首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A systematic investigation of the applicability of several ground motion prediction models for Vrancea intermediate-depth seismic source is conducted in this research. Two ground motion prediction models recommended by previous evaluations (Vacareanu et al. in Bull Earthq Eng 11(6):1867–1884, 2013a; Pavel et al. in Earthq Struct 6(1):1–18, 2014), as well as two new state-of-the-art ground motion prediction equations (Vacareanu et al. in J Earthq Eng, 2013b; Earthq Struct 6(2):141–161, 2014) are tested using an increased strong ground motion database consisting of 150 recordings from Vrancea subcrustal earthquakes. The evaluation is performed by using several goodness-of-fit parameters from the literature. Moreover, the applicability of the single-station sigma method is also investigated by using the same strong ground motion database recorded in 30 seismic stations from southern and eastern Romania. The influence of the soil conditions on the numerical results obtained in this study is investigated and discussed using the results provided by the analysis of variance method. The impact of the single-station standard deviation on the levels of seismic hazard is also assessed in this study, and the results show, in the analyzed cases, significant reductions of the hazard levels.  相似文献   

2.
A seismic hazard map of Kanpur city has been developed considering the region-specific seismotectonic parameters within a 500-km radius by deterministic and probabilistic approaches. The maximum probable earthquake magnitude (M max) for each seismic source has been estimated by considering the regional rupture characteristics method and has been compared with the maximum magnitude observed \(\left ({M_{\max }^{\text {obs}}}\right )\), \(M_{\max }^{\text {obs}} +0.5\) and Kijko method. The best suitable ground motion prediction equations (GMPE) were selected from 27 applicable GMPEs based on the ‘efficacy test’. Furthermore, different weight factors were assigned to different M max values and the selected GMPE to calculate the final hazard value. Peak ground acceleration and spectral acceleration at 0.2 and 1 s were estimated and mapped for worst-case scenario and 2 and 10% probability of exceedance for 50 years. Peak ground acceleration (PGA) showed a variation from 0.04 to 0.36 g for DSHA, from 0.02 to 0.32 g and 0.092 to 0.1525 g for 2 and 10% probability in 50 years, respectively. A normalised site-specific design spectrum has been developed considering three vulnerable sources based on deaggregation at the city center and the results are compared with the recent 2011 Sikkim and 2015 Nepal earthquakes, and the Indian seismic code IS 1893.  相似文献   

3.
本文介绍十五期间福建省将要实施建设的数字强震观测台网 ,着重从项目的必要性和方案的可行性方面进行论述 ,同时结合福建省的地震监测台网现状进行系统的设计。力求建成的强震观测系统能初步实现福建省属重点城市的地震烈度速报及典型场地强地震动记录获取双重功能 ,增强福建省的地震监测能力 ,为福建省地震灾害的减轻、有效救灾措施的实施以及防震减灾规划的制定提供基础依据 ;同时 ,也将为其他省市区域数字强震观测台网的建立提供示范样板  相似文献   

4.
Probabilistic seismic hazard analysis (PSHA) is carried out for the archaeological site of Vijayapura in south India in order to obtain hazard consistent seismic input ground-motions for seismic risk assessment and design of seismic protection measures for monuments, where warranted. For this purpose the standard Cornell-McGuire approach, based on seismogenic zones with uniformly distributed seismicity is employed. The main features of this study are the usage of an updated and unified seismic catalogue based on moment magnitude, new seismogenic source models and recent ground motion prediction equations (GMPEs) in logic tree framework. Seismic hazard at the site is evaluated for level and rock site condition with 10% and 2% probabilities of exceedance in 50 years, and the corresponding peak ground accelerations (PGAs) are 0.074 and 0.142 g, respectively. In addition, the uniform hazard spectra (UHS) of the site are compared to the Indian code-defined spectrum. Comparisons are also made with results from National Disaster Management Authority (NDMA 2010), in terms of PGA and pseudo spectral accelerations (PSAs) at T = 0.2, 0.5, 1.0 and 1.25 s for 475- and 2475-yr return periods. Results of the present study are in good agreement with the PGA calculated from isoseismal map of the Killari earthquake, \({\hbox {M}}_{\mathrm{w}} = 6.4\) (1993). Disaggregation of PSHA results for the PGA and spectral acceleration (\({\hbox {S}}_{\mathrm{a}}\)) at 0.5 s, displays the controlling scenario earthquake for the study region as low to moderate magnitude with the source being at a short distance from the study site. Deterministic seismic hazard (DSHA) is also carried out by taking into account three scenario earthquakes. The UHS corresponding to 475-yr return period (RP) is used to define the target spectrum and accordingly, the spectrum-compatible natural accelerograms are selected from the suite of recorded accelerograms.  相似文献   

