首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents data on the mineralogy, petrography, and lithogeochemistry of Riphean and Vendian sandstones in the Volga-Ural region. The studied rocks generally differ in several parameters. The Zr/Sc and Th/Sc values typical of psammites suggest that the rocks are dominated by the petrogenic clastic material. This conclusion is supported by median K2O/Al2O3 values (from 0.39 to 0.45). The fine-grained clastic rocks associated with sandstones are also characterized by sufficiently high K2O/Al2O3 values, indicating the prevalence of the first cycle material therein. It is shown that the Prikamsk and Tukaevo sandstones include, in addition to the petrogenic quartz, a significant amount of lithogenic (multifold redeposited) quartz, whereas ratio of these rock types is approximately equal in the Leonidovo and Baikibashevo sandstones. Sandstones of the Kairovo and Shkapovo groups are dominated by the petrogenic quartz. Analysis of the ln(Q/L + CE)-ln(Q/F) diagram shows that the Vendian psammites are dominated by disintegration products of plutonic rocks, whereas the Riphean psammites contain a significant portion of clastic material (related to the erosion of metamorphic rocks) along with felsic and intermediate-felsic igneous rocks. Relationships of feldspars, rock clasts, polycrystalline quartz, and quartz, in general, reflected in the Qt/(F + R)-Qp/(F + R) diagram indicate that the Riphean psammites were deposited in a humid setting; the Vendian psammites, in a semihumid/semiarid setting.  相似文献   

2.
The paper reports data on the lithogeochemistry of sandstones and silty mudstones from Upper Vendian sedimentary sequences in the northeastern, eastern, and southwestern peripheries of the East European Platform belonging to the so-called unfolded molasse. The sequences are dominated by wackes, arkoses, subarkoses, litharenites, and sublitharenites, i.e., chemically immature and moderately mature psammites, and can be classed with rocks produced by clastic material brought from orogens surrounding the platform. The higher TiO2, Al2O3, FeOtot, MgO, Na2O, and K2O concentrations of the psammites than those in the average cratonic Phanerozoic sandstone (APhSa) testify that the chemical maturing of the rocks was not completed. The silty mudstones accompanying the sandstones have a composition closer to those of the average cratonic Phanerozoic shale (APhSh), but this is likely explained by the fact that the rocks were produced of material brought from erosion territories of much greater area. The lithogeochemical data generally indicate that these territories were dominated by acid and intermediate magmatic rocks with variable fraction of sedimentary rocks when the Late Vendian sedimentary associations in question were produced. The distribution of certain indicator trace elements in the sandstones and silty mudstones show that the average composition of the eroded complexes was close to the composition of the post-Archean upper continental crust, but the erosion areas occasionally (in the Vychegorskii trough and the Shkapovsko-Shikhanskaya depression) contained relatively primitive source rocks. The data points of the great majority of the sandstones and silty mudstones plot in the SiO2-K2O/Na2O and F1–F2 diagrams in the fields of sediments typical of the environments of active continental margins, which is consistent with the arrangement of the data points of these rocks in the La-Th-Sc, Th-Sc-Zr/10, and Th-Co-Zr/10 diagrams. All of these features confirm that the sedimentary rocks in question affiliate with rock associations produced at an active tectonic regime.  相似文献   

