首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The hydrologic effect of replacing pasture or other short crops with trees is reasonably well understood on a mean annual basis. The impact on flow regime, as described by the annual flow duration curve (FDC) is less certain. A method to assess the impact of plantation establishment on FDCs was developed. The starting point for the analyses was the assumption that rainfall and vegetation age are the principal drivers of evapotranspiration. A key objective was to remove the variability in the rainfall signal, leaving changes in streamflow solely attributable to the evapotranspiration of the plantation. A method was developed to (1) fit a model to the observed annual time series of FDC percentiles; i.e. 10th percentile for each year of record with annual rainfall and plantation age as parameters, (2) replace the annual rainfall variation with the long term mean to obtain climate adjusted FDCs, and (3) quantify changes in FDC percentiles as plantations age. Data from 10 catchments from Australia, South Africa and New Zealand were used. The model was able to represent flow variation for the majority of percentiles at eight of the 10 catchments, particularly for the 10–50th percentiles. The adjusted FDCs revealed variable patterns in flow reductions with two types of responses (groups) being identified. Group 1 catchments show a substantial increase in the number of zero flow days, with low flows being more affected than high flows. Group 2 catchments show a more uniform reduction in flows across all percentiles. The differences may be partly explained by storage characteristics. The modelled flow reductions were in accord with published results of paired catchment experiments. An additional analysis was performed to characterise the impact of afforestation on the number of zero flow days (Nzero) for the catchments in group 1. This model performed particularly well, and when adjusted for climate, indicated a significant increase in Nzero. The zero flow day method could be used to determine change in the occurrence of any given flow in response to afforestation. The methods used in this study proved satisfactory in removing the rainfall variability, and have added useful insight into the hydrologic impacts of plantation establishment. This approach provides a methodology for understanding catchment response to afforestation, where paired catchment data is not available.  相似文献   

2.
Vegetation changes can significantly affect catchment water balance. It is important to evaluate the effects of vegetation cover change on streamflow as changes in streamflow relate to water security. This study focuses on the use of statistical methods to determine responses in streamflow at seven paired catchments in Australia, New Zealand, and South Africa to vegetation change. The non‐parametric Mann–Kendall test and Pettitt's test were used to identify trends and change points in the annual streamflow records. Statistically significant trends in annual streamflow were detected for most of the treated catchments. It took between 3 and 10 years for a change in vegetation cover to result in significant change in annual streamflow. Presence of the change points in streamflow was associated with changes in the mean, variance, and distribution of annual streamflow. The streamflow in the deforestation catchments increased after the change points, whereas reduction in streamflow was observed in the afforestation catchments. The streamflow response is mainly affected by the climate and underlying vegetation change. Daily flow duration curves (FDCs) for the whole period and pre‐change and post‐change point periods also were analysed to investigate the changes in flow regime. Three types of vegetation change effects on the flow regime have been identified. The relative reductions in most percentile flows are constant in the afforestation catchments. The comparison of trend, change point, and FDC in the annual streamflow from the paired experiments reflects the important role of the vegetation change. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Periods of summertime low flows are often critical for fish. This study quantified the impacts of forest clear‐cutting on summertime low flows and fish habitat and how they evolved through time in two snowmelt‐dominant headwater catchments in the southern interior of British Columbia, Canada. A paired‐catchment analysis was applied to July–September water yield, the number of days each year with flow less than 10% of mean annual discharge, and daily streamflow for each calendar day. The postharvest time series were divided into treatment periods of approximately 6–10 years, which were analysed independently to evaluate how the effects of forestry changed through time. An instream flow assessment using a physical habitat simulation‐style approach was used to relate streamflow to the availability of physical habitat for resident rainbow trout. About two decades after the onset of logging and as the extent of logging increased to approximately 50% of the catchments, reductions in daily summertime low flows became more significant for the July–September yield (43%) and for the analysis by calendar day (11–68%). Reductions in summertime low flows were most pronounced in the catchment with the longest postharvest time series. On the basis of the temporal patterns of response, we hypothesize that the delayed reductions in late‐summer flow represent the combined effects of a persistent advance in snowmelt timing in combination with at least a partial recovery of transpiration and interception loss from the regenerating forests. These results indicate that asymptotic hydrological recovery as time progresses following logging is not suitable for understanding the impacts of forest harvesting on summertime low flows. Additionally, these reductions in streamflow corresponded to persistent decreases in modelled fish habitat availability that typically ranged from 20% to 50% during the summer low‐flow period in one of the catchments, suggesting that forest harvest may have substantial delayed effects on rearing salmonids in headwater streams.  相似文献   