5.
The ground motion hazard for Sumatra and the Malaysian peninsula is calculated in a probabilistic framework, using procedures developed for the US National Seismic Hazard Maps. We constructed regional earthquake source models and used standard published and modified attenuation equations to calculate peak ground acceleration at 2% and 10% probability of exceedance in 50 years for rock site conditions. We developed or modified earthquake catalogs and declustered these catalogs to include only independent earthquakes. The resulting catalogs were used to define four source zones that characterize earthquakes in four tectonic environments: subduction zone interface earthquakes, subduction zone deep intraslab earthquakes, strike-slip transform earthquakes, and intraplate earthquakes. The recurrence rates and sizes of historical earthquakes on known faults and across zones were also determined from this modified catalog. In addition to the source zones, our seismic source model considers two major faults that are known historically to generate large earthquakes: the Sumatran subduction zone and the Sumatran transform fault. Several published studies were used to describe earthquakes along these faults during historical and pre-historical time, as well as to identify segmentation models of faults. Peak horizontal ground accelerations were calculated using ground motion prediction relations that were developed from seismic data obtained from the crustal interplate environment, crustal intraplate environment, along the subduction zone interface, and from deep intraslab earthquakes. Most of these relations, however, have not been developed for large distances that are needed for calculating the hazard across the Malaysian peninsula, and none were developed for earthquake ground motions generated in an interplate tectonic environment that are propagated into an intraplate tectonic environment. For the interplate and intraplate crustal earthquakes, we have applied ground-motion prediction relations that are consistent with California (interplate) and India (intraplate) strong motion data that we collected for distances beyond 200 km. For the subduction zone equations, we recognized that the published relationships at large distances were not consistent with global earthquake data that we collected and modified the relations to be compatible with the global subduction zone ground motions. In this analysis, we have used alternative source and attenuation models and weighted them to account for our uncertainty in which model is most appropriate for Sumatra or for the Malaysian peninsula. The resulting peak horizontal ground accelerations for 2% probability of exceedance in 50 years range from over 100% g to about 10% g across Sumatra and generally less than 20% g across most of the Malaysian peninsula. The ground motions at 10% probability of exceedance in 50 years are typically about 60% of the ground motions derived for a hazard level at 2% probability of exceedance in 50 years. The largest contributors to hazard are from the Sumatran faults.  相似文献   

6.
In conventional seismic hazard analysis, uniform distribution over area and magnitude range is assumed for the evaluation of source seismicity which is not able to capture peculiar characteristic of near-fault ground motion well. For near-field hazard analysis, two important factors need to be considered: (1) rupture directivity effects and (2) occurrence of scenario characteristic ruptures in the nearby sources. This study proposed a simple framework to consider these two effects by modifying the predictions from the conventional ground motion model based on pulse occurrence probability and adjustment of the magnitude frequency distribution to account for the rupture characteristic of the fault. The results of proposed approach are compared with those of deterministic and probabilistic seismic hazard analyses. The results indicate that characteristic earthquake and directivity consideration both have significant effects on seismic hazard analysis estimates. The implemented approach leads to results close to deterministic seismic hazard analysis in the short period ranges (T < 1.0 s) and follows probabilistic seismic hazard analysis results in the long period ranges (T > 1.0 s). Finally, seismic hazard maps based on the proposed method could be developed and compared with other methods.  相似文献   

