首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lead isotope measurements on gossans may be used as an exploration tool for Pb-Zn-Cu deposits of the “stratiform” type. The method is based on the homogeneous isotopic composition of stratiform orebodies and the close fit of their ratios to the so-called “growth curve”. These features also characterize oxidized outcrops. (gossans) of the primary sulphide ore. The retention of homogeneous Pb isotope ratios during oxidation was tested and proved for true gossans derived from known mineralization in which there was a variation in vertical depth from gossan to primary sulphide, different ages and different geological environments. The deposits included Pb-Zn-Cu (Woodlawn), Pb-Zn (Broken Hill), Zn-Pb (Dugald River), Zn-Cu-Pb (Currawang).The method has been extended to distinguish true gossans from false (pseudo) gossans where the base metals and associated trace elements have been scavenged from the surrounding rocks. It has also been applied to a company exploration program in which a number of ironstone cappings had been drilled and other geochemical information was available. Diamond drilling indicated that five prospects were barren, i.e. underlain by iron sulphides devoid of significant base metal mineralization. On the Pb isotope data, three of the prospects would be rejected; a fourth shows a particularly high potential and is worthy of further exploration, whilst the fifth initially showed high potential but a comparison of gossan and sulphide Pb isotope data after drilling suggests that the drill hole was sited on the fringes of economic mineralization.The Pb isotope method may be utilized further in exploration at the drilling stage. If sulphides are intersected, Pb isotopes may be used to distinguish barren sulphides from those with economic potential, even though they both may contain similar base metal concentrations.  相似文献   

2.
矿区内铁帽发育,矿化特征明显,含矿层和黄铁矿体在电性上与围岩之间存在着明显的电性差异,采用时间域激发极化法和视电阻率法等综合物探方法深部找矿,共发现有意义异常五处。结合地质、钻探资料认为它们分别是由黄铁矿体、规模较小(连续性较差)的矿化体及碳质页岩引起的异常,说明运用综合物探,结合地质进行深部找矿效果明显。  相似文献   

3.
A comparative study of the gossans from ten base-metal deposits in southern Africa included the establishment of geochemical criteria for regional evaluation of gossans and ironstones. Factors such as ore composition, nature of gangue, element mobility, depth of weathering, degree of erosion and groundwater chemistry are discussed with respect to gossan geochemistry.Areal geochemical zonation, relative concentration ranges, element correlations for gossan versus sulphide and scattergrams comparing different gossans were all utilized to examine geochemical criteria for gossan classification. Of the elements studied, Ba (as barite) and Pb are the least mobile, Cu and Ag are variously retained in gossan, whereas Zn and Cd are generally dispersed.Gossans derived from such a wide variety of ore types contribute several multivariate populations to the total data set. Principal components analysis was consequently of little value in separating gossan suites from barren ironstones. Stepwise discriminant analysis successfully distinguished base-metal- from pyrite-derived gossans and ferricretes, discriminated among gossans from different ore provinces and classified individual gossans within base-metal provinces. Discriminant functions commonly comprised only 2 to 6 elements. Characteristic multi-element signatures for the various gossans were subsequently applied to the regional evaluation of ironstone in southern African exploration.  相似文献   

4.
At the Justice mine, in the Ashanti goldfields of southwestern Ghana, chemical weathering of gold- bearing sulfide-rich lodes has produced a series of characteristic mineralogical and geochemical features that are diagnostic. In this type of gold mineralization, the most abundant sulfides are arsenopyrite, pyrite, pyrrhotite, and chalcopyrite with minor bornite and sphalerite. Gold occurs predominantly as native gold, spatially associated and chemically bound with arsenopyrite. Elsewhere gold-silver tellurides are present in quartz veins. During sulfide oxidation, arsenopyrite is replaced by amorphous and crystalline Fe-Mn arsenates, goethite, hematite, and arsenolite in box- and ladderwork textures. In the extremely weathered gossans exposed at surface or in exploration pits, goethite, hematite, and scorodite are present as pseudomorphs of oxidized arsenopyrite, which can be used as a visual pathfinder for gold-arsenic mineralization. As with arsenopyrite, pyrite and pyrrhotite alteration produces boxwork and ladderwork textures with the sulfide replaced by goethite, hematite, and a complex limonite. Copper sulfides and goethite replace bornite and chalcopyrite in ladder-type textures. With more intensive weathering, this assemblage is replaced by cuprite, goethite, and hematite. Gold mineralogy in the gossan is complex, with evidence of in situ precipitation of supergene gold as well as alteration of hypogene native gold. The concentration of pathfinder elements decreases in the gossan as a result of supergene leaching. Mass- balance calculations confirm that gossan production largely is in situ and, consequently, the hypogene geochemical dispersion patterns are preserved even though the proportion of many elements decreases as intensity of weathering increases.

