首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
本文采用中国科学院地球物理研究所1977年在西藏高原取得的人工地震资料,并根据国家自然科学基金项目、地质矿产部重点课题“亚东—格尔木地学断面”的要求,对亚东至当雄地带进行了二维地壳结构的处理和研究。除论文发表的部分结果外,对尚未发表的纳木湖至羊卓雍湖地带的两条相遇地震剖面记录图进行了研究,并采用Pg震相进行了浅层结构的处理。 研究结果给出了亚东至当雄地带的二维地壳结构和速度分布,该地带内地壳厚度为70 km左右,由康马往南地壳厚度逐渐变薄,地壳内存在有两个低速层。地壳浅层结构研究表明:莎马达附近有一条深断裂存在,是南喜马拉雅和北喜马拉雅的分界线,并存在着雅鲁藏布江断裂和当雄断裂,且有向深部延伸的趋势。利用该区纵波研究了Q值,并给出计算结果,综合该地区地壳结构和速度分布,并结合当雄地震区、羊八井地热田进行了研究。  相似文献   

2.
文章收集了东昆仑造山带发表的锆石Hf同位素数据,利用Surfer 10软件填制的锆石Hf同位素等值线图显示,东昆仑造山带整体自西向东呈现出古老地壳与新生地壳交替分布的特征,东昆南地体研究程度较低,其东段的布青山—温泉一带的地壳性质与北侧较为相似,显示较低的锆石Hf同位素值(新生地壳)的特征。大量数据和已有研究成果表明,地壳性质(新生地壳或古老成熟地壳)很可能是控制成矿作用类型的关键因素。根据东昆仑造山带地壳性质和成矿作用类型,提出布青山—温泉一带可能是东昆南地体最有潜力的Cu-Au成矿地带。  相似文献   

3.
新疆北部及邻区的地壳发展演化历史十分复杂,从太古宙至今,经历了30亿年的长期演变,形成了独具特色的矿产资源和矿床分布格局。本文通过对该区地壳演化历史的研究,划分出4个成矿阶段,着重探讨了各阶段的构造、岩石和成矿作用特征,论述了各阶段的构造、岩石和成矿作用特征,论述了贵重、有色金属矿产在地壳发展演化过程中的分布规律,指出了新疆北部及邻区贵重、有色金属矿产的主攻类型及找矿方向。  相似文献   

4.
本文依据福建地域独特的岩土建造组合有序性、地壳动力学特征、地质灾害成因类型及其在空间上分布的差异性等论述了不同地域公路、尤其高速公路地带潜在地质灾害属性以及地质灾害系统运动的相似性。旨在从理性角度认识地质灾害成因类型局域性因素 ,为综合治理公路工程地质灾害和防灾规划提供科学依据  相似文献   

5.
火成岩中下地壳岩石包体的特征及其研究意义   总被引:4,自引:0,他引:4  
根据国内外研究资料,结合自己的科研成果,简要论述了下地壳岩石包体的矿物学,形成条件,物理性质,化学成分,同位素组成及塑性变形特征,讨论了下地壳岩石包体在了解下地壳成分,性质和地质作用过程方面的重要意义。  相似文献   

6.
天山地震活动区的深部构造特征   总被引:1,自引:0,他引:1  
以地壳介质的P波速度分布和导电性为基础,描述了天山地区几个主要地震活动区域深部构造特征,地震大都发生在地壳内不同速度块体之间的过渡带附近;沿着天山的南缘和毗邻塔里木盆地的西昆仑、阿尔金等山前地带,壳内高导层由北向南、由东向西逐渐加深并增厚,它们与所在地区震源深度的分相相吻合。这种不稳定的地壳结构有长期受力情况下非常容易发生形变甚至破裂而引发地震。  相似文献   

