staurolite‐producing reaction appears to be substantially overstepped during the relatively high‐pressure Barrovian regional metamorphism reflecting the limited permeability of the schists in peak metamorphic conditions. Fluid influx and hence reaction progress appear to be strongly controlled by subtle differences in deformation history. The remaining garnet fails to achieve chemical equilibrium during the reaction creating distinctive patchy compositional zoning. Such zoning in metamorphic garnet created during coupled dissolution–reprecipitation reactions may be difficult to recognize in higher grade pelites due to subsequent diffusive re‐equilibration. Fundamental assumptions about metamorphic processes are questioned by the lack of chemical equilibrium during this reaction and the restricted permeability of the regional metamorphic pelitic schists. In addition, the partial loss of prograde chemical and textural information from the garnet porphyroblasts cautions against their routine use as a reliable monitor of metamorphic history. However, the partial re‐equilibration of the porphyroblasts during coupled dissolution–reprecipitation opens possibilities of mapping reaction progress in garnet as a means of assessing fluid access during peak metamorphic conditions.  相似文献   

6.
High-pressure schists (2–2.5 GPa) from the Eclogite Zone in the Tauern Window contain honeycomb garnet in which fine webs of garnet surround strain-free quartz ± carbonate grains. High-resolution X-ray computed tomography shows that the garnet webs form a cellular structure that coats all surfaces of the inclusions. Electron backscatter diffraction analysis shows that the garnet cells are crystallographically continuous with more massive garnet regions, and that the quartz ± carbonate inclusions have random orientations; in contrast, matrix quartz exhibits a prominent crystallographic preferred orientation (CPO). High-resolution transmission electron microscopy shows few dislocations in either the garnet or the inclusion quartz. Most honeycomb garnet is chemically homogeneous, but some displays asymmetric core–rim zoning. Taken together, these observations are most consistent with formation of the garnet sheets via precipitation from a wetting fluid along quartz–quartz grain boundaries, or possibly via wholesale precipitation of garnet + quartz ± carbonate from a fluid. In either case, a silicate-rich aqueous fluid must have been present. The likelihood that a fully wetting fluid existed at high pressure has important implications for rheology during subduction of metasedimentary rocks: strain may be accommodated by grain rotation and sliding in an aqueous silicate slurry, rather than via dislocation creep mechanisms at high pressures. The absence of a CPO in early quartz may thus point to involvement of a pervasive grain-boundary fluid rather than requiring low differential stresses during subduction.  相似文献   

7.
华南花岗岩暗色微粒包体矿物组成及微结构研究   总被引:2,自引:0,他引:2       下载免费PDF全文
对来自华南多个花岗岩体的暗色微粒包体样品进行了系统的矿物组成和微结构研究,发现包体中不管是造岩矿物还是副矿物,均存在新、老两个不同世代;包体的微结构大部分情况下也不是“火成结构”,而是以熔融结构为主,并且常多种结构共存,揭示包体是岩石部分熔融的残余物而并非来自岩浆的结晶。不同包体或同一包体从中心到边缘的矿物组成与微结构的差异,反映原岩部分熔融程度的不同,揭示其处于不同的演化阶段。  相似文献   

8.
The analysis of texture, major element and oxygen isotope compositions of cloudy garnet crystals from a metapelite sampled on Ikaria Island (Greece) is used to assess the model of growth and re‐equilibration of these garnet crystals and to reconstruct the pressure–temperature–fluid history of the sample. Garnet crystals show complex textural and chemical zoning. Garnet cores (100–200 μm) are devoid of fluid inclusions. They are characterized by growth zoning demonstrated by a bell‐shaped profile of spessartine component (7–3 mol.%), an increase in grossular from 14 to 22 mol.% and δ18O values between 9.5 ± 0.3‰ and 10.4 ± 0.2‰. Garnet inner rims (90–130 μm) are fluid inclusion‐rich and show a decreasing grossular component from 22 to 5 mol.%. The trend of the spessartine component observed in the inner rim allows two domains to be distinguished. In contrast to domain I, where the spessartine content shows the same trend as in the core, the spessartine content of domain II increases outwards from 2 to 14 mol.%. The δ18O values decrease towards the margins of the crystals to a lowest value of 7.4 ± 0.2‰. The outer rims (<10 μm) are devoid of fluid inclusions and have the same chemical composition as the outermost part of domain II of the inner rim. Garnet crystals underwent a four‐stage history. Stage 1: garnet growth during the prograde path in a closed system for oxygen. Garnet cores are remnants of this growth stage. Stage 2: garnet re‐equilibration by coupled dissolution–reprecipitation at the temperature peak (630 < T < 650 °C). This causes the creation of porosity as the coupled dissolution–reprecipitation process allows chemical (Ca) and isotopic (O) exchange between garnet inner rims and the matrix. The formation of the outer rim is related to the closure of porosity. Stage 3: garnet mode decreases during the early retrograde path, but garnet is still a stable phase. The resulting garnet composition is characterized by an increasing Mn content in the inner rim’s domain II caused by intracrystalline diffusion. Stage 4: dissolution of garnet during the late retrograde path as garnet is not a stable phase anymore. This last stage forms corroded garnet. This study shows that coupled dissolution–reprecipitation is a possible re‐equilibration process for garnet in metamorphic rocks and that intra‐mineral porosity is an efficient pathway for chemical and isotopic exchange between garnet and the matrix, even for otherwise slow diffusing elements.  相似文献   