The problem remains of discriminating between auriferous and non-auriferous gossans, or those produced by pedological concentration of iron. Although mineral textures such as box-and ladderwork replacement and mineral pseudomorphs are useful field criteria, the most reliable guide for evaluation still is trace-element geochemistry. By use of multi-element discriminant analysis, gossans of different origins can be distinguished (along with their surface expression) from ironstones and barren lateritic soils. In regional reconnaissance studies, the evaluation of trace-element geochemistry as a discriminant along with field mapping may indicate gold potential of even extremely altered products of mineralization and, in so doing, provide a basis for the classification of weathered samples.  相似文献   

5.
Zonal distribution can be noticed in the gossans resulting from the weathering of siderite in carbonate strata, and this can be accounted for by zoning of subsurface waters. Since siderite is more insoluble than its hostrock, gossans are generally developed in the same place as siderite is exposed. Systematic variations in chemistry are recognizable from the ore body upwards to the surface. The gossans are high in Fe and Mn, but impoverished in S, P, Pb, Zn, Be, Cd, and Ag. This may serve as an indicator of distinguishing siderite gossans from sulphide ones in this region.  相似文献   

6.
7.
Copper mineralization along the Mount Gordon Fault Zone in northwest Queensland contains sufficient mercury to permit mercury pathfinder techniques to be used for exploration for further deposits in the area. At the Mammoth mine, the No. 1 orebody contains 310–14000 ppb Hg, with the highest contents in “sooty chalcocite” which may be of supergene origin. The B orebody contains 100–4300 ppb Hg, with highest concentrations at the top of the deposit. Other deposits in the Mammoth area contain 10–1600 ppb Hg, with mean mercury contents > 200 ppb in fault-related mineralization.There is a strong positive correlation between mercury and copper, sulfur, silver, arsenic, bismuth, lead, antimony and thallium contents in the deposits which suggests mercury was introduced during the mineralizing process. However, most of the mercury occurs on the surfaces of sulfide minerals, indicating its introduction at a late stage of mineralization.Mercury in the No. 1 orebody is partly of supergene origin whereas primary mineralogy may control mercury distribution in the B orebody. The presence near the Mammoth Fault of a lens of pyrite containing high concentrations of mercury (geometric mean 820 ppb) suggests that the mercury content of pyrite encountered in future exploration programmes in the region might be used to indicate proximity to mineralized fault zones.Gossans derived from copper deposits contain more than five times the amount of mercury in ironstones developed over unmineralized or poorly mineralized fault zones. The mercury contents of iron-rich rocks may be used to discriminate gossans from the numerous fault ironstones in the Mammoth area.  相似文献   

8.
The Wadi Bidah Mineral District of Saudi Arabia contains more than 16 small outcropping stratabound volcanogenic Cu–Zn–(Pb) ± Au-bearing massive sulphide deposits and associated zones of hydrothermal alteration. Here, we use major and trace element analyses of massive sulphides, gossans, and hydrothermally altered and least altered metamorphosed host rock (schist) from two of the deposits (Shaib al Tair and Rabathan) to interpret the geochemical and petrological evolution of the host rocks and gossanization of the mineralization. Tectonic interpretations utilize high-field-strength elements, including the rare earth elements (REE), because they are relatively immobile during hydrothermal alteration, low-grade metamorphism, and supergene weathering and therefore are useful in constraining the source, composition, and physicochemical parameters of the primary igneous rocks, the mineralizing hydrothermal fluid and subsequent supergene weathering processes. Positive Eu anomalies in some of the massive sulphide samples are consistent with a high temperature (>250°C) hydrothermal origin, consistent with the Cu contents (up to 2 wt.%) of the massive sulphides. The REE profiles of the gossans are topologically similar to nearby hydrothermally altered felsic schists (light REE (LREE)-enriched to concave-up REE profiles, with or without positive Eu anomalies) suggesting that the REE experienced little fractionation during metamorphism or supergene weathering. Hydrothermally altered rocks (now schists) close to the massive sulphide deposits have high base metals and Ba contents and have concave-up REE patterns, in contrast to the least altered host rocks, consistent with greater mobility of the middle REE compared to the light and heavy REE during hydrothermal alteration. The gossans are interpreted to represent relict massive sulphides that have undergone supergene weathering; ‘chert’ beds within these massive sulphide deposits may be leached wall-rock gossans that experienced silicification and Pb–Ba–Fe enrichment from acidic groundwaters generated during gossan formation.  相似文献   