3.
Lithogeochemical features of the Vendian mudstones and silty mudstones taken from Borehole Keltma 1 in the southern part of the Vychegda trough of the Mezen syneclise are discussed. It is shown that fine-grained clastic rocks of the Ust-Pinega, Krasavino, and Mezen formations have similar chemical compositions, suggesting their accumulation in sufficiently similar settings. The main part of the studied samples has K2O/Al2O3 < 0.4. This fact, in combination with the absence of TM-FM and NPM-HM correlations, indicates a significant contribution of recycled aluminosiliciclastics in their composition. At the same time, the absence of correlation between CIA and indicator ratios of rock composition in the paleodrainage basins, such as Th/Cr and Th/Sc, indicates that CIA and some other lithochemical indicators appropriately reflect the paleoclimatic conditions in source areas surrounding a basin. The CIA value in most of the analyzed samples is no more than 70. Thus, the Keltma section is similar to Upper Vendian sequences of the Kvarkush-Kamennogorsk anticlinorium and the Shkapovo-Shikhany depression. It has been established that felsic and intermediate magmatic rocks coupled with a significant contribution of quartz-rich sediments served as the source of fine aluminosiliciclastics for the southern Vychegda trough during the Vendian. High Ce/Cr values in the mudstones and silty mudstones suggest that the geochemically primitive Archean protoliths were not involved in the washout. In the SiO2-K2O/Na2O diagram, the Vendian mudstones and silty mudstones are plotted in the field of sediments of active continental margins. Typical low values of Mo/Mn and some other redox indices in these rocks indicate that oxidizing environment predominated in bottom waters of the sedimentation basin during the entire Vendian. Analysis of variations of the lithochemical indicators upward the Vendian sedimentary successions in borehole Keltma 1 made it possible to divide the section into three sequences of different lithofacies and paleontological compositions.  相似文献   

4.
General trends of the formation of Middle Riphean fine-grained aluminosiliciclastic rocks in the Bashkir Meganticlinorium are considered. It is shown that Yurmatinian shales do not contain any significant pyroclastic admixture. Judging from the relatively constant Th/Cr ratio throughout the Yurmatinian section, the tectonic regime in the study territory during the early Middle Riphean is suggested to be rather stable. The main paleoclimatic indices and indicators of the pelitic material maturity (CIA, CIW, IVC, PIA, and Ce/Y) suggest that paleodrainage systems in the early Middle Riphean were dominated by humid climate that gave way to the arid or semiarid type in the middle Yurmatinian. The low Mo/Mn ratio and some other indicators of redox conditions in shales from all Yurmatinian lithostratigraphic units show that no explicit reducing conditions existed in the basin during the early Middle Riphean. The shales were characterized by the increase in K2O/Al2O3 ratio, gradual enrichment in REE, and growth of LREE/HREE and LaN/YbN ratios toward the middle Yurmatinian, indicating the gain of an appreciable amount of slightly weathered arkosic aluminosiliciclastic material in the sedimentary basin about 1220–1200 Ma ago. The REE distribution and the UCC- and AUC-normalized shale compositions suggest that the eroded upper crust was compositionally close to the UCC. The occurrence of mafic and ultramafic rocks is also inferred. Data points of Yurmatinian shales plotted in the Cr–Ni, Eu/Eu*–GdN/YbN, and (La/YB)N–YbN diagrams are localized between the fields of Upper Archean and post-Archean rocks or within the latter field. Hence, post-Archean igneous and metamorphic complexes prevailed in paleodrainage systems of the early Middle Riphean. This is also confirmed by the model Nd ages.  相似文献   

5.
Timan comprises the southwest edge of the Pechora Plate. The plate basement is composed of variably metamorphosed sedimentary, mainly terrigenous, and igneous rocks of the Late Precambrian age that are generally overlain by Ordovician-Cenozoic platform cover. Poor exposition and discontinuous distribution of the Upper Precambrian outcrops of dominantly fossil-free sedimentary rocks cause considerable disagreements in stratigraphic correlation. This applies equally to North Timan, which represents an uplifted block of basement, in which sedimentary-metamorphic rocks form the Barminskaya Group (~5000 m thick), previously dated as Early Riphean to Vendian. Earlier Rb-Sr and Sm-Nd isotope dating of schist and cross-cutting gabbro-dolerite and dolerite established the timing of greenschist facies metamorphism at 700 Ma. Thus, Late Riphean age of the Barminskaya Group has been suggested. Results of local U-Pb dating of detrital zircon from silty sandstones of the Malochernoretskaya Formation, which constitutes the middle part of the outcropping section of the Barminskaya Group, confirm this conclusion. Age data for 95 zircon grains cover the range of 1035–2883 Ma with age peaks at 1150, 1350, 1550, 1780, and 1885 Ma. The minimum age of zircons, considered as the lower age constraint on sediment deposition, provides grounds to date the Barminskaya Group as Late Riphean and indicates eroded rock complexes of the Fennoscandian Shield as the possible provenance areas.  相似文献   