9.
10.
Abstract In regional metamorphic rocks, the partitioning of deformation into progressive shearing and progressive shortening components results in strain and strain-rate gradients across the boundaries between the partitioned zones. These generate dislocation density gradients and hence chemical potential gradients that drive dissolution and solution transfer. Phyllosilicates and graphite are well adapted to accommodating progressive shearing without necessarily building up large dislocation density gradients within a grain, because of their uniquely layered crystal structure. However, most silicates and oxides cannot accommodate strain transitions within grains without associated dislocation density gradients, and hence are susceptible to dissolution and solution transfer. As a consequence, zones of progressive shearing become zones of dissolution of most minerals, and of concentration of phyllosilicates and graphite. Exceptions are mylonites, where strain-rates are commonly high enough for plastic deformation to dominate over diffusion rates and therefore over dissolution and solution transfer. Porphyroblastic minerals cannot nucleate and grow in zones of active progressive shearing, as they would be dissolved by the effects of shearing strain on their boundaries. However, they can nucleate and grow in zones of progressive shortening and this is aided by the propensity for microfracturing in these zones, which allows rapid access of fluids carrying the material presumed to be necessary for nucleation and growth. Zones of progessive shortening also have a number of characteristics that help to lower the activation energy barrier for nucleation, this includes a build up of stored strain-energy relative to zones of progressive shearing, in which dissolution is occuring. Porphyroblast growth is generally syndeformational, and previously accepted criteria for static growth are not valid when the role of deformation partitioning is taken into account. Porphyroblasts in a contact aureole do not grow statically either, as microfracturing, associated with emplacement, allows access of fluids in a fashion that is similar to microfracturing in zones of progressive shortening. The criteria used for porphyroblast timing can be readily accommodated in terms of deformation partitioning, reactivation of deforming foliations, and a general lack of rotation of porphyroblasts, with the spectacular exception of genuinely spiralling garnet porphyroblasts.  相似文献   

