首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Dexing ore deposit, Jiangxi Province, is the largest porphyry copper deposit in China. Controversies exist regarding the ore-forming source of this deposit. We have conducted Pb isotope analyses of pyrites from the Tongchang and Fujiawu mines. Our results document consistent Pb isotopes from these two orebodies, with 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of 17.954–18.320, 15.407–15.517, and 37.888–38.153, respectively. These Pb isotope ratios are consistent with those of ore-bearing adakitic porphyries but distinctly different from those of the Neoproterozoic metamorphic wall rocks, which indicates that the metals were derived from the porphyries. Based on previous S and Os isotopic data and comparisons with more than 20 Mo-bearing deposits worldwide, we further attribute the narrow range of δ34S values of sulphide minerals and high Re–187Os concentrations of associated molybdenites to a mantle origin. This large-scale copper deposit was evidently emplaced in a continental arc setting attending westward subduction of the palaeo-Pacific plate. Partial melting of the downgoing oceanic slab generated the adakitic magmas. The associated metals were extracted from the lithospheric mantle by these magmas during ascent through the mantle wedge.  相似文献   

2.
Located in the western Yangtze Block, the Qingshan Pb–Zn deposit, part of the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic province, contains 0.3 million tonnes of 9.86 wt.% Pb and 22.27 wt.% Zn. Ore bodies are hosted in Carboniferous and Permian carbonate rocks, structurally controlled by the Weining–Shuicheng anticline and its intraformational faults. Ores composed of sphalerite, galena, pyrite, dolomite, and calcite occur as massive, brecciated, veinlets, and disseminations in dolomitic limestones.

The C–O isotope compositions of hydrothermal calcite and S–Pb–Sr isotope compositions of Qingshan sulphide minerals were analysed in order to trace the sources of reduced sulphur and metals for the Pb–Zn deposit. δ13CPDB and δ18OSMOW values of calcite range from –5.0‰ to –3.4‰ and +18.9‰ to +19.6‰, respectively, and fall in the field between mantle and marine carbonate rocks. They display a negative correlation, suggesting that CO2 in the hydrothermal fluid had a mixed origin of mantle, marine carbonate rocks, and sedimentary organic matter. δ34S values of sulphide minerals range from +10.7‰ to +19.6‰, similar to Devonian-to-Permian seawater sulphate (+20‰ to +35‰) and evaporite rocks (+23‰ to +28‰) in Carboniferous-to-Permian strata, suggesting that the reduced sulphur in hydrothermal fluids was derived from host-strata evaporites. Ores and sulphide minerals have homogeneous and low radiogenic Pb isotope compositions (206Pb/204Pb = 18.561 to 18.768, 207Pb/204Pb = 15.701 to 15.920, and 208Pb/204Pb = 38.831 to 39.641) that plot in the upper crust Pb evolution curve, and are similar to those of Devonian-to-Permian carbonate rocks. Pb isotope compositions suggest derivation of Pb metal from the host rocks. 87Sr/86Sr ratios of sphalerite range from 0.7107 to 0.7136 and (87Sr/86Sr)200Ma ratios range from 0.7099 to 0.7126, higher than Sinian-to-Permian sedimentary rocks and Permian Emeishan flood basalts, but lower than Proterozoic basement rocks. This indicates that the ore strontium has a mixture source of the older basement rocks and the younger cover sequence. C–O–S–Pb–Sr isotope compositions of the Qingshan Pb–Zn deposit indicate a mixed origin of the ore-forming fluids and metals.  相似文献   

3.
In this paper we examine the influence of the development of supergene oxide and sulphide zones on the original hypogene geochemical patterns at the Berg deposit, British Columbia.The deposit, in the alpine zone of the