7.
印度板块俯冲到藏南之下的深反射证据   总被引:11,自引:1,他引:11  
喜马拉雅和相邻的西藏高原,构成了地球上最大的高原和异常厚地壳的地区,是作为印度板块和亚洲板块新生代碰撞的结果,并被认作是典型的陆-陆碰撞[1.2.3.]地带。在此,我们报道了用深地震反射剖面方法进行本区地壳成像的第一个结果,试验的100km长剖面,布置在特提斯喜马拉雅(TethyanHimalaya)最南端,且跨过了喜马拉雅山脊,接近高喜马拉雅(HighHimalaya)地带,剖面显示了在地壳中部有一强反射带。它可能代表了一个活动的道冲断裂,印度板块是沿此断裂俯冲到藏南之下;上地壳反射使人们联想到上地壳存在着大规模的叠瓦状结构;莫霍反射来自本区双倍正常地壳厚度的巨厚地壳的底部。这些结果对西藏南端地壳增厚,是由于印度大陆地壳整体俯冲到包括特提斯喜马拉雅地区地壳之下的观点,给予了实质性的支持。  相似文献   

8.
一、前言 目前世界上地壳构造上升运动比较强烈的地区,主要集中在:(1)海岭地区;(2)岛弧—地槽地区;(3)年轻的山脉地带。近几年来,由于海底的广泛地球物理测量和海底扩张学说的出现以及板块理论的进一步研究,使得与前面二种区域上升有关的许多重要问题变得清楚一些。而对后一种区域即山脉地带形成的上升力量,则了解的较少。山脉地带地壳上升的力源问题早在一个世纪之前就开始研究了,但取得的成果却是很微弱  相似文献   

9.
新疆北部地壳的发展演化历史十分复杂,从太古宙至今,经历了30亿年的长期演变,形成了独具特色的矿产资源和矿床分布格局。本文通过对该区地壳演化历史的研究,划分出四个成矿阶段,着重探讨了各阶段的构造、岩石和成矿作用特征,论述了部分贵重、有色金属矿产在地壳发展演化过程中的分布规律,指出了新疆北部有色金属矿产的主要类型及找矿方向。  相似文献   

10.
从居里等温面埋深和地壳厚度两方面论述郯庐断裂带渤海段的深部构造特征,根据航磁资料,运用三维磁性层演方法,计算了研究海区居里面的深度;又根据布格重力异常资料,运用三维重力正,反演方法,计算了研究海区的地壳厚度,参考了地热和壳幔电性结构的有关数据,提出了对郯庐断裂渤海段深部构造特征的认识;(1)向走陡倾斜,这里居里面埋深和地壳厚度两个较为一致的结果;(2)分段性明显,显示了沿断裂带新生代以来地壳动力不  相似文献   

11.
《Tectonophysics》1987,140(1):49-63
In 1982 the U.S. Geological Survey collected six seismic refraction profiles in the Great Valley of California: three axial profiles with a maximum shot-to-receiver offset of 160 km, and three shorter profiles perpendicular to the valley axis. This paper presents the results of two-dimensional raytracing and synthetic seismogram modeling of the central axial profile. The crust of the central Great Valley is laterally heterogeneous along its axis, but generally consists of a sedimentary section overlying distinct upper, middle, and lower crustal units. The sedimentary rocks are 3–5 km thick along the profile, with velocities increasing with depth from 1.6 to 4.0 km/s. The basement (upper crust) consists of four units:
  • 1.(1) a 1.0–1.5 km thick layer of velocity 5.4–5.8 km/s,
  • 2.(2) a 3–4 km thick layer of velocity 6.0–6.3 km/s,
  • 3.(3) a 1.5–3.0 km thick layer of velocity 6.5–6.6 km/s, and
  • 4.(4) a laterally discontinuous, 1.5 km thick layer of velocity 6.8–7.0 km/s. The mid-crust lies at 11–14 km depth, is 5–8 km thick, and has a velocity of 6.6–6.7 km/s. On the northwest side of our profile the mid-crust is a low-velocity zone beneath the 6.8–7.0 km/s lid. The lower crust lies at 16–19 km depth, is 7–13 km thick, and has a velocity of 6.9–7.2 km/s. Crustal thickness increases from 26 to 29 km from NW to SE in the model.
Although an unequivocal determination of crustal composition is not possible from P-wave velocities alone, our model has several geological and tectonic implications. We interpret the upper 7 km of basement on the northwest side of the profile as an ophiolitic fragment, since its thickness and velocity structure are consistent with that of oceanic crust. This fragment, which is not present 10–15 km to the west of the refraction profile, is probably at least partially responsible for the Great Valley gravity and magnetic anomalies, whose peaks lie about 10 km east of our profile. The middle and lower crust are probably gabbroic and the product of magmatic or tectonic underplating, or both. The crustal structure of the Great Valley is dissimilar to that of the adjacent Diablo Range, suggesting the existence of a fault or suture zone throughout the crust between these provinces.  相似文献   