6.
Geochemical analysis of sandstones from the Sardar Formation (from two stratigraphic successions) in east-central Iran were used for identification of geochemical characterization of sandstones, provenance and tectonic setting. Sandstones in the two lithostratigraphic successions have similar chemical compositions suggesting a common provenance. Bulk-rock geochemistry analysis of Carboniferous sandstones from Sardar Formation indicates that they are mainly quartz dominated and are classified as quartzarenites, sublitharenites and subarkoses, derived from acid igneous to intermediate igneous rocks. Discrimination function analysis indicates that the sandstones of Sardar Formation were derived from quartzose sedimentary provenance in a recycled orogenic setting. Also, major and trace elements in sandstones of Sardar Formation (e.g., K2O/Na2O vs. SiO2) indicate deposition in a stable passive continental margin (PM). Chemical index of alteration (CIA) for these rocks (> 65%) suggests a moderate to relatively high degree of weathering in the source area.  相似文献   

7.
The possibility to use some widely known standard discrimination diagrams such as the K2O/Na2O-SiO2/Al2O3, SiO2-K2O/Na2O, (Fe2O3* + MgO)-TiO2, F1-F2, Th-La-Sc, Sc-Th-Zr/10, and Sc/Cr-La/Y for deciphering the paleogeodynamic settings of sedimentary sequences is considered with reference to the Lower and Middle Riphean (Mesoproterozoic) deposits of the Uchur-Maya region (Far East) and the Bashkir meganticlinorium (South Urals). It was shown that only some of them can be used with a certain degree of confidence for reconstructing the settings of the platform sedimentary sequences made up of both sandstones and fine-grained terrigenous rocks.  相似文献   

8.
The first results of U–Pb dating of detrital zircons from Upper Ordovician sandstones of the Bashkir uplift in the Southern Urals and U–Pb isotopic ages available for detrital zircons from six stratigraphic levels of the Riphean–Paleozoic section of this region are discussed. It is established that the long (approximately 1.5 Ga) depositional history of sedimentary sequences of the Bashkir uplift includes a peculiar period lasting from the Late Vendian to the Emsian Age of the Early Devonian (0.55–0.41 Ga). This period is characterized by the following features: (1) prevalence of material from eroded Mesoproterozoic and Early Neoproterozoic crystalline complexes among clastics with ages atypical of the Volga–Urals segment of the East European Platform basement; (2) similarity of age spectra obtained for detrital zircons from different rocks of the period: Upper Vendian–Lower Cambrian lithic sandstones and Middle Ordovician substantially quartzose sandstones.  相似文献   

9.
The climatic impact on the formation of fine-grained rocks from the Riphean stratotype and Vendian Asha Group on the western slope of the South Urals during the time interval lasting approximately 1200 Ma is considered. It is shown that these rocks are largely represented by “tectonosilicate-dominated” shales. This feature combined with changes in the average K2O/Al2O3 values disavows the hypothesis in (Kennedy et al., 2006), according to which the growth of free oxygen concentration in the Late Riphean and Vendian atmosphere was determined by gradual intensification of the organic carbon extraction from the biosphere by clays. The average values of the hydrolyzate module, chemical index of alteration (CIA), and several lithogeochemical parameters calculated for the Riphean and Vendian clayey rocks provide grounds for the conclusion that intensity of weathering in paleodrainage areas during the accumulation of the Upper Precambrian sedimentary successions was low. The curve reflecting changes of the average CIA values in the Upper Precambrian fine-grained siliciclastic rocks of the South Urals is similar to some extent with the “standard” CIAcorrect. curve (GonzalezAlvarez and Kerrich, 2012). It is assumed that changes in microand macrobiotic communities during the Late Precambrian were controlled to a variable extent by climate fluctuations as well. At the same time, these fluctuations most likely left the chemical composition of water in the ocean virtually unchanged, which is evident from analysis of the redox conditions in the ocean and the distribution of primary producers with the average CIAcorrect. and CIA values.  相似文献   

