首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is devoted to the study on applying numerical techniques to accurately compute and robustly extend the libration point orbits (LPOs). A new methodology is proposed exploiting the hyperbolic dynamics of the collinear libration points. Numerical tools are developed to facilitate the efficient computation process, which are applicable to realistic force models and inherently parallelizable. Extensive numerical explorations in the Earth–Moon system are carried out, revealing the delicate structures of nested island chains and bounded chaotic motions on the center manifold. Numerical results confirm that the proposed approach can handle the computations of various types of LPOs in a unified manner and is operational over a wide range of energy levels. LPOs obtained with this approach offer a broad range of future mission possibilities in an extended vicinity of the collinear libration points.  相似文献   

2.
Quasi-periodic orbits about the translunar libration point   总被引:2,自引:0,他引:2  
Analytical solutions for quasi-periodic orbits about the translunar libration point are obtained by using the method of Lindstedt-Poincaré and computerized algebraic manipulations. The solutions include the effects of nonlinearities, lunar orbital eccentricity, and the Sun's gravitational field. For a small-amplitude orbit, the orbital path as viewed from the Earth traces out a Lissajous figure. This is due to a small difference in the fundamental frequencies of the in-plane and out-of-plane oscillations. However, when the amplitude of the in-plane oscillation is greater than 32 379 km, there is a corresponding value of the out-of-plane amplitude that will produce a path where the fundamental frequencies are equal. This synchronized trajectory describes a halo orbit of the Moon.  相似文献   

3.
Analytic construction of periodic orbits about the collinear points   总被引:12,自引:0,他引:12  
A third-order analytical solution for halo-type periodic motion about the collinear points of the circular-restricted problem is presented. The three-dimensional equations of motion are obtained by a Lagrangian formulation. The solution is constructed using the method of successive approximations in conjunction with a technique similar to the Lindstedt-Poincaré method. The theory is applied to the Sun-Earth system.  相似文献   

4.
Bifurcating families around collinear libration points   总被引:1,自引:0,他引:1  
The planar and the vertical Lyapunov families are two basic periodic families around the collinear libration points. The stability curves of these two families are given first, and then periodic families bifurcating from them are explored in detail. Several properties of these bifurcating families are found. This study follows a series of the authors’ publications on periodic families around the libration points in the restricted three-body problem.  相似文献   

5.
J.I. Katz 《Icarus》1975,25(2):356-359
The behavior of a test particle placed at a triangular libration point of the Earth-Moon system is calculated using Newton's equations for the four-body problem, with arbitrarily chosen initial conditions. If the orbits of the massive bodies have their real eccentricities, then the test particle leaves the vicinity of the libration point in three years, much faster than if the orbits were circular. Very small particles are affected by solar radiation pressure, and may leave even faster.  相似文献   

6.
The existence of the three-parametric family of the collinear-libration points in the photo-gravitational three-body problem (differing from the classical one by the addition to the gravitational field the light repulsion force-field) is proved. The number and situation of these points are determined with respect to the system parameters. Their stability to a first approximation is investigated. It is shown that oppositly to the classical problem the internal collinear libration-points may be stable in some domain of parameter-space.  相似文献   

7.
Over the past three decades, ballistic and impulsive trajectories between libration point orbits (LPOs) in the Sun–Earth–Moon system have been investigated to a large extent. It is known that coupling invariant manifolds of LPOs of two different circular restricted three-body problems (i.e., the Sun–Earth and the Earth–Moon systems) can lead to significant mass savings in specific transfers, such as from a low Earth orbit to the Moon’s vicinity. Previous investigations on this issue mainly considered the use of impulsive maneuvers along the trajectory. Here we investigate the dynamical effects of replacing impulsive ΔV’s with low-thrust trajectory arcs to connect LPOs using invariant manifold dynamics. Our investigation shows that the use of low-thrust propulsion in a particular phase of the transfer and the adoption of a more realistic Sun–Earth–Moon four-body model can provide better and more propellant-efficient solution. For this purpose, methods have been developed to compute the invariant tori and their manifolds in this dynamical model.  相似文献   