12.
The Lachlan Fold Belt has the velocity‐depth structure of continental crust, with a thickness exceeding 50 km under the region of highest topography in Australia, and in the range 41–44 km under the central Fold Belt and Sydney Basin. There is no evidence of high upper crustal velocities normally associated with marginal or back‐arc basin crustal rocks. The velocities in the lower crust are consistent with an overall increase in metamorphic grade and/or mafic mineral content with depth. Continuing tectonic development throughout the region and the negligible seismicity at depths greater than 30 km indicate that the lower crust is undergoing ductile deformation.

The upper crustal velocities below the Sydney Basin are in the range 5.75–5.9 km/s to about 8 km, increasing to 6.35–6.5 km/s at about 15–17 km depth, where there is a high‐velocity (7.0 km/s) zone for about 9 km evident in results from one direction. The lower crust is characterised by a velocity gradient from about 6.7 km/s at 25 km, to 7.7 km/s at 40–42 km, and a transition to an upper mantle velocity of 8.03–8.12 km/s at 41.5–43.5 km depth.

Across the central Lachlan Fold Belt, velocities generally increase from 5.6 km/s at the surface to 6.0 km/s at 14.5 km depth, with a higher‐velocity zone (5.95 km/s) in the depth range 2.5–7.0 km. In the lower crust, velocities increase from 6.3 km/s at 16 km depth to 7.2 km/s at 40 km depth, then increase to 7.95 km/s at 43 km. A steeper gradient is evident at 26.5–28 km depth, where the velocity is about 6.6—6.8 km/s. Under part of the area an upper mantle low‐velocity zone in the depth range 50–64 km is interpreted from strong events recorded at distances greater than 320 km.

There is no substantial difference in the Moho depth across the boundary between the Sydney Basin and the Lachlan Fold Belt, consistent with the Basin overlying part of the Fold Belt. Pre‐Ordovician rocks within the crust suggest fragmented continental‐type crust existed E of the Precambrian craton and that these contribute to the thick crustal section in SE Australia.  相似文献   

13.
To study the crustal structure beneath the onshore–offshore transitional zone, a wide-angle onshore–offshore seismic experiment was carried out in northern South China Sea near Hong Kong, using large volume airgun sources at sea and seismic stations on land. The crustal velocity model constructed from traveltime fitting shows that the sedimentary thickness abruptly increases seaward of the Dangan Islands based on the characteristics of Pg and Multiple Pg, and the crustal structure beneath the sedimentary layer is relatively simple. The Moho depth is about 25–28 km along the profile and the P-wave velocity increases gradually with depth. The velocities in the upper crust range from 5.5 to 6.4 km/s, while that in the lower crust is 6.4–6.9 km/s. It also reveals a low velocity zone with a width of more than 10 km crossing the crust at about 75–90 km distance, which suggests that the Littoral Fault Zone (LFZ) exists beneath the onshore–offshore transitional zone. The magnetism anomalies, bouguer gravity anomalies and active seismic zone along the coastline imply the LFZ is a main tectonic fault in the onshore–offshore area. Combined with two previously published profiles in the continental South China (L–G profile) and in the northern margin of South China Sea (OBS1993) respectively, we constructed a land-sea super cross-section about 1000 km long. The results show the onshore–offshore transitional zone is a border separating the unstretched and the stretched continental crust. The low velocity layer (LVL) in the middle crust was imaged along L–G profile. However, the high velocity layer (HVL) in the lower crust was detected along OBS1993. By analyzing the mechanisms of the LVL in the middle crust and HVL in the base of crust, we believe the crustal structures had distinctly different attributes in the continental South China and in the northern SCS, which indicates that the LFZ could be the boundary fault between them.  相似文献   