10.
Using an instrumental technique, we carried out a direct comparison of quartz from the Riphean sandstones, sandy fractions from fragments in the Riphean conglomerates and Archean crystalline rocks, which represent the basement inlier of the Russian Platform within the Western Urals (Taratash anticlinorium). It is shown that clastic quartz in the Riphean basal complexes was mainly related to denudation of the Lower Proterozoic platformal cover, whose rocks occur as fragments in the Riphean conglomerates. The probable contribution of eroded crystalline rocks into the Riphean sediments was presumably very insignificant.  相似文献   

11.
The eastern margin of the East European Craton (EEC) has a long lasting geological record of Precambrian age. Archaean and Proterozoic strata are exposed in the western fold-and-thrust belt of the Uralides and are known from drill cores and geophysical data below the Palaeozoic cover in the Uralides and its western foredeep. In the southern Uralides, sedimentary, metamorphic and magmatic rocks of Riphean and Vendian age occur in the Bashkirian Mega-anticlinorium (BMA) and the Beloretzk Terrane. In the eastern part of the BMA (Yamantau anticlinorium) and the Beloretzk Terrane, K-Ar ages of the <2-µm-size fraction of phyllites (potassic white mica) and slates (illite) give evidence for a complex pre-Uralian metamorphic and deformational history of the Precambrian basement at the southeastern margin of the EEC. Interpretation of the K-Ar ages considered the variation of secondary foliation and the diagenetic to metamorphic grade. In the Yamantau anticlinorium, the greenschist-facies metamorphism of the Mesoproterozoic siliciclastic rocks is of Early Neoproterozoic origin (about 970 Ma) and the S1 cleavage formation of Late Neoproterozoic (about 550 Ma). The second wide-spaced cleavage is of Uralian origin. In the central and western part of the BMA, the diagenetic to incipient metamorphic grade developed in Late Neoproterozoic time. In post-Uralian time, Proterozoic siliciclastic rocks with a cleavage of Uralian age have not been exhumed to the surface of the BMA. Late Neoproterozoic thrusts and faults within the eastern margin of the EEC are reactivated during the Uralian deformation.  相似文献   

12.
The materials on the geology and geochemical specialization of Riphean terrigenous rocks of the Bashkirian meganticlinorium, including carbonaceous shale and conglomerate, are reported. Conglomerate is characterized by a high concentration of Au and PGEs mostly related to intensely dislocated zones. It is concluded that potentially ore-bearing zones in terrigenous deposits of the Bashkirian meganticlinorium were formed as a result of multistage polygene processes controlled by the Riphean–Vendian geodynamic evolution of the region.  相似文献   

13.
Lithogeochemical features of Riphean fine-grained terrigenous rocks of the Kama-Belaya aulacogen are discussed. It is shown that aluminosiliciclastic material delivered to the aulacogen during the Riphean was characterized by a low maturity degree. The successively increasing K2O/Al2O3 values in the Riphean summary section correlate negatively with the CIA index values, indicating a gradually strengthening tendency for climate aridization in erosion zones. Data on some indicator ratios of trace elements and REE systematics in Riphean silty mudstones and shales of the Kama-Belaya aulacogen imply the involvement of mafic and ultramafic rocks, in addition to acid igneous and metamorphic varieties, in erosion during accumulation of the Nadezhdino, Tukaevo, Ol’khovka, Usinsk, and Priyutovo formations. Comparison of data on the composition of rocks in provenances based on the mineralogical-petrographic study of sandstones and investigation of geochemical features of silty mudstones and shales revealed their sufficiently high similarity. The geochemical data made it possible to specify the composition of rocks in provenances. Low Ce/Cr values in the fine-grained terrigenous rocks of the Lower Riphean Kyrpy Group suggest their formation with a significant contribution of erosion products of the Archean substrate, which is atypical for higher levels of the section. Thus, the Early-Middle Riphean transition period was likely marked by substantial changes in the mineral composition of material delivered to the Kama-Belaya aulacogen. The lack of exhalative components in the examined specimens of silty mudstones and shales points to a relatively low permeability of the Earth’s crust in the eastern East European Platform through the entire Riphean.  相似文献   