4.
A distributed hydrological model (WaSiM-ETH) was applied to a mesoscale catchment to investigate natural flood management as a nonstructural approach to tackle flood risks from climate change. Peak flows were modelled using climate projections (UKCP09) combined with afforestation-based land-use change options. A significant increase in peak flows was modelled from climate change. Afforestation could reduce some of the increased flow, with greatest benefit from coniferous afforestation, especially replacing lowland farmland. Nevertheless, large-scale woodland expansion was required to maintain peak flows similar to present and beneficial effects were significantly reduced for larger “winter-type” extreme floods. Afforestation was also modelled to increase low-flow risks. Land-use scenarios showed catchment-scale trade-offs across multiple objectives meant “optimal” flood risk solutions were unlikely, especially for afforestation replacing lowland farmland. Hence, combined structural/nonstructural measures may be required in such situations, with integrated catchment management to synergize multiple objectives.  相似文献   

5.
This paper presents preliminary results from the application of a transfer‐function rainfall–runoff model to ephemeral streams in Mediterranean Spain. Flow simulations have been conducted for two small catchments (Carraixet and Poyo basins), located in close proximity to one another yet with significantly different geological characteristics. Analysis of flow simulations for a number of high‐flow events has revealed the dominant influence of the rainfall on the catchment response, particularly for high‐rainfall events. Particular success has been attained modelling the highest magnitude events in both catchments and for all events in the faster responding (Poyo) catchment. In order to investigate the viability of the model for forecasting floods in ungauged catchments, additional investigations have been conducted by calibrating the model for one catchment (donor catchment) and then applying it to another (receptor catchment). The results indicate that this can be successful when either the donor catchment is a fast response catchment or when the model is calibrated using a high‐magnitude event in the donor catchment, providing that the modelled receptor catchment event is of a lower magnitude. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
Nutrient loadings in many river catchments continue to increase due to rapid expansion of agriculture, urban and industrial development, and population growth. Nutrient enrichment of water bodies has intensified eutrophication which degrades water quality and ecosystem health. In this study, we carried out a trend analysis of total phosphorus and total nitrogen loads in the South Saskatchewan River (SSR) catchment using a novel approach to analyse nutrient time series. Seasonal analysis of trends at each of the water quality stations was performed to determine the relationships between annual flow regimes and nutrient loads in the catchment, in particular, the influence of the high spring runoff on nutrient export. Decadal analysis was also performed to determine the long-term relationships of nutrients with anthropogenic changes in the catchment. Although it was found that seasonal and historical variability of nutrient load trends is mainly determined by streamflow regime changes, there is evidence that increases in nitrogen concentration can also be attributed to anthropogenic changes.  相似文献   