14.
We present results from a seismic refraction experiment on the northern margin of the Guayana Shield performed during June 1998, along nine profiles of up to 320 km length, using the daily blasts of the Cerro Bolívar mines as energy source, as well as from gravimetric measurements. Clear Moho arrivals can be observed on the main E–W profile on the shield, whereas the profiles entering the Oriental Basin to the north are more noisy. The crustal thickness of the shield is unusually high with up to 46 km on the Archean segment in the west and 43 km on the Proterozoic segment in the east. A 20 km thick upper crust with P-wave velocities between 6.0 and 6.3 km/s can be separated from a lower crust with velocities ranging from 6.5 to 7.2 km/s. A lower crustal low velocity zone with a velocity reduction to 6.3 km/s is observed between 25 and 25 km depth. The average crustal velocity is 6.5 km/s. The changes in the Bouguer Anomaly, positive (30 mGal) in the west and negative (−20 mGal) in the east, cannot be explained by the observed seismic crustal features alone. Lateral variations in the crust or in the upper mantle must be responsible for these observations.  相似文献   

15.
A two-dimensional model of the crust and uppermost mantle for the western Siberian craton and the adjoining areas of the Pur-Gedan basin to the north and Baikal Rift zone to the south is determined from travel time data from recordings of 30 chemical explosions and three nuclear explosions along the RIFT deep seismic sounding profile. This velocity model shows strong lateral variations in the crust and sub-Moho structure both within the craton and between the craton and the surrounding region. The Pur-Gedan basin has a 15-km thick, low-velocity sediment layer overlying a 25-km thick, high-velocity crystalline crustal layer. A paleo-rift zone with a graben-like structure in the basement and a high-velocity crustal intrusion or mantle upward exists beneath the southern part of the Pur-Gedan basin. The sedimentary layer is thin or non-existent and there is a velocity reversal in the upper crust beneath the Yenisey Zone. The Siberian craton has nearly uniform crustal thickness of 40–43 km but the average velocity in the lower crust in the north is higher (6.8–6.9 km/s) than in the south (6.6 km/s). The crust beneath the Baikal Rift zone is 35 km thick and has an average crustal velocity similar to that observed beneath the southern part of craton. The uppermost mantle velocity varies from 8.0 to 8.1 km/s beneath the young West Siberian platform and Baikal Rift zone to 8.1–8.5 km/s beneath the Siberian craton. Anomalous high Pn velocities (8.4–8.5 km/s) are observed beneath the western Tunguss basin in the northern part of the craton and beneath the southern part of the Siberian craton, but lower Pn velocities (8.1 km/s) are observed beneath the Low Angara basin in the central part of the craton. At about 100 km depth beneath the craton, there is a velocity inversion with a strong reflecting interface at its base. Some reflectors are also distinguished within the upper mantle at depth between 230 and 350 km.  相似文献   

16.
The POLONAISE'97 (POlish Lithospheric ONset—An International Seismic Experiment, 1997) seismic experiment in Poland targeted the deep structure of the Trans-European Suture Zone (TESZ) and the complex series of upper crustal features around the Polish Basin. One of the seismic profiles was the 300-km-long profile P2 in northwestern Poland across the TESZ. Results of 2D modelling show that the crustal thickness varies considerably along the profile: 29 km below the Palaeozoic Platform; 35–47 km at the crustal keel at the Teisseyre–Tornquist Zone (TTZ), slightly displaced to the northeast of the geologic inversion zone; and 42 km below the Precambrian Craton. In the Polish Basin and further to the south, the depth down to the consolidated basement is 6–14 km, as characterised by a velocity of 5.8–5.9 km/s. The low basement velocities, less than 6.0 km/s, extend to a depth of 16–22 km. In the middle crust, with a thickness of ca. 4–14 km, the velocity changes from 6.2 km/s in the southwestern to 6.8 km/s in the northeastern parts of the profile. The lower crust also differs between the southwestern and northeastern parts of the profile: from 8 km thickness, with a velocity of 6.8–7.0 km/s at a depth of 22 km, to ca.12 km thickness with a velocity of 7.0–7.2 km/s at a depth of 30 km. In the lowermost crust, a body with a velocity of 7.20–7.25 km/s was found above Moho at a depth of 33–45 km in the central part of the profile. Sub-Moho velocities are 8.2–8.3 km/s beneath the Palaeozoic Platform and TTZ, and about 8.1 km/s beneath the Precambrian Platform. Seismic reflectors in the upper mantle were interpreted at 45-km depth beneath the Palaeozoic Platform and 55-km depth beneath the TTZ.