14.
The geochemical characteristics of two sections—the Permian–Triassic boundary (PTB) Guryul Ravine section, Kashmir Valley, Jammu and Kashmir, India; and the Attargoo section, Spiti Valley, Himachal Pradesh, India—have been studied in the context of provenance, paleo-weathering, and plate tectonic setting. These sections represent the siliciclastic sedimentary sequence from the Tethys Himalaya. The PTB siliciclastic sedimentary sequence in these regions primarily consists of sandstones and shales with variable thickness. Present studied sandstones and shales of both sections had chemical index of alteration values between 65 and 74; such values reveal low-to-moderate degree of chemical weathering. The chemical index of weathering in studied samples ranged from 71 to 94, suggesting a minor K-metasomatism effect on these samples. Plagioclase index of alteration in studied sections ranged from 68 to 92, indicating a moderate degree of weathering of plagioclase feldspars. The provenance discriminant function diagram suggests that the detritus involved in the formation of present studied siliciclastic sedimentary rocks fall in quartzose sedimentary and felsic igneous provenances. These sediments were deposited in a passive continental margin plate tectonic setting according to their location on a Si2O versus K2O/Na2O tectonic setting diagram.  相似文献   

15.
The rift-related geodynamic setting of the Late Precambrian geological evolution on the western slope of the South Urals is reconstructed on the basis of localization of lithotectonic complexes of this age, their formation conditions, and the geochemistry of rocks. The Early Riphean stage comprises accumulation of coarse-clastic rocks intercalating with alkaline volcanic rocks of the Navysh Complex, which is a constituent of the Ai Formation, and emplacement of doleritic and picritic intrusions of the Shuida Complex and melanocratic dolerite and gabbrodolerite of the Yusha Complex. The Middle Riphean stage is characterized by wide-spread coarse-clastic terrigenous rocks of the Mashak Formation that intercalate with volcanic rocks of the bimodal basalt-rhyolite association, the Berdyaush pluton of rapakivi granite, the Kusa-Kopan layered intrusive complex, the Lapyshta Complex of dolerites and picrites, and numerous occurrences of gabbrodolerites. The terrigenous rocks of the Vendian stage include conglomerate, gravelstone, and sandstone of the Asha Group, while igneous rocks comprise alkaline volcanics of the Arsha Complex, alkali gabbroids of the Miseli Complex, and melanocratic syenite of the Avashla Complex. The geological evolution of the region is distinguished by local (failed or aborted) rifting. The occurrence of lithotectonic complexes is controlled by dynamic conditions of rifting. A certain inheritance in the evolution may be traced for the Early and Middle Riphean and partly for the Late Riphean and Vendian.  相似文献   

16.
The petrography, heavy mineral analysis, major element geochemical compositions and mineral chemistry of Early Cretaceous to Miocene–Pliocene rocks, and recent sediments of the Tarfaya basin, SW Morocco, have been studied to reveal their depositional tectonic setting, weathering history, and provenance. Bulk sediment compositional and mineral chemical data suggest that these rocks were derived from heterogeneous sources in the Reguibat Shield (West African Craton) including the Mauritanides and the western Anti-Atlas, which likely form the basement in this area. The Early Cretaceous sandstones are subarkosic in composition, while the Miocene–Pliocene sandstones and the recent sediments from Wadis are generally carbonate-rich feldspathic or lithic arenites, which is also reflected in their major element geochemical compositions. The studied samples are characterized by moderate SiO2 contents and variable abundances of Al2O3, K2O, Na2O, and ferromagnesian elements. Binary tectonic discrimination diagrams demonstrate that most samples can be characterized as passive continental marginal deposits. Al2O3/Na2O ratios indicate more intense chemical weathering during the Early Cretaceous and a variable intensity of weathering during the Late Cretaceous, Early Eocene, Oligocene–Early Miocene, Miocene–Pliocene and recent times. Moreover, weathered marls of the Late Cretaceous and Miocene–Pliocene horizons also exhibit relatively low but variable intensity of chemical weathering. Our results indicate that siliciclastics of the Early Cretaceous were primarily derived from the Reguibat Shield and the Mauritanides, in the SW of the basin, whereas those of the Miocene–Pliocene had varying sources that probably included western Anti-Atlas (NE part of the basin) in addition to the Reguibat Shield and the Mauritanides.  相似文献   