7.
A recent development in strong motion instrumentation in Japan provides an opportunity to collect valuable data sets, especially after moderate and large magnitude events. Gathering and modeling these data is a necessity for better understanding of regional ground motion characteristics. Estimations of the spatial distribution of earthquake ground motion plays an important role in early-stage damage assessments for both rescue operations by disaster management agencies as well as damage studies of urban structures. Subsurface geology layers and local soil conditions lead to soil amplification that contributes to the estimated ground motion parameters of the surface. We present a case study of the applicability of the nationally proposed GIS-based soil amplification ratios [J. Soil Dyn. Earthqu. Eng. 19 (2000) 41–53] to the October 6, 2000 Tottori-ken Seibu (western Tottori Prefecture) and the March 24, 2001 Geiyo earthquakes in Japan. First, ground motion values were converted to those at a hypothetical ground base-rock level (outcrop) using an amplification ratio for each 1×1 km area, based on geomorphological and subsurface geology information. Then a Kriging method, assuming an attenuation relationship at the base-rock as a trend component, is applied. Finally, the spatial distribution of ground motion at ground surface is obtained by applying GIS-based amplification factors for the entire region. The correlation between the observed and estimated ground motion values is reasonable for both earthquakes. Thus, the proposed method is applicable in near real-time early-damage assessments and seismic hazard studies in Japan.  相似文献   

8.
The high seismicity of portions of the Indian peninsula, together with the high density of population and industrial growth, results in a significant seismic risk in many parts of the subcontinent. Large construction projects throughout the peninsula require an adequate basis for earthquake-resistant design. Thus, as well as strong scientific arguments, there are major practical reasons why a substantial programme to record strong seismic ground motion should be carried out in India. This paper first reviews the history of strong motion instrumental recording, beginning with the important accelerograms obtained in the Koyna earthquake of 11 December 1969 through the recent increase in strong motion instrumentation, particularly in association with construction of large dams. It is argued that there is a pressing need for further extension of strong motion accelerograph coverage of India, especially along the seismically active regional thrust faults of the Himalayan region. Such programme expansion should follow deliberate strategies of site selection, designed to optimize the scientific and practical returns, given the requirements of minimum costs, reliable maintenance and accessible data.  相似文献   

9.
The assessment of local site effects on seismic ground motions is of great importance in earthquake engineering practice. Several destructive earthquakes in the past have demonstrated that the amplification of ground motion and associated damage to structures due to local site conditions is a significant consideration in earthquake hazard analysis. A recent paper published in this journal highlights the hazard posed by earthquakes in the megacity of Kolkata in India due to its seismic and geological settings. The seismic hazard assessment study speculates that the deep alluvial deposit in the city may increase the seismic hazard probably due to the amplification of the seismic energies. This paper focuses on the seismic response studies of the various soil strata (i.e. for local subsurface conditions) obtained from various construction sites in the city for predicted earthquake. It is very well recognized that site response studies (a part of seismic microhazard zonation for urban areas) are the first step towards performance-based foundation design or seismic risk analysis and mitigation strategy. One of the problems for carrying out site-specific study in Kolkata is the lack of recorded strong motion data in the city. Hence, this paper outlines a methodology to carry out site-specific study, where no strong motion data or seismic data are available. The methodology uses wavelet-based spectrum compatibility approach to generate synthetic earthquake motions and equivalent linear method for seismic site response analysis. The Mega City of Kolkata has been considered to explain the methodology. Seismic hazard zonation map by the Bureau of Indian Standards classifies the City of Kolkata as moderate seismic zone (Zone III) with a zone factor 0.16. On the other hand, GSHAP(Global Seismic Hazard Assessment Program) map which is based on 10% probability of exceedance in 50 years specifies a maximum peak ground acceleration (PGA) of 1.6 m/s2 (0.163 g) for this region. In the present study, the seismic response has been carried out based on GSHAP. The results of the analysis indicate the amplification of ground motion in the range of 4.46–4.82 with the fundamental period ranging from 0.81 to 1.17 s. Furthermore, the maximum spectral accelerations vary in the range of 0.78–0.95 g.  相似文献   

10.
青藏高原东南缘活动断裂地质灾害效应研究现状   总被引:7,自引:6,他引:1  
青藏高原东南缘不同性质、不同类型、不同特点活动断裂发育且较为活跃,自2008年汶川地震发生以来,相继发生了玉树地震、庐山地震、鲁甸地震等。地震引发、触发、诱发产生了大量地质灾害,造成了惨重的生命财产损失。通过收集与分析相关资料,对青藏高原东南缘活动断裂地质灾害效应研究进展与取得成果进行了归纳总结,从活动断裂地质灾害主要控制因素,地质灾害发育特征、空间分布规律、演化模式、形成机制,不同性质断裂控制效应、断裂两盘差异效应、地震动参数效应、地形地貌效应等地质环境效应和地质灾害力学效应等方面进行了综述。在此基础上,对活动断裂地质灾害效应研究中存在的如不同类型活动断裂和不同震级地震与地震地质灾害相关性、以及地震地质灾害监测与风险评估等问题或重点研究方向进行了探讨,其研究结果为地震地质灾害致灾机理、风险评估、防灾减灾等研究提供参考。   相似文献   