11.
Regularly oriented orthopyroxene (opx) and forsterite (fo) inclusions occur as opx + rutile (rt) or fo + rt inclusion domains in garnet (grt) from Otrøy peridotite. Electron diffraction characterization shows that forsterite inclusions do not have any specific crystallographic orientation relationships (COR) with the garnet host. In contrast, orthopyroxene inclusions have two sets of COR, that is, COR‐I: <111>grt//<001>opx and {110}grt~//~{100}opx (~13° off) and COR‐II: <111>grt//<011>opx and {110}grt~//~{100}opx (~14° off), in four garnet grains analysed. Both variants of orthopyroxene have a blade‐like habit with one pair of broad crystal faces parallel/sub‐parallel to {110}grt plane and the long axis of the crystal, <001>opx for COR‐I and <011>opx for COR‐II, along <111>grt direction. Whereas the lack of specific COR between forsterite and garnet, along with the presence of abundant infiltrating trails/veinlets decorated by fo + rt at garnet edges, provide compelling evidence for the formation of forsterite inclusions in garnet through the sequential cleaving–infiltrating–precipitating–healing process at low temperatures, the origin of the epitaxial orthopyroxene inclusions in garnet is not so obvious. In this connection, the reported COR, the crystal habit and the crystal growth energetics of the exsolved orthopyroxene in relict majoritic garnet were reviewed/clarified. The exsolved orthopyroxene in a relict majoritic garnet follows COR‐III: {112}grt//{100}opx and <111>grt//<001>opx. Based on the detailed trace analysis on published SEM images, these exsolved orthopyroxene inclusions are shown to have the crystal habit with one pair of broad crystal faces parallel to {112}grt//{100}opx and the long crystal axis along <111>grt//<001>opx. Such a crystal habit can be rationalized by the differences in oxygen sub‐lattices of both structures and represents the energetically favoured crystal shape of orthopyroxene inclusions in garnet formed by solid‐state exsolution mechanism. Considering the very different COR, crystal habit, as well as crystal growth direction, the orthopyroxene inclusions in garnet of the present sample most likely had been formed by mechanism(s) other than solid‐state exsolution, regardless of their regularly oriented appearance in garnet and the COR specification between orthopyroxene and garnet. In fact, the crystallographic characteristics of orthopyroxene and the similar chemical compositions of garnet at opx + rt inclusion domains, fo + rt inclusion domains/trails and garnet rim suggest that the orthopyroxene inclusions in the garnet are most likely formed by similar cleaving‐infiltration process as forsterite inclusions, though probably at an earlier stage of metamorphism. This work demonstrates that the oriented inclusions in host minerals, with or without specific COR, can arise from mechanism(s) other than solid‐state exsolution. Caution is thus needed in the interpretation of such COR, so that an erroneous identification of exhumation from UHP depths would not be made.  相似文献   

12.
The pre‐pilot hole (PP1) of the Chinese Continental Scientific Drilling Project (CCSD) recovered drill core samples from a 118 m‐thick section of peridotites located at Zhimafang in the southern Sulu UHP terrane, China. The peridotites consist of phlogopite‐bearing garnet lherzolite, harzburgite, wehrlite and dunite. Some peridotite layers contain magnesite and Ti‐clinohumite, and are characterized by LREE and LILE enrichment and HFSE depletion. Phlogopite (Phl) occurs in the peridotite matrix and is LILE‐enriched with low Zr/Hf ratios (0.19–0.60). Phlogopite shows a mantle signature in H and O isotopes (δ18O: +5.4‰ to +5.9‰, and δD: ?76‰ to ?91‰). Ti‐clinohumite (Ti‐Chu) is Nb and Ta‐enriched and has higher Ti and HREE concentrations than phlogopite. Magnesite (Mgs) occurs as megacrysts, as a matrix phase, and as veins (±Phl ± Ti‐Chu), and contains low REEtotal contents (<0.3 ppm) with a flat REE pattern. The δ18O values (+5.5‰ to +8.0‰) of magnesite are in the range of primary carbonatite, but the δ13C values (?2.4‰ to ?3.4‰) are slightly more positive than those of the mantle and of primary carbonatite. Petrochemical data indicate that the Zhimafang peridotite was subjected to three episodes of metasomatism, listed in succession from oldest to youngest: (1) crystallization of phlogopite in the mantle caused by infiltration of K‐rich hydrous fluid/melt; (2) formation of Mgs and Mgs ± Phl ± Ti‐Chu veins possibly caused by infiltration of mantle‐derived carbonatitic melt with a hydrous silicate component; and (3) replacement of magnesite, garnet and diopside by dolomite and secondary hydrous phases caused by a crust‐related, CO2‐bearing, aqueous fluid. Stable isotopic compositions of phlogopite and magnesite indicate metasomatic agents for events (1) and (2) are from an enriched mantle. Multiple metasomatism imposed on mantle peridotite of variable composition led to significant compositional heterogeneity at all scales within the Zhimafang peridotite.  相似文献   

13.
Serial sectioning and imaging with a flatbed scanner yielded the three-dimensional size and spatial distribution of garnet porphyroblasts in two garnet schists and one staurolite-bearing schist from the Everett Formation, north-west Connecticut. The dominant garnet-producing reaction in all samples was chlorite+quartz=garnet+H2O. The appearance of staurolite, and additional garnet growth in the staurolite-bearing sample, was due to the reaction chloritoid=garnet+staurolite+chlorite. Statistical measures of garnet spatial distributions, using the pair correlation function (PCF), indicate that garnet crystals are weakly to strongly clustered at length scales between 2 and 10 mm. Such clustered nucleation may reflect minor bulk compositional variations. Covariance measures between garnet size and nearest-neighbour distance, using the mark covariance function (MCF), suggest a very weak correlation between crystal size and nearest-neighbour distance for length scales of 2 mm or less. These statistical data suggest that if diffusional gradients were present around growing garnet crystals, they did not influence nucleation and growth patterns at length scales greater than c. 2 mm. Compositional maps, through the garnet centres, show that the smaller crystals have lower Mn core compositions relative to larger crystals, consistent with progressive nucleation during pro-grade metamorphism. Radius-rate plots calculated from compositional X-ray maps show similar growth rates for garnet crystals of different size, consistent with an interface-controlled growth model for garnet. The presence of minor diffusional gradients around growing garnet cannot be entirely dismissed, but the lack of observable reaction rims, the clustered spatial distribution and the radius-rate data are most consistent with an interface-controlled garnet growth model.  相似文献   