9.
Thousands of silica gossans are exposed at the top of the Lower Cretaceous basalt hills in the Paraná volcanic province, strongly indicating the presence of calcite, amethyst and agate geode deposits along with native copper mineralization. The Embrapa silica gossan in the northwestern portion of the province (Campo Grande region) is an excellent example of such novel geological structure in the continental flood basalts. This silica gossan has a size of 450 × 350 m standing out as a treeless area in the densely wooded savanna and makes part of the stratigraphy of six basalt flows of Paranapanema intermediate-Ti chemical type. The base of the volcanic column is constituted by two Pitanga types and the overlying column is Paranapanema type. Every basalt flow has a silicified sand layer or breccia at the top and these are fed by abundant sand dikes. The Anel Viário Norte (AVN) flow is the most intensely altered by hydrothermal fluids producing voluminous secondary calcite infillings in the amygdales and fractures. In this region the basalts contain higher copper content than the average of the volcanic province. The studied silica gossans display negative anomalies in gamma spectrometry as a response to K, U and Th depletion during alteration. We propose a new exploration methodology by observing GoogleEarth images complemented with field studies and geochemistry to readily locate favorable areas for amethyst and agate geode deposits and native copper mineralization.  相似文献   

10.
The Sarcheshmeh copper deposit is one of the world's largest Oligo-Miocene porphyry copper deposits in a continental arc setting with a well developed supergene sulfide zone, covered mainly by a hematitic gossan. Supergene oxidation and leaching, have developed a chalcocite enrichment blanket averaging 1.99% Cu, more than twice that of hypogene zone (0.89% Cu). The mature gossans overlying the Sarcheshmeh porphyry copper ores contain abundant hematite with variable amounts of goethite and jarosite, whereas immature gossans consist of iron-oxides, malachite, azurite and chrysocolla. In mature gossans, Au, Mo and Ag give significant anomalies much higher than the background concentrations. However, Cu has been leached in mature gossans and gives values close or even less than the normal or crustal content (< 36.7 ppm). Immature gossans are enriched in Cu (160.3 ppm), Zn (826.7 ppm), and Pb (88.6 ppm). Jarosite- and goethite-bearing gossans may have developed over the pyritic shell of most Iranian porphyry copper deposits with pyrite–chalcopyrite ratios greater than 10 and therefore, do not necessarily indicate a promising sulfide-enriched ore (Kader and Ijo). Hematite-bearing gossans overlying nonreactive alteration halos with pyrite–chalcopyrite ratios about 1.5 and quartz stringers have significant supergene sulfide ores (Sarcheshmeh and Miduk). The copper grade in supergene sulfide zone of Sarcheshmeh copper deposit ranges from 0.78% in propylitized rocks to 3.4% in sericitized volcanic rocks, corresponding to the increasing chalcopyrite–pyrite or chalcocite–pyrite ratios from 0.3 to 3, respectively. Immature gossans with dominant malachite and chrysocolla associated with jarosite and goethite give the most weakly developed enrichment zone, as at God-e-Kolvari. The average anomalous values of Au (59.6 ppb), Mo (42.5 ppm) and Ag (2.6 ppm) in mature gossans associated with the Sarcheshmeh copper mine may be a criterion that provides a significant exploration target for regional metallogenic blind porphyry ore districts in central Iranian volcano–plutonic continental arc settings. Drilling for new porphyry ores should be targeted where hematitic gossans are well developed. The ongoing gossan formation may result in natural acidic rock drainage (ARD).  相似文献   