17.
Detrital zircons (DZs) from arkose sandstones of the Upper Riphean Zilmerdak Formation (Southern Urals) yielded ages in the range of 3039–964 Ma. Grains with Late Karelian and Early and Middle Riphean ages compose 35, 34, and 26% of the total number of the analyzed zircons, respectively. This is similar to the age spectra of the Vendian sandstones (Asha Group), but it differs significantly from the age distribution typical of the Riphean stratotype sandstones.  相似文献   

18.
The geochemical and Sm–Nd isotope characteristics of Late Precambrian and Early Cambrian sandstones previously related to the sedimentary cover of the Dzabkhan continental block are reported. It is established that the Riphean and Vendian sedimentary rocks of the Ul’zitgol’skaya and Tsaganolomskaya Formations were accumulated within the Dzabkhan continental block as a result of recycling of the terrigenous deposits formed at the expense of destruction of basement rocks and younger granite. The formation of terrigenous rocks of the Bayangol’skaya Formation after a gap in sedimentation occurred in the sedimentary basin, where only the Late Riphean formations of the juvenile crust, probably of the Dzabkhan–Mandal block were the sources, without the contribution of the ancient crustal material. The Tsaganolomskaya and Bayangol’skaya Formations were formed in different sedimentary basins and cannot be related to the same complex.  相似文献   

19.
The paper discusses geological, mineralogical, petrographic, and geochemical data on the Ureg Nuur volcanoplutonic association of high-Mg volcanic and subvolcanic rocks located among Vendian–Cambrian accretionary structures in the Mongolian Altay. These rocks have a high potassium alkalinity (K2O/Na2O up to 1.2), are enriched in LILE and Sr, and have negative Zr–Hf and Nb anomalies in multielement spectra; this confirms the suprasubduction type of the source of melts. The geological setting and established age (512.4 ± 6.1 Ma, 39Ar–40Ar dating of biotite phenocrysts) evidence picritic magmatism at the accretionary stage of the development of the Altay fragment of the Paleoasian ocean. This indicates a large igneous province related to a mantle plume.  相似文献   

20.
Variation of geochemical modules and indices in mudstones from the Upper Vendian Kairovo and Shkapovo groups of the Shkapovo-Shikhan Basin provides the comprehensive information on changes in maturity of the fine aluminosiliciclastic material delivered in the basin, characterizes the redox environment in bottom water, and makes it possible to reconstruct the rock composition in provenance and its evolution through time. The generally moderate maturity of the fine terrigenous clastic material suggests that a nearly semiarid-semihumid climate dominated in paleodrainage area throughout the Late Vendian. It has been established that reducing environment did not exist in bottom water of the central Shkapovo-Shikhan Basin throughout the Late Vendian. Intermediate rocks prevailed in the paleodrainage area. More silicic rocks could occur only in the early Staropetrovo and late Salikhovo times. Data points of mudstones from the Kairovo and Shkapovo Groups plotted on the Cr-Ni, Co-V, Co/Hf-Ce/Cr, La-Th, and La/Sm-Sc/Th diagrams indicate that both Archean and more mature Paleoproterozoic crustal blocks existed in different proportions in the Late Vendian within source areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号