11.
Mumbai city, the economical capital of India, is located on the west coast of stable intra-plate continental region of Peninsular India which has an experience of significant historical earthquakes in the past. The city stood as the fourth most populous city in the world. Recent seismo-tectonic studies of this city highlighted the presence of active West coast fault and Chiplun fault beneath the Deccan basalt. In the present study, spatial variability of probabilistic seismic hazard for Mumbai region (latitudes of 18.85–19.35°N and longitudes of 72.80–73.15°E at a grid spacing of 0.05°) which includes Mumbai city, Suburban, part of Thane district and Navi Mumbai, in terms of ground motion parameters; peak horizontal acceleration and spectral acceleration at 1.0-s period for 2 and 10 % probability of exceedance in 50 years are generated. The epistemic uncertainty in hazard estimation is accounted by employing seven different ground motion prediction equations developed for worldwide shallow crustal intra-plate environments. Further, the seismic hazard results are deaggregated for Mumbai (latitude 18.94°N, longitude 72.84°E) to understand the relative contributions of earthquake sources in terms of magnitude and distance. The generated hazard maps are compared with the zoning specified by Indian seismic code (IS1893: Part 1 in Indian standard criteria for earthquake-resistant design of structures, Part 1—General provisions and buildings. Bureau of Indian Standards, New Delhi, India, 2002) for rocky site. Present results show an underestimation of potential seismic hazard in the entire study region by non-probabilistic zoning prescribed by IS1893: Part 1 with significantly higher seismic hazard values in the southern part of Navi Mumbai.  相似文献   

12.
土工结构地震滑动位移统计分析   总被引:1,自引:0,他引:1  
杜文琪  王刚 《岩土力学》2011,32(Z1):520-0525
土工结构在地震荷载下的滑动位移是评估结构安全性能的重要参数。采用一种新型的地震波选择方法,在强震数据库中选择修改地震波,以有效地在结构动力分析中引入不同特征地震波的影响。通过一个简单的土工结构地震滑移模型,系统地分析了结构基本周期和滑动面屈服系数对地震滑移概率及相应滑移距离的影响,并提出了滑动体在不同地震场景和基本周期条件下的滑移概率和累积滑动位移的统计模型,对基于性能的土工结构抗震设计具有重要的参考意义。  相似文献   

13.
Both seismic and tsunami hazards design criteria are essential input to the rehabilitation and long-term development of city of Banda Aceh Post Sumatra 2004 (M w=9.3) disaster. A case study to develop design criteria for future disaster mitigation of the area is presented. The pilot study consists of probabilistic seismic and tsunami hazard analysis. Results of the probabilistic seismic hazard analysis indicates that peak ground acceleration at baserock for 10 and 2% probability of exceedance in 50 years is 0.3 and 0.55 g, respectively. The analysis also provides spectral values at short (T=0.2 s) and long period (T=1.0 s) motions. Some non-linear time-domain earthquake response analyses for soft, medium, and hard site-class were conducted to recommend design response spectra for each site-class. In addition, tsunami inundation maps generated from probabilistic tsunami hazard analysis were developed through tsunami wave propagation analysis and run-up numerical modeling associated with its probability of tsunamigenic earthquake source potential. Both the seismic and tsunami hazard curve and design criteria are recommended as contribution of this study for design criteria, as part of the disaster mitigation effort in the development process of the city. The methodology developed herein could be applied to other seismic and tsunami disaster potential areas.  相似文献   