8.
In the framework of the circular restricted three-body problem, the center manifolds associated with collinear libration points contain all the bounded orbits moving around these points. Semianalytical computation of the center manifolds and the associated canonical transformation are valuable tools for exploring the design space of libration point missions. This paper deals with the refinement of reduction to the center manifold procedure. In order to reduce the amount of calculation needed and avoid repetitive computation of the Poisson bracket, a modified method is presented. By using a polynomial optimization technique, the coordinate transformation is conducted more efficiently. In addition, an alternative way to do the canonical coordinate transformation is discussed, which complements the classical approach. Numerical simulation confirms that more accurate and efficient numerical exploration of the center manifold is made possible by using the refined method.  相似文献   

9.
The possibility of stabilizing the collinear libration points of the circular restricted three-body problem by using an additional jet acceleration (constant in magnitude) is investigated. Three stabilization laws are considered when the jet acceleration is either directed continuously to one of the primariesm 1,m 2 or is parallel to the line joining them. The solution of the problem formulated is based on the method of the driving forces structure analysis created by W. Thomson and P. Tait. It is shown that none of the stabilization laws mentioned ensures the existence of the isolated minimum of changed potential energy, and therefore the secular stability of the collinear libration points is impossible. In the 3rd and 4th paragraphs the possibility of a gyroscopic stabilization of these points is considered. It is shown that the gyroscopic stabilization of the external libration points is possible only when jet acceleration is either directed to the distant mass or is parallel to the line joining the primaries. The necessary and sufficient conditions of the gyroscopic stabilization are given. It is also shown that the internal libration points cannot be stabilized by any of the laws considered. For the Earth-Moon system the numerical data of time-existence of the satellite in the vicinity of the libration point situated near the Moon are given.  相似文献   

10.
11.
A lagrangian formulation for the three-dimensional motion of a satellite in the vicinity of the collinear points of the circular-restricted problem is reconsidered. It is shown that the influence of the primaries can be expressed in the form of two third-body disturbing functions. By use of this approach, the equations for the Lagrangian and for the motion itself are readily developed into highly compact expressions. All orders of the non-linear developments are shown to be easily obtainable using well-known recursive relationships. The resulting forms for these equations are well suited for use in the initial phase of canonical or non-canonical investigations.  相似文献   

12.
Some particular solutions of the restricted three-body problem which determine outgoing or incoming orbits near libration points are considered. The solutions are obtained in the form of absolutely convergent Liapounov series. It is proved that these asymptotic solutions are plane curves situated in the orbital plane of the primaries. Each family of asymptotic solutions for every collinear point consists of four solutions which are the separatrices of a saddle point. The angles of inclination of the separatrices are determined.
aaa a a aa , a. a a a. a, a . . aa, a a aaa. . a . a a , aaa a. . aa aa a .
  相似文献   

13.
The three families of three-dimensional periodic oscillations which include the infinitesimal periodic oscillations about the Lagrangian equilibrium pointsL 1,L 2 andL 3 are computed for the value =0.00095 (Sun-Jupiter case) of the mass parameter. From the first two vertically critical (|a v |=1) members of the familiesa, b andc, six families of periodic orbits in three dimensions are found to bifurcate. These families are presented here together with their stability characteristics. The orbits of the nine families computed are of all types of symmetryA, B andC. Finally, examples of bifurcations between families of three-dimensional periodic solutions of different type of symmetry are given.  相似文献   

14.
Out-of-plane motion about libration points is studied within the framework of the elliptic restricted three-body problem. Nonlinear motion in the circular restricted problem is given to third order in the out-of-plane amplitudeA z by Jacobi elliptic functions. Linear motion in the elliptic problem is studied using Mathieu's and Hill's equations. Additional terms needed for a complete third-order theory are found using Lindsted's method. This theory is constructed for the case of collinear libration points; for the case of triangular points, a third-order nonlinear solution is given separately in terms of Jacobi elliptic functions.  相似文献   