14.
Orthopyroxene‐free garnet + clinopyroxene + plagioclase ± quartz‐bearing mineral assemblages represent the paragenetic link between plagioclase‐free eclogite facies metabasites and orthopyroxene‐bearing granulite facies metabasites. Although these assemblages are most commonly developed under P–T conditions consistent with high pressure granulite facies, they sometimes occur at lower grade in the amphibolite facies. Thus, these assemblages are characteristic but not definitive of high pressure granulite facies. Compositional factors favouring their development at amphibolite grade include Fe‐rich mineral compositions, Ca‐rich garnet and plagioclase, and Ti‐poor hornblende. The generalized reaction that accounts for the prograde development of garnet + clinopyroxene + plagioclase ± quartz from a hornblende + plagioclase + quartz‐bearing (amphibolite) precursor is Hbl + Pl + Qtz=Grt + Cpx + liquid or vapour, depending on whether the reaction occurs above or below the solidus. There are significant discrepancies between experimental and natural constraints on the P–T conditions of orthopyroxene‐free garnet + clinopyroxene + plagioclase ± quartz‐bearing mineral assemblages and therefore on the P–T position of this reaction. Semi‐quantitative thermodynamic modelling of this reaction is hampered by the lack of a melt model and gives results that are only moderately successful in rationalizing the natural and experimental data.  相似文献   

15.
Monazite is a common accessory phase in felsic granulite ribbon mylonites exposed in the Upper Deck domain of the Athabasca granulite terrane, western Canadian Shield. Field relationships, bulk rock geochemistry and phase equilibria modelling in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 system are consistent with the garnet‐rich rocks representing the residual products of ultrahigh temperature melting of biotite‐bearing paragneisses driven by intraplating of mafic magma in continental lower crust. The c. 2.64–2.61 Ga Y‐rich resorbed monazite cores included in garnet are interpreted as relicts of detrital grains deposited on the Earth's surface after c. 2.61 Ga. Yttrium‐poor monazite domains in garnet are depleted in Sm and Gd and linked to fluid‐absent melting of biotite + plagioclase + quartz ± sillimanite during a prograde loading path from 0.8 to ≥1.4 GPa. The c. 2.61–2.55 Ga Y‐depleted, Th‐rich monazite domains crystallized in the presence of garnet + ternary feldspar ± orthopyroxene + peraluminous melt. The c. 2.58–2.52 Ga monazite rims depleted in Th + Ca and enriched in Eu are linked to localized melt extraction synchronous with growth of high‐pressure (HP) grossular‐rich garnet at the expense of plagioclase during crustal thickening, culminating at >950 °C. Re‐heating and dextral transpressive lower crustal reactivation at c. 1.9 Ga resulted in syn‐kinematic growth of (La + Ce)‐enriched monazite and a second generation of garnet, concurrent with recrystallization of feldspar and orthopyroxene at 1.0–1.2 GPa and 600–700 °C. Monazite grains in this study are marked by positive Eu‐anomalies relative to chondrite. A direct link is implied between Y, Sm, Eu and Gd in monazite and two major phases in continental lower crust: garnet and plagioclase. Positive Eu‐anomalies in lower crustal monazite associated with modally abundant garnet appear to be directly related to Eu‐enrichment and depletions of Y, Sm and Gd that are consequences of garnet growth and plagioclase breakdown during HP melting of peraluminous bulk compositions.  相似文献   