The Polish Basin is an up to 14-km-thick asymmetric graben feature. The basement beneath the Palaeozoic Platform in the southwest is similar to other areas that were subject to Caledonian deformation (Avalonia) such that the Variscan basement has only been imaged at a shallow depth along the profile. At northeastern end of the profile, the velocity structure is comparable to the crustal structure found in other portions of the East European Craton (EEC). The crustal keel may be related to the geologic inversion processes or to magmatic underplating during the Carboniferous–Permian extension and volcanic activity.  相似文献   


17.
卢德源  王香泾 《地球学报》1990,11(2):227-237
通过对沱沱河—格尔木地区地震测深资料的重新解释,给出了该区地壳的二维速度分布剖面及Q值分布。上地壳横向速度结构具有明显的分区性。该分区范围大体与“亚东—格尔木项目”中所划分出的地体相一致。地震资料为本区划分地体提供了佐证。本文讨论了地体的拼合、碰撞的深部作用过程。认为上地壳的逆冲、叠覆,中、下地壳的挤压增厚,以及岩浆的贯入,壳幔物质的混合导致了青藏高原的隆升。  相似文献   

18.
青藏高原东北缘岩石圈密度与磁化强度及动力学含义   总被引:4,自引:0,他引:4  
利用横贯柴达木盆地南北的格尔木—花海子剖面岩石圈二维P波速度结构以及地震波速度与介质密度之间的关系,建立了该剖面岩石圈二维密度结构与二维磁化强度的初始模型。依据重磁同源原理,在柴达木盆地重、磁异常的二重约束下完成了重磁联合反演,获得了该剖面岩石圈二维密度结构与二维磁化强度分布。结果表明:柴达木盆地地壳厚度沿测线变化较大,平均厚度约60km。在柴达木盆地南缘地壳厚约50km,达布逊湖附近地壳最厚为63km左右,大柴旦附近地壳较薄,为50km左右。柴达木盆地的地壳纵向上可分为三层,即上地壳、中地壳与下地壳。位于盆地中部的中、下地壳分别发育大范围的壳内低密度体,并处于上地幔隆起的背景之上;横向上可将盆地分成南北两个部分,分界在达布逊湖附近。整个剖面结晶基底埋深变化也很大,在达布逊湖附近为12km,在昆仑山北缘基底几乎出露地表。结晶基底的展布形态与地壳底界,即莫霍面呈近似镜像对称。综合研究认为,柴达木盆地的岩石圈结构存在着明显的南北差异,其分界在达布逊湖的北面。在盆地南部,岩石圈介质横向变化较小,各层介质分布正常;在盆地的北侧,岩石圈结构特别在中、下地壳和上地幔顶部横向上发生了变化。壳内低密度体的存在意味着柴达木盆地具有较热的岩石圈和上地幔,加之基底界面与莫霍面的镜像对称分布,形成与准噶尔盆地和塔里木盆地的构造差异。多种地球物理参数所揭示的地壳上地幔结构及其横向变化特点为柴达木盆地构造演化及青藏高原北部边界的地球动力学研究提供了岩石圈尺度的地球物理证据。  相似文献   