7.
In this paper, we examined the role of bedrock groundwater discharge and recharge on the water balance and runoff characteristics in forested headwater catchments. Using rigorous observations of catchment precipitation, discharge and streamwater chemistry, we quantified net bedrock flow rates and contributions to streamwater runoff and the water balance in three forested catchments (second‐order to third‐order catchments) underlain by uniform bedrock in Japan. We found that annual rainfall in 2010 was 3130 mm. In the same period, annual discharge in the three catchments varied from 1800 to 3900 mm/year. Annual net bedrock flow rates estimated by the chloride mass balance method at each catchment ranged from ?1600 to 700 mm/year. The net bedrock flow rates were substantially different in the second‐order and third‐order catchments. During baseflow, discharge from the three catchments was significantly different; conversely, peak flows during large storm events and direct runoff ratios were not significantly different. These results suggest that differences in baseflow discharge rates, which are affected by bedrock flow and intercatchment groundwater transfer, result in the differences in water balance among the catchments. This study also suggests that in these second‐order to third‐order catchments, the drainage area during baseflow varies because of differences between the bedrock drainage area and surface drainage area, but that the effective drainage area during storm flow approaches the surface drainage area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

Two topographically similar adjacent catchments near Johannesburg, South Africa, one suburban, the other natural grassland, were monitored over a five year period to detect differences in runoff and hydrological balance. A network of raingauges, boreholes, flow gauges and water meters was installed. Evapotranspiration was modelled using observed weather data. Groundwater was estimated from tracer and other borehole tests. Surface runoff from the undeveloped and suburban catchments was 4% and 15% of rainfall respectively. Evapotranspiration was 63% of rainfall for both catchments. Sewage outflow was 83% of water consumption for the suburban catchment. Little change in water table level occurred in the suburban catchment, and garden watering probably balanced the high evaporation. Piped water supply was 16% of the precipitation on the catchment.  相似文献   

9.
Hydrological classification systems seek to provide information about the dominant processes in the catchment to enable information to be transferred between catchments. Currently, there is no widely agreed‐upon system for classifying river catchments. This paper develops a novel approach to classifying catchments based on the temporal dependence structure of daily mean river flow time series, applied to 116 near‐natural ‘benchmark’ catchments in the UK. The classification system is validated using 49 independent catchments. Temporal dependence in river flow data is driven by the flow pathways, connectivity and storage within the catchment and can thus be used to assess the influence catchment characteristics have on moderating the precipitation‐to‐flow relationship. Semi‐variograms were computed for the 116 benchmark catchments to provide a robust and efficient way of characterising temporal dependence. Cluster analysis was performed on the semi‐variograms, resulting in four distinct clusters. The influence of a wide range of catchment characteristics on the semi‐variogram shape was investigated, including: elevation, land cover, physiographic characteristics, soil type and geology. Geology, depth to gleyed layer in soils, slope of the catchment and the percentage of arable land were significantly different between the clusters. These characteristics drive the temporal dependence structure by influencing the rate at which water moves through the catchment and/or the storage in the catchment. Quadratic discriminant analysis was used to show that a model with five catchment characteristics is able to predict the temporal dependence structure for un‐gauged catchments. This method could form the basis for future regionalisation strategies, as a way of transferring information on the precipitation‐to‐flow relationship between gauged and un‐gauged catchments. © 2014 The Authors. Hydrological Processes by published by John Wiley & Sons, Ltd.  相似文献   