11.
In the Rio Tinto district of the Iberian Pryrite Belt of South Spain, the weathering of massive sulfide bodies form iron caps, i.e., true gossans and their subsequent alteration and re-sedimentation has resulted in iron terraces, i.e., displaced gossans. To study the stucture and evolution of both types of gossans, magnetic investigations have been carried out with two foci: (1) the characterisation and spatial distribution of magnetic fabrics in different mineralised settings, including massive sulfides, gossans, and terraces, and (2) paleomagnetic dating. Hematite has been identified as the suceptibility carrier in all sites and magnetic fabric investigation of four gossans reveals a vertical variation from top to bottom, with: (1) a horizontal foliation refered to as “mature” fabric in the uppermost part of the primary gossans, (2) highly inclined or vertical foliation interpreted as “immature” fabric between the uppermost and lowermost parts, and (3) a vertical foliation interpreted to be inherited from Hercynian deformation in the lowermost part of the profiles. In terraces, a horizontal foliation dominates and is interpreted to be a “sedimentary” fabric. Rock magnetic studies of gossan samples have identified goethite as the magnetic remanence carrier for the low-temperature component, showing either a single direction close to the present Earth field (PEF) direction or random directions. Maghemite, hematite, and occasionally magnetite are the remanence carriers for the stable high-temperature component that is characterized by non PEF directions with both normal and reversed magnetic polarities. No reliable conclusion can be yet be drawn on the timing of terrace magnetization due to the small number of samples. In gossans, the polarity is reversed in the upper part and normal in the lower part. This vertical distribution with a negative reversal test suggests remanence formation during two distinct periods. Remanence in the upper parts of the gossans is older than in the lower parts, indicating that the alteration proceeded from top to bottom of the profiles. In the upper part, the older age and the horizontal “mature” fabric is interpreted to be a high maturation stage of massive sulfides’ alteration. In the lower part, the age is younger and the inherited “imature” vertical Hercynian fabric indicates a weak maturation stage. These two distinct periods may reflect changes of paleoclimate, erosion, and/or tectonic motion.  相似文献   

12.
The Wilga and Currawong copper-zinc massive sulphide deposits in northeastern Victoria occur within a sequence of Silurian volcanics and sediments. The Wilga deposit which was discovered in mid 1978 consists of a single lens while the Currawong deposit, discovered in early 1979, consists of at least two lenses.The first indication of the presence of base metal mineralization in the area was provided by an assessment of stream sediment geochemical data contained in open-file Exploration Licence reports at the Victorian Department of Minerals and Energy.The massive sulphide mineralization does not outcrop, but the ore horizons are weakly mineralized and give rise to stringer gossans as far as 150 m up dip from ore grade mineralization. These can be identified by their trace element chemistry (anomalous values of Bi, Fe, As, Au, Pb, Hg, Se, Co, Ag and Mn) corresponding to the trace element signature of both stringer and massive sulphides.Soils in the area are essentially skeletal and residual with some colluvial movement on the steeper slopes. The soils are highly anomalous in Cu, Pb, and Zn over the projected horizon of the Wilga mineralization and the No. 2 lens at Currawong.The stream sediment responses at both Wilga and Currawong result from a combination of chemical and elastic dispersion. Downslope from the surface expression of the Wilga mineralization a spring discharges directly into the Tambo River. The spring has a very low pH and is rich in base metals resulting in enhanced metal values in both stream water and stream sediments.Analyses of selected samples of the more prominent vegetation species have failed to show a clear relationship to the mineralization.  相似文献   