19.
The 1000-km-long Darlag–Lanzhou–Jingbian seismic refraction profile is located in the NE margin of the Tibetan plateau. This profile crosses the northern Songpan-Ganzi terrane, the Qinling-Qilian fold system, the Haiyuan arcuate tectonic region, and the stable Ordos basin. The P-wave and S-wave velocity structure and Poisson's ratios reveal many significant characteristics in the profile. The crustal thickness increases from northeast to southwest. The average crustal thickness observed increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane. The crust becomes obviously thicker south of the Haiyuan fault and beneath the West-Qinlin Shan. The crustal velocities have significant variations along the profile. The average P-wave velocities for the crystalline crust vary between 6.3 and 6.4 km/s. Beneath the Songpan-Ganzi terrane, West-Qinling Shan, and Haiyuan arcuate tectonic region P-wave velocities of 6.3 km/s are 0.15 km/s lower than the worldwide average of 6.45 km/s. North of the Kunlun fault, with exclusion of the Haiyuan arcuate tectonic region, the average P-wave velocity is 6.4 km/s and only 0.5 km/s lower than the worldwide average. A combination of the P-wave velocity and Poisson's ratio suggests that the crust is dominantly felsic in composition with an intermediate composition at the base. A mafic lower crust is absent in the NE margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. There are low velocity zones in the West-Qinling Shan and the Haiyuan arcuate tectonic region. The low velocity zones have low S-wave velocities and high Poisson's ratios, so it is possible these zones are due to partial melting. The crust is divided into two layers, the upper and the lower crust, with crustal thickening mainly in the lower crust as the NE Tibetan plateau is approached. The results in the study show that the thickness of the lower crust increases from 22 to 38 km as the crustal thickness increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane south of the Kunlun fault. Both the Conrad discontinuity and Moho in the West-Qinling Shan and in the Haiyuan arcuate tectonic region are laminated interfaces, implying intense tectonic activity. The arcuate faults and large earthquakes in the Haiyuan arcuate tectonic region are the result of interaction between the Tibetan plateau and the Sino–Korean and Gobi Ala Shan platforms.  相似文献   

20.
《Tectonophysics》1987,142(1):49-70
From densely covered seismic refraction data obtained in 1978 (Urach experiment) and 1984 (“Schwarzer Zollern-Wald” experiment) and from seismic reflection data and results from previous refraction investigations, a three-dimensional crustal model of southwest Germany was derived. Travel-time and amplitude information of seismic refraction data were interpreted with two-dimensional forward modeling (ray tracing) to calculate two crustal cross sections in southwest Germany. These results fill a gap in the existing data and enabled the construction of a detailed three-dimensional crustal model.While seismically the upper crust is laterally homogeneous (5.9–6.0 km/s) throughout the area, the middle and lower crust show pronounced lateral variations in thickness, velocity, and reflectivity. The Moho is a flat surface at a relatively shallow depth (25–26 km). We classify the middle and lower crust of southwest Germany into two characteristic crustal types. Type I consists of a mid-crustal low-velocity zone (5.4–5.8 km/s) overlying a thick (> 10 km), high-velocity (6.6–6.8 km/s) lower crust. Type II has no prominent mid-crustal low-velocity zone, and a thin (< 10 km), low-velocity (6.3–6.4 km/s) lower crust. The crustal types correlate with the major geologic units exposed in the area: Type I is present beneath the Black Forest, forming the eastern flank of the Rhinegraben and beneath the Swabian Jura, while Type II is present beneath the intervening Triassic sediments. Beneath the South German Molasse Basin, a low-velocity zone is also present in the upper middle-crust. Seismic reflection investigations have shown that the lower crust in southwest Germany comprises a stack of layers of alternating high- and low-velocities. The lateral variation of the reflectivity of this laminated lower crust has been recognized even on refraction data. We found that high-reflectivity of the lower crust correlates to high average velocity (6.7–6.8 km/s) in the lower crust (Type I). Thus, the average velocity of the lower crust in southwest Germany seems to be an indicator of the intensity of its lamination. The uppermost mantle has a velocity of 8.3 km/s in the area and a strong, positive velocity gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号