10.
The northern mid‐high latitudes form a region that is sensitive to climate change, and many areas already have seen – or are projected to see – marked changes in hydroclimatic drivers on catchment hydrological function. In this paper, we use tracer‐aided conceptual runoff models to investigate such impacts in a mesoscale (749 km2) catchment in northern Scotland. The catchment encompasses both sub‐arctic montane sub‐catchments with high precipitation and significant snow influence and drier, warmer lowland sub‐catchments. We used downscaled HadCM3 General Circulation Model outputs through the UKCP09 stochastic weather generator to project the future climate. This was based on synthetic precipitation and temperature time series generated from three climate change scenarios under low, medium and high greenhouse gas emissions. Within an uncertainty framework, we examined the impact of climate change at the monthly, seasonal and annual scales and projected impacts on flow regimes in upland and lowland sub‐catchments using hydrological models with appropriate process conceptualization for each landscape unit. The results reveal landscape‐specific sensitivity to climate change. In the uplands, higher temperatures result in diminishing snow influence which increases winter flows, with a concomitant decline in spring flows as melt reduces. In the lowlands, increases in air temperatures and re‐distribution of precipitation towards autumn and winter lead to strongly reduced summer flows despite increasing annual precipitation. The integration at the catchment outlet moderates these seasonal extremes expected in the headwaters. This highlights the intimate connection between hydrological dynamics and catchment characteristics which reflect landscape evolution. It also indicates that spatial variability of changes in climatic forcing combined with differential landscape sensitivity in large heterogeneous catchments can lead to higher resilience of the integrated runoff response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Seasonal low flows are important for sustaining ecosystems and for supplying human needs during the dry season. In California's Sierra Nevada mountains, low flows are primarily sustained by groundwater that is recharged during snowmelt. As the climate warms over the next century, the volume of the annual Sierra Nevada snowpack is expected to decrease by ~40–90%. In eight snow‐dominated catchments in the Sierra Nevada, we analysed records of snow water equivalent (SWE) and unimpaired streamflow records spanning 10–33 years. Linear extrapolations of historical SWE/streamflow relationships suggest that annual minimum flows in some catchments could decrease to zero if peak SWE is reduced to roughly half of its historical average. For every 10% decrease in peak SWE, annual minimum flows decrease 9–22% and occur 3–7 days earlier in the year. In two of the study catchments, Sagehen and Pitman Creeks, seasonal low flows are significantly correlated with the previous year's snowpack as well as the current year's snowpack. We explore how future warming could affect the relationship between winter snowpacks and summer low flows, using a distributed hydrologic model Regional Hydro‐ecologic Ecosystem Simulation System (RHESSys) to simulate the response of two study catchments. Model results suggest that a 10% decrease in peak SWE will lead to a 1–8% decrease in low flows. The modelled streams do not dry up completely, because the effects of reduced SWE are partly offset by increased fall or winter net gains in storage, and by shifts in the timing of peak evapotranspiration. We consider how groundwater storage, snowmelt and evapotranspiration rates, and precipitation phase (snow vs rain) influence catchment response to warming. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Summer flows in experimental catchments with different forest covers, Chile   总被引:7,自引:0,他引:7  
Runoff and peak flows in four experimental catchments with different land uses are analyzed for summer periods. The catchments have a rainy temperate climate with annual precipitations between 2000 and 2500 mm, 70% of which is concentrated in the winter period between May and August. The final harvest of the forest plantation in one of these catchments generated increases in summer runoff. Also, differences between the maximum instantaneous discharge and the flow at the beginning of the storm then almost duplicated those registered in rainfall events of similar magnitude when the catchment was fully forested. Runoff analysis in this catchment is difficult because the two post-harvesting summer periods are much wetter than the two pre-harvesting ones but a double mass analysis shows the effect of harvesting clearly. In a paired catchment study, low cover in one of the two neighbour catchments explains higher direct runoff and base flows although lower maximum instantaneous specific discharge occurred in the less vegetated but larger catchment. Low vegetation cover explains increases in summer flows, although the size, topography, rainfall conditions, road density, extent of affected area and runoff generation processes play an important role in the hydrological effects of different land uses.  相似文献   

13.
Barry Fahey  John Payne 《水文研究》2017,31(16):2921-2934
This paper presents results from 34 years of the Glendhu Experimental Catchment Study, established in 1979 by the former New Zealand Forest Service in upland east Otago in New Zealand's South Island to determine the hydrological consequences of converting indigenous tussock grassland to plantation forestry. A traditional paired catchment approach was adopted; after a 2.5‐year pretreatment period, one catchment (GH2, 310 ha) was planted over two thirds of its area in Pinus radiata, and an adjacent catchment (GH1, 216 ha) was left in tussock as a control. The average annual reduction in water yield from the planted catchment between canopy closure in 1991 and 2013, compared with that in tussock, was 273 mm (33%). Annual water yields from the planted catchment continued to decline relative to the tussock catchment until 2010. Since then, the difference in annual water yields between the two catchments has narrowed. Ripping before planting caused some redistribution of the total streamflow from stormflow to baseflow. Following canopy closure, afforestation has reduced the low flow (Q95) by an average of 26% compared with the tussock catchment. Average peak flows for small events (2–5 L/s/ha) were reduced by 78%, but only by 37% for larger, less frequent storms (>15 L/s/ha), suggesting that peak flows during high magnitude storms are less dependent on the prevailing land cover.  相似文献   