16.
内蒙卓资山地区深熔作用形成的石榴混合花岗岩   总被引:6,自引:0,他引:6  
内蒙古卓资山地区太古宙高级变质区中分布着一系列规模不等的混合花岗岩体,其产出严格受孔兹岩系层位控制.岩体中含有大量矽线石榴片麻岩残留体,二者界线模糊,具渐变过渡的特征.花岗岩中富含石榴石,具斑杂状构造,浅色组分(熔体)含量偏高,暗色组分(难熔组分)显著减少,但在残留体中,暗色组分有富集现象.岩石化学成分富铝A12O3含量10.61%~17.10%,A/NKC=1.29~1.81;离子半径小、熔融活化度低的微量元素Cr、Ni、Cu、Co、V、Zr含量极低,而一些熔融活化度高、大离子半径的微量元素Sr、Ba含量明显偏高.HREE含量偏低,δEu具正异常;87Sr/86Sr=0.72 042~0.72 933.形成混合花岗岩的温度为735~785℃,压力范围可能为8.6~9.7Kb(1b=105Pa).这一类独特的"石榴混合花岗岩",不是因熔融体占绝对优势的典型岩浆侵入结晶而成,而是孔兹岩系变质岩层就地深熔作用的产物.它的形成是在中太古代时期集宁岩群形成之后本区经历麻粒岩相高级变质作用改造的结果.  相似文献   

17.
Oriented inclusions of clinopyroxene, orthopyroxene, sodic amphibole and rutile have been identified in garnet from the Lüliangshan garnet peridotite massif in the North Qaidam ultrahigh‐pressure metamorphic (UHPM) belt, northern Tibetan Plateau, NW China. Electron backscatter diffraction (EBSD) analyses demonstrate that nearly half of the measured intracrystalline clinopyroxene (8 out of 17) have topotactic crystallographic relationships with host garnet, that is, (100)Cpx//{112}Grt, (010)Cpx//{110}Grt and [001]Cpx//<111>Grt. One‐fifth of the oriented sodic amphibole (23 out of 110) inclusions of have topotactic crystallographic relationships with host garnet, that is, (010)Amp//{112}Grt, (100)Amp//{110}Grt and [001]Amp//<111>Grt. Over a third of rutile (36 out of 99) inclusions also show a close crystallographic orientation relationship with host garnet in that one <103>Rt and one <110>Rt parallel to two <111>Grt while the axes of [001]Rt exhibit small girdles centred the axes of <111>Grt. But, no ‘well‐fit’ crystallographic relationship was observed between orthopyroxene inclusions and host garnet. Considering a very long and complex history for the Lüliangshan garnet peridotite, we suggest that the low fit rates for these oriented minerals may result from several possible assumptions including different generations or multi‐stage formation mechanisms, heterogeneous nucleation and growth under non‐equilibrium conditions, and partial changes of initial crystallographic orientations of some inclusions. However, the residual quantitative ‘well‐fit’ crystallographic information is sufficient to indicate that the nucleation and growth of many pyroxene, amphibole and rutile are controlled by the lattice of the host garnet. The revealed close topotactic relationships accompanied by clear shape orientations provide quantitative microstructural evidence demonstrating a most likely exsolution/precipitate origin for at least some of the oriented phases of pyroxene, sodic amphibole and rutile from former majoritic garnet and support an ultra‐deep (>180 km depth) origin of the Lüliangshan garnet massif.  相似文献   