14.
We perform a broadband frequency bedrock strong ground motion simulation in the Marmara Sea region (Turkey), based on several fault rupture scenarios and a source asperity model. The technique combines a deterministic simulation of seismic wave propagation at low frequencies with a semi-stochastic procedure for the high frequencies. To model the high frequencies, we applied a frequency-dependent radiation pattern model, which efficiently removes the effective dependence of the pattern coefficient on the azimuth and take-off angle as the frequency increases. The earthquake scenarios considered consist of the rupture of the closest segments of the North Anatolian Fault System to the city of Istanbul. Our scenario earthquakes involve the rupture of the entire North Anatolian Fault beneath the Sea of Marmara, namely the combined rupture of the Central Marmara Fault and North Boundary Fault segments. We defined three fault rupture scenarios based on the location of the hypocenter, selecting a preferred hypocentral location near a fault bend for each case. We analysed the effect of location of the asperity, within the Central Marmara Fault, on the subsequent ground motion, as well as the influence of anelasticity on the high-frequency attenuation characteristics. The fault and asperity parameters for each scenario were determined from empirical scalings and from results of kinematic and dynamic models of fault rupture. We calculated the resulting time series and spectra for ground motion at Istanbul and evaluated the sensitivity of the predictions to choice of model parameters. The location of the hypocenter is thus shown to be a critical parameter for determining the worst scenario earthquake at Istanbul. We also found that anelasticity has a significant effect on the regional attenuation of peak ground accelerations. Our simulated ground motions result in large values of acceleration response spectra at long periods, which could be critical for building damage at Istanbul during an actual earthquake.  相似文献   

15.
Modeling of seismic hazard for Turkey using the recent neotectonic data   总被引:1,自引:0,他引:1  
Kamil Kayabali   《Engineering Geology》2002,63(3-4):221-232
Recent developments in the neotectonic framework of Turkey introduced new tectonic elements necessitating the reconstruction of Turkey's seismic hazard map. In this regard, 14 seismic source zones were delineated. Maximum earthquake magnitudes for each seismic zones were determined using the fault rupture length approximation. Regression coefficients of the earthquake magnitude–frequency relationships for the seismic zones were compiled mostly from earlier works. Along with these data, a strong ground motion attenuation relationship developed by Joyner and Boore [Joyner, W.B., Boore, D.M., 1988. Measurement, characterization, and prediction of strong ground motion. Earthquake Engineering and Soil Dynamics, 2. Recent Advances Ground Motion Evaluation, pp. 43–102.] was utilized to model the seismic hazard for Turkey using the probabilistic approach. For the modeling, the “earthquake location uncertainty” concept was employed. A grid of 5106 points with 0.2° intervals was constituted for the area encompassed by the 25–46°E longitudes and 35–43°N latitudes. For the return periods of 100 and 475 years, the peak horizontal ground acceleration (pga) in bedrock was computed for each grid point. Isoacceleration maps for the return periods of 100 and 475 years were constructed by contouring the pga values at each node.  相似文献   

16.
Ground motion intensity parameters of past and potential earthquakes are required for a range of purposes including earthquake insurance practice. In regions with no or sparse earthquake recordings, most of the available methods generate only peak ground motion parameters. For cases where full ground motion time histories are required, simulations that consider fault rupture processes become necessary. In this study, a major novel use of simulated ground motions is presented in insurance premium calculations which also require ground motion intensity measures that are not always available through observations. For this purpose, potential earthquakes in Bursa are simulated using stochastic finite-fault simulation method with dynamic corner frequency model. To ensure simulations with reliable synthetic ground motions, input parameters are derived from regional data. Regional model parameters are verified by comparisons against the observations as well as ground motion prediction equations. Next, a potential large magnitude event in Bursa is simulated. Distribution of peak ground motion parameters and time histories at selected locations are obtained. From these parameters, the corresponding Modified Mercalli Intensities (MMI) are estimated. Later, these MMIs are used as the main ground motion parameter in damage probability matrices (DPM). Return period of the scenario earthquake is obtained from the previous regional seismic hazard studies. Finally, insurance rates for Bursa region are determined with implementation of two new approaches in the literature. The probability of the scenario event and the expected mean damage ratios (MDR) from the corresponding DPMs are used, and the results are compared to Turkish Catastrophe Insurance Pool (TCIP) rates. Results show that insurance premiums can be effectively computed using simulated ground motions in the absence of real data.  相似文献   