14.
Understanding the natural low flow of a catchment is critical for effective water management policy in semi-arid and arid lands. The Geba catchment in Ethiopia, forming the headwaters of Tekeze-Atbara basin was known for its severe land degradation before the recent large scale Soil and Water conservation (SWC) programs. Such interventions can modify the hydrological processes by changing the partitioning of the incoming rainfall on the land surface. However, the literature lacks studies to quantify the hydrological impacts of these interventions in the semi-arid catchments of the Nile basin. Statistical test and Indicators of Hydrological Alteration (IHA) were used to identify the trends of streamflow in two comparatives adjacent (one treated with intensive SWC intervention and control with fewer interventions) catchments. A distributed hydrological model was developed to understand the differences in hydrological processes of the two catchments. The statistical and IHA tools showed that the low flow in the treated catchment has significantly increased while considerably decreased in the control catchment. Comparative analysis confirmed that the low flow in the catchment with intensive SWC works was greater than that of the control by >30% while the direct runoff was lower by >120%. This implies a large proportion of the rainfall in the treated catchment is infiltrated and recharge aquifers which subsequently contribute to streamflow during the dry season. The proportion of soil storage was more than double compared to the control catchment. Moreover, hydrological response comparison from pre- and post-intervention showed that a drastic reduction in direct runoff (>84%) has improved the low flow by >55%. This strongly suggests that the ongoing intensive SWC works have significantly improved the low flows while it contributed to the reduction of total streamflow in the catchment.  相似文献   

15.
The effects of afforestation on water yield from catchments are reviewed. In the light of research findings and an assessment of the method currently used in South Africa to determine reductions of water production associated with afforestation, the ACRU agrohydrological model is adapted to account for changes in critical land use related processes as a forest grows in time by incorporation of a dynamic land use information file. First tests with this model on a catchment at Cathedral Peak in the Natal Drakensberg, which was afforested in 1951, indicate that forest hydrological effects can be modelled successfully with a dynamic land use file. Further model development is outlined.  相似文献   

16.
Fluvial flood events have substantial impacts on humans, both socially and economically, as well as on ecosystems (e.g., hydroecology and pollutant transport). Concurrent with climate change, the seasonality of flooding in cold environments is expected to shift from a snowmelt‐dominated to a rainfall‐dominated flow regime. This would have profound impacts on water management strategies, that is, flood risk mitigation, drinking water supply, and hydro power. In addition, cold climate hydrological systems exhibit complex interactions with catchment properties and large‐scale climate fluctuations making the manifestation of changes difficult to detect and predict. Understanding a possible change in flood seasonality and defining related key drivers therefore is essential to mitigate risk and to keep management strategies viable under a changing climate. This study explores changes in flood seasonality across near‐natural catchments in Scandinavia using circular statistics and trend tests. Results indicate strong seasonality in flooding for snowmelt‐dominated catchments with a single peak occurring in spring and early summer (March through June), whereas flood peaks are more equally distributed throughout the year for catchments located close to the Atlantic coast and in the south of the study area. Flood seasonality has changed over the past century seen as decreasing trends in summer maximum daily flows and increasing winter and spring maximum daily flows with 5–35% of the catchments showing significant changes at the 5% significance level. Seasonal mean daily flows corroborate those findings with higher percentages (5–60%) of the catchments showing statistically significant changes. Alterations in annual flood occurrence also point towards a shift in flow regime from snowmelt‐dominated to rainfall‐dominated with consistent changes towards earlier timing of the flood peak (significant for 25% of the catchments). Regionally consistent patterns suggest a first‐order climate control as well as a local second‐order catchment control, which causes inter‐seasonal variability in the streamflow response.  相似文献   