13.
麦兹盆地位于西伯利亚板块南缘阿尔泰陆缘活动带中,是一个重要的铅、锌、铁矿化集中区,其中著名的有蒙库大型铁矿床、可可塔勒大型铅锌矿床,是阿尔泰南缘多金属成矿带中最重要的成矿盆地之一。盆地内矿床、矿点多为火山喷流热水沉积成因,层控特征明显,具有规模大、形态规则、厚度及有用组分稳定等特点。铁矿成矿与早泥盆世早期细碧角斑质火山作用相伴,而铅锌成矿则与早泥盆世晚期长英质火山喷流沉积作用相伴。通过对麦兹盆地成矿地质特征和典型矿床中矿体分布变化规律的研究,认为北西向同生断裂、火山沉积洼地、火山喷发中心(火山机构)共同控制铅锌矿的产出,矿体还受到后期褶皱、变质作用的改造。根据有利层位、火山岩相、喷流沉积岩、热液蚀变、矿化组合、铁帽、控矿构造和地球化学异常等综合找矿评价标志,分析了可可塔勒矿区深部、什根特、铁热克萨依、H-48号异常的铅锌找矿潜力,并探讨了盆地内铁、金的找矿潜力,指出了进一步找矿的方向与有利地段。  相似文献   

14.
Massive sulphide deposits in the Neoproterozoic Arabian-Nubian Shield are exposed at the surface as Fe-rich crusts termed gossans. Gossans are typically a few tens of metres across but are surrounded by wider clay- and Fe-rich alteration zones. Although Fe-rich gossans have characteristic reflectance spectra and surface roughness, they are often too small to be directly detected by Landsat TM or SIR-C images, both of which have about 30 m spatial resolution. In this paper, a procedure is described whereby gossans and the surrounding alteration zones can be identified and mapped by Landsat TM and SIR-C data using the Beddaho Alteration Zone and the Tebih Gossan in northern Eritrea as an example. Clay and Fe alteration index maps were generated by density slicing for Landsat TM band-ratios and , respectively. Landsat 5/7-4/5-3/1 TM images characteristically depict small (tens of pixels) gossans in blue and the more extensive alteration zones in pinkish purple. Chh-LhhLhh/Chh SIR-C images succeeded in identifying the gossan due to enhanced back-scattering of the radar shorter wavelength (6 cm) C-band by the rough gossan surfaces. This enhanced back-scattering might also be partially due to the characteristic dielectric property of the Fe-rich minerals forming the gossans. Choosing known gossans from both 5/7-4/5-3/1 Landsat TM and Chh-Lhh-Lhh/Chh SIR-C images as training sites for supervised classification helped to outline areas with reflectance spectra and radar back-scattering properties similar to those of the training sites. These results show significant correlation between supervised classifications based on the two data sets, suggesting a way to use combined visible and near infrared (VNIR) and radar imagery to explore for mineral deposits in arid regions.  相似文献   

15.
The concentration and distribution of metals were studied in metallophytes, growing on and in the vicinity of Pb–Zn gossans, NW Queensland. The study investigated the accumulation of metals in plant species and assessed their potential use as indicators in geobotanical and biogeochemical prospecting and as metal excluders in mine site rehabilitation. Plant species colonising the gossans tolerate high concentrations of metals. Total mean metal concentrations of soils ranged from minima of 14 ppm Cu, 28 ppm Pb and 34 ppm Zn in background areas to maxima of 660 ppm Cu, 12000 ppm Pb and 2100 ppm Zn over mineralised soils. Over the gossans, the grass species Eriachne mucronata forma, Enneapogon lindleyanus and Paraneurachne muelleri replace the characteristic grass Triodia molesta where the soils have high Pb and Zn concentrations. Of the 16 plant species identified, 3 of them, Hybanthus aurantiacus, Clerodendrum tomentosum and Bulbostylis barbata, were confined to the gossan sites. B. barbata appears to be of particular use in geobotanical prospecting as it indicates base metal mineralisation in the region.  相似文献   

16.
Gossans associated with the Dugald River zinc-lead lode contain anomalous concentrations of Zn, Pb, Ag, As, Cd, Cu, Sb, Se, Tl and Ba and differ from those on the more pyritic Western Lode (Zn, Pb, Cu, As, Tl) and those associated with copper mineralization in the hanging wall (As, Bi, Co, Cu, Mo, Ni, Sb). Mineralogical and geochemical variations in gossans along strike reflect changes in primary ore and gangue mineralogy, particularly towards the north, where the Dugald River lode and hanging wall copper mineralization merge. Leaching of more soluble elements from the surface and re-precipitation below have resulted in large geochemical variations in the top metre of the profile.Dispersion into wall rocks has occurred over two distinct periods: hydromorphic dispersion, before erosion removed much of the gossan and surrounding Corella Formation, has resulted in very high Zn contents (up to 9%) in the footwall, whereas a more even dispersion of target and pathfinder elements into hanging and footwall rocks is from recent weathering of the slightly elevated gossan.  相似文献   