17.
Antakya city is at risk because of strong earthquakes occurring in the area, and different soil conditions that can produce variation of the ground motion amplification. Microzonation of cities provides a basis for site-specific hazard analysis in urban settlements. In particular, seismic microzonation can be provided by means of detailed seismic assessment of the area, including earthquake recordings and geological studies. In this paper, we propose a preliminary microzonation map for the city of Antakya, based on the variation of the dominant periods and shear velocities of the sediments covering the area. The periods are retrieved from microtremor measurements conducted at 69 sites, using the horizontal-to-vertical spectral ratio technique. The results of microtremor analysis were compared with data obtained from refraction microtremor (ReMi) measurements at four profiles crossing the studied area. According to the classification of dominant periods, Antakya city can be divided into five zones, probably prone to different levels of seismic hazard. The shorter natural periods are in inner Antakya and both the sides of Asi River (i.e., northern and southern parts). The eastern and western parts of Antakya have maximum dominant periods. The V s 30 values were calculated by using the ReMi method along the profiles. Antakya city has V s 30 values in the range of category C of the national earthquake hazard reduction programme site classification.  相似文献   

18.
Seismic hazard analysis is based on data and models, which both are imprecise and uncertain. Especially the interpretation of historical information into earthquake parameters, e.g. earthquake size and location, yields ambiguous and imprecise data. Models based on probability distributions have been developed in order to quantify and represent these uncertainties. Nevertheless, the majority of the procedures applied in seismic hazard assessment do not take into account these uncertainties, nor do they show the variance of the results. Therefore, a procedure based on Bayesian statistics was developed to estimate return periods for different ground motion intensities (MSK scale).Bayesian techniques provide a mathematical model to estimate the distribution of random variables in presence of uncertainties. The developed method estimates the probability distribution of the number of occurrences in a Poisson process described by the parameter . The input data are the historical occurrences of intensities for a particular site, represented by a discrete probability distribution for each earthquake. The calculation of these historical occurrences requires a careful preparation of all input parameters, i.e. a modelling of their uncertainties. The obtained results show that the variance of the recurrence rate is smaller in regions with higher seismic activity than in less active regions. It can also be demonstrated that long return periods cannot be estimated with confidence, because the time period of observation is too short. This indicates that the long return periods obtained by seismic source methods only reflects the delineated seismic sources and the chosen earthquake size distribution law.  相似文献   

19.
近断层强地震动预测中的有限断层震源模型   总被引:1,自引:0,他引:1  
提出了近断层强地震动预测中建立活断层上设定地震有限断层震源模型的方法和步骤.首先,根据地震地质和地震活动性调查以及地球物理勘探等资料,确定活断层的空间方位和滑动类型; 然后,根据地震定标律确定活断层的宏观震源参数; 第三,将高强体模型与k平方滑动模型相结合,产生断层破裂面上的混合滑动分布.在此基础上,预测了与1994年Northridge地震断层类型、矩震级(Mw6.7)基本一致的设定地震的有限断层震源模型.最后,将预测的有限断层震源模型与基于地震学的、使用动力学拐角频率的地震动随机合成方法相结合,预测了1994年Northridge地震近断层12个基岩台站的加速度时程,并和实际记录进行了对比.结果表明,用上述方法和步骤建立的有限断层震源模型是可行、实用的.   相似文献   

20.
Deterministic seismic microzonation of Kolkata city   总被引:1,自引:0,他引:1  
This paper presents the deterministic seismic microzonation of densely populated Kolkata city situated on the world’s largest delta island with very soft and thick soil deposit in the surficial layers. A fourth-order accurate staggered-grid finite-difference algorithm for SH-wave propagation simulation in visco-elastic medium is used for the linear computation of ground motion amplifications in sedimentary deposit. Different maps such as for fundamental frequency (F 0), peak ground acceleration (PGA), peak ground velocity, and peak ground displacement are developed for variety of end-users communities, including structural and geotechnical engineers for performance-based designs, building officials, emergency managers, land-use planners, private businesses, and the general public. The scenario of simulated amplification factors in the different frequency bands revealed that the Kolkata city is very much prone to severe damage even during a moderate earthquake and very selective damage may occur at some of the localities during local and distant earthquakes. The deterministically predicted PGA at bedrock level is 0.0844 g and the maximum PGA predicted at the free surface is 0.6 g in Kolkata city due to maximum credible earthquake (M w = 5.4) associated with Eocene Hinge Zone at a depth of 36 km. The seismic microzonation of Kolkata city reveals that the Nager Bazar and Nimtala areas are the safest regions with earthquake point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号