17.
Abstract

The chemistry of streamwater, bulk precipitation, throughfall and soil waters has been studied for three years in two plantation forest and two moorland catchments in mid-Wales. Na and CI are the major ions in streamwater reflecting the maritime influence on atmospheric inputs. In all streams, baseflow is characterised by high pH waters enriched in Ca, Mg, Si and HCO3. Differences in baseflow chemistry between streams reflect the varying extent of calcite and base metal sulphide mineralization within the catchments. Except for K, mean stream solute concentrations are higher in the unmineralized and mineralized forest catchments compared with their respective grassland counterparts. In the forest streams, storm flow concentrations of H+ are approximately 1.5 times and Al four times higher than in the moorland streams. Annual catchment losses of Na, Cl, SO4, NO3, Al and Si are greatest in the forest streams. In both grassland and forest systems, variations in stream chemistry be explained by mixing waters from different parts of the catchment, although NO3 concentrations may additionally be controlled by N transformations occurring between soils and streams. Differences in stream chemistry and solute budgets between forest and moorland catchments are related to greater atmospheric scavenging by the trees and changes in catchment hydrology consequent on afforestation. Mineral veins within the catchment bedrock can significantly modify the stream chemical response to afforestation.  相似文献   

18.
Paired catchment studies have been widely used as a means of determining the magnitude of water yield changes resulting from changes in vegetation. This review focuses on the use of paired catchment studies for determining the changes in water yield at various time scales resulting from permanent changes in vegetation. The review considers long term annual changes, adjustment time scales, the seasonal pattern of flows and changes in both annual and seasonal flow duration curves. The paired catchment studies reported in the literature have been divided into four broad categories: afforestation experiments, deforestation experiments, regrowth experiments and forest conversion experiments. Comparisons between paired catchment results and a mean annual water balance model are presented and show good agreement between the two methodologies. The results highlight the potential underestimation of water yield changes if regrowth experiments are used to predict the likely impact of permanent alterations to a catchment's vegetation. An analysis of annual water yield changes from afforestation, deforestation and regrowth experiments demonstrates that the time taken to reach a new equilibrium under permanent land use change varies considerably. Deforestation experiments reach a new equilibrium more quickly than afforestation experiments. The review of papers reporting seasonal changes in water yield highlights the proportionally larger impact on low flows. Flow duration curve comparison provides a potential means of gaining a greater understanding of the impact of vegetation on the distribution of daily flows.  相似文献   

19.
20.
Catchments in the Loess Plateau have been under the influence of human activities for centuries. In the last four decades, soil conservation measures have accelerated and intensified. These measures were designed to reduce soil erosion, improve agricultural productivity, and enhance environmental quality. It is important to evaluate the effects of these measures on hydrology in order to develop sustainable catchment management plans in the region. This study evaluated changes in stream flow data for four selected catchments in the Loess Plateau following large‐scale soil conservation measures. The non‐parametric Mann–Kendall test was used to identify trends in annual stream flow and the results showed significant downward trends in three of the four catchments. The Pettitt test indicated that a change point occurred in 1978 in these three catchments. Annual precipitation in all the catchments showed no significant trend during the period of record. Comparison of daily flow duration curves for two 20‐year periods (1957–1978) and (1979–2003) showed significant changes in stream flow regime. Reduction in most percentile flows varied between 20 and 45%, and the reduction in low flows was greatest. Overall, the reductions in daily flow were increasing with time, with significant changes occurring in the 1990s. However, it is not clear whether these catchments have seen the full effects of the soil conservation measures, so the results of this study might underestimate the final impact of soil conservation on stream flow regime. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号