15.
This study analyzes a recently discovered class of exterior transfers to the Moon. These transfers terminate in retrograde ballistic capture orbits, i.e., orbits with negative Keplerian energy and angular momentum with respect to the Moon. Yet, their Jacobi constant is relatively low, for which no forbidden regions exist, and the trajectories do not appear to mimic the dynamics of the invariant manifolds of the Lagrange points. This paper shows that these orbits shadow instead lunar collision orbits. We investigate the dynamics of singular, lunar collision orbits in the Earth–Moon planar circular restricted three-body problem, and reveal their rich phase space structure in the medium-energy regime, where invariant manifolds of the Lagrange point orbits break up. We show that lunar retrograde ballistic capture trajectories lie inside the tube structure of collision orbits. We also develop a method to compute medium-energy transfers by patching together orbits inside the collision tube and those whose apogees are located in the appropriate quadrant in the Sun–Earth system. The method yields the novel family of transfers as well as those ending in direct capture orbits, under particular energetic and geometrical conditions.  相似文献   

16.
In the restricted problem of three bodies, the effect of oblateness of the bigger primary appears as an additional term in the potential. As a result, the location of libration points and the roots of the characteristic equation at these points depend not only upon the mass parameter but also on the oblateness termI of the bigger primary. Series solutions are developed in terms of andI which are used for locating the collinear libration points and for determining the mean motions and characteristic exponents at these points.The work is supported by a fellowship awarded to the second author by University Grant Commission, India.  相似文献   

17.
Results from the OSO-6 Rutgers Zodiacal Light Analyzer experiment show photometric perturbations above the background in the anti-Sun line of sight. Sixteen successive lunations were examined, and the accumulated perturbations show a maximum value in the direction of the L4 and L5 Earth-Moon libration points. This is interpreted as a counterglow from a cloud of particles at the libration points. The average brightness of these libration clouds is 20 S10 Vis. The average angular size of the libration clouds is approximately 6 degrees. Their position varies from one lunation to the next, within an ellipsoidal zone centered on the libration point direction, with its semi-major axis, of approximately 6 degrees, nominally in the ecliptic and its semi-minor axis, of approximately 2 degrees perpendicular to the ecliptic. The position of these clouds with respect to the Lagrangian L4 and L5 points, is towards the Moon in the northern summer and away from the Moon in the northern winter.  相似文献   

18.
High-order analytical solutions of invariant manifolds, associated with Lissajous and halo orbits in the elliptic restricted three-body problem (ERTBP), are constructed in this paper. The equations of motion of ERTBP in the pulsating synodic coordinate system have five equilibrium points, and the three collinear libration points as well as the associated center manifolds are unstable. In our calculation, the general solutions of the invariant manifolds associated with Lissajous and halo orbits around collinear libration points are expressed as power series of five parameters: the orbital eccentricity, two amplitudes corresponding to the hyperbolic manifolds, and two amplitudes corresponding to the center manifolds. The analytical solutions up to arbitrary order are constructed by means of Lindstedt–Poincaré method, and then the center and invariant manifolds, transit and non-transit trajectories in ERTBP are all parameterized. Since the circular restricted three-body problem (CRTBP) is a particular case of ERTBP when the eccentricity is zero, the general solutions constructed in this paper can be reduced to describe the dynamics around the collinear libration points in CRTBP naturally. In order to check the validity of the series expansions constructed, the practical convergence of the series expansions up to different orders is studied.  相似文献   

19.
The configuration space around the triangular libration points in the Earth-Moon system is partitioned according to the stability of the motion. The regions aroundL 4 andL 5 are established where particles placed with zero initial velocity will librate. The complexity of the partitioning is revealed.  相似文献   

20.
Photographs in the vicinity of the Earth-Moon triangular libration points L4 and L5, and of the solar-synchronized positions in the associated halo orbits (A. A. Kamel, 1969, Ph.D. dissertation, Stanford University), were made during August–September 1979, using the 30-in Cassegrain telescope at Leuschner Observatory, Lafayette, California. An effective 2° square field was covered at each position. No discrete objects, either natural or artificial, were found. The detection limit was about 14th magnitude. The present work extends traditional SETI observations to include the search for interstellar probes (R. A. Freitas, Jr., 1980a, J. Brit. Interplanet. Soc.33, 95–100).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号