17.
Lead isotope analyses were performed on 26 polymetallic massive sulphide deposits of the Iberian Pyrite Belt, as well as on overlying gossans and associated volcanic rocks. All the massive sulphide deposits (except for Neves-Corvo), and nearly all the volcanic rocks show very similar isotopic compositions grouped around 18.183 (206Pb/204Pb), 15.622 (207Pb/204Pb) and 38.191 (208Pb/204Pb), indicating that most of the ore deposit lead was derived from the same continental crust environment as the associated volcanic rocks. The isotopic compositions are representative of the average south Iberian crust during the Devonian to Early Carboniferous (Dinantian), and their constancy implies a homogenization of the mineralizing fluids before the deposition of the massive sulphides from hydrothermal fluids circulating through interconnected regional fracture systems. This isotopic constancy is incompatible with multiple, small, independent hydrothermal cells of the East Pacific Rise type, and fits much better with a model of hydrothermal convections driven by “magmatic floor heating”. Neves-Corvo is the only south Iberian massive sulphide deposit to have a heterogeneous isotopic composition with, in particular, a highly radiogenic stanniferous ore (206Pb/204Pb of the cassiterite is >18.40). A model of lead mixing with three components is proposed to explain these variations: (1) one derived from the Devonian to Early Carboniferous (Dinantian) continental crust that generated all the other massive ores; (2) an Eohercynian stanniferous mineralization partly remobilized during the formation of the massive sulphides, but independent of them; and (3) a Precambrian continental crust component. The juxtaposition of three different sources places Neves-Corvo in a specific paleogeographic situation that could also explain its mineralogical specificity. The geodynamic context that best explains all the obtained isotopic results is one of an accretionary prism. The fact that lead isotope signatures of the gossans are almost identical to those of the underlying massive sulphides means that this technique could be a useful exploration tool for the Iberian Pyrite Belt.  相似文献   

18.
The Eastern Highlands of Australia have probably been in existence since the Late Cretaceous or earlier and so there has been ample time for mature gossan profiles to form over outcropping volcanogenic Zn–Pb–Cu mineralisation in the eastern Lachlan Fold Belt. The mature gossan profiles are characterised by the upward progression from supergene sulfides to secondary sulfates, carbonates and phosphates into a Fe-oxide dominated surficial capping which may contain boxwork textures after the original sulfides (as at the Woodlawn massive sulfide deposit). However, the region has locally been subjected to severe erosion and the weathering profile over many deposits is incomplete (immature) with carbonate and phosphate minerals, especially malachite, being found in surficial material. These immature gossans contain more Cu, Pb and Zn but lower As, Sn (and probably Au) than the mature gossans. Although Pb is probably the best single pathfinder for Zn–Pb–Cu VHMS deposits of the eastern Lachlan Fold Belt, Ag, As, Au, Bi, Mo, Sb and Sn are also useful, with most of these elements able to be concentrated in substantial amounts in Fe oxides and alunite–jarosite minerals.  相似文献   

19.
A study of the trace-element content of ironstones of the Yilgarn Shield of Western Australia has shown that statistical groupings of Cu, Ni, Zn, Pb, Mn and Cr may be used to distinguish between nickel sulphide gossans from other ironstones. These groupings are supported by petrological and geological observations as well as drilling information. The paper also explains the use of Cu, Ni, Zn, Pb, Mn and Cr in establishing geochemical signatures for various lithologic types.  相似文献   

20.
自组织人工神经网络在多金属成矿预测中的应用   总被引:2,自引:0,他引:2  
蔡煜东  杨兵  孙虹 《矿床地质》1994,13(2):181-185
本文运用TKohonen自组织人工神经网络,对鄂东南地区44个铁帽进行计算机识别,识别成功率达100%。结果表明,该方法性性能良好,可望成为多金属成矿预测的一种有效的辅助手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号