18.
We investigate the inclusions hosted in peritectic garnet from metapelitic migmatites of the Kinzigite Formation (Ivrea Zone, NW Italy) to evaluate the starting composition of the anatectic melt and fluid regime during anatexis throughout the upper amphibolite facies, transition, and granulite facies zones. Inclusions have negative crystal shapes, sizes from 2 to 10 μm and are regularly distributed in the core of the garnet. Microstructural and micro‐Raman investigations indicate the presence of two types of inclusions: crystallized silicate melt inclusions (i.e., nanogranitoids, NI), and fluid inclusions (FI). Microstructural evidence suggests that FI and NI coexist in the same cluster and are primary (i.e., were trapped simultaneously during garnet growth). FI have similar compositions in the three zones and comprise variable proportions of CO2, CH4, and N2, commonly with siderite, pyrophyllite, and kaolinite, suggesting a COHN composition of the trapped fluid. The mineral assemblage in the NI contains K‐feldspar, plagioclase, quartz, biotite, muscovite, chlorite, graphite and, rarely, calcite. Polymorphs such as kumdykolite, cristobalite, tridymite, and less commonly kokchetavite, were also found. Rehomogenized NI from the different zones show that all the melts are leucogranitic but have slightly different compositions. In samples from the upper amphibolite facies, melts are less mafic (FeO + MgO = 2.0–3.4 wt%), contain 860–1700 ppm CO2 and reach the highest H2O contents (6.5–10 wt%). In the transition zone melts have intermediate H2O (4.8–8.5 wt%), CO2 (457–1534 ppm) and maficity (FeO + MgO = 2.3–3.9 wt%). In contrast, melts at granulite facies reach highest CaO, FeO + MgO (3.2–4.7 wt%), and CO2 (up to 2,400 ppm), with H2O contents comparable (5.4–8.3 wt%) to the other two zones. Our results represent the first clear evidence for carbonic fluid‐present melting in the Ivrea Zone. Anatexis of metapelites occurred through muscovite and biotite breakdown melting in the presence of a COH fluid, in a situation of fluid–melt immiscibility. The fluid is assumed to have been internally derived, produced initially by devolatilization of hydrous silicates in the graphitic protolith, then as a result of oxidation of carbon by consumption of Fe3+‐bearing biotite during melting. Variations in the compositions of the melts are interpreted to result from higher T of melting. The H2O contents of the melts throughout the three zones are higher than usually assumed for initial H2O contents of anatectic melts. The CO2 contents are highest at granulite facies, and show that carbon‐contents of crustal magmas are not negligible at high T. The activity of H2O of the fluid dissolved in granitic melts decreases with increasing metamorphic grade. Carbonic fluid‐present melting of the deep continental crust represents, together with hydrate‐breakdown melting reactions, an important process in the origin of crustal anatectic granitoids.  相似文献   

19.
New evidence for ultrahigh‐pressure metamorphism (UHPM) in the Eastern Alps is reported from garnet‐bearing ultramafic rocks from the Pohorje Mountains in Slovenia. The garnet peridotites are closely associated with UHP kyanite eclogites. These rocks belong to the Lower Central Austroalpine basement unit of the Eastern Alps, exposed in the proximity of the Periadriatic fault. Ultramafic rocks have experienced a complex metamorphic history. On the basis of petrochemical data, garnet peridotites could have been derived from depleted mantle rocks that were subsequently metasomatized by melts and/or fluids either in the plagioclase‐peridotite or the spinel‐peridotite field. At least four stages of recrystallization have been identified in the garnet peridotites based on an analysis of reaction textures and mineral compositions. Stage I was most probably a spinel peridotite stage, as inferred from the presence of chromian spinel and aluminous pyroxenes. Stage II is a UHPM stage defined by the assemblage garnet + olivine + low‐Al orthopyroxene + clinopyroxene + Cr‐spinel. Garnet formed as exsolutions from clinopyroxene, coronas around Cr‐spinel, and porphyroblasts. Stage III is a decompression stage, manifested by the formation of kelyphitic rims of high‐Al orthopyroxene, aluminous spinel, diopside and pargasitic hornblende replacing garnet. Stage IV is represented by the formation of tremolitic amphibole, chlorite, serpentine and talc. Geothermobarometric calculations using (i) garnet‐olivine and garnet‐orthopyroxene Fe‐Mg exchange thermometers and (ii) the Al‐in‐orthopyroxene barometer indicate that the peak of metamorphism (stage II) occurred at conditions of around 900 °C and 4 GPa. These results suggest that garnet peridotites in the Pohorje Mountains experienced UHPM during the Cretaceous orogeny. We propose that UHPM resulted from deep subduction of continental crust, which incorporated mantle peridotites from the upper plate, in an intracontinental subduction zone. Sinking of the overlying mantle and lower crustal wedge into the asthenosphere (slab extraction) caused the main stage of unroofing of the UHP rocks during the Upper Cretaceous. Final exhumation was achieved by Miocene extensional core complex formation.  相似文献   

20.
基于我国主要类型矽卡岩矿床的研究,结合Ca-Fe-Si-C-O体系的实验成果,以共 生矿物固溶体热力学分析为手段,建立了共生单斜辉石一石榴石氧逸度计。对我国主要类型矽卡 岩的研究表明:不同金属矿化及不同产出条件的矽卡岩形成于不同的氧逸度环境,具有不同的氧 逸度变化趋势和温度一氧逸度效应。共生单斜辉石一石榴石矿物对是形成介质的良好氧逸度计、酸度计。它有助于判别矽卡岩的金属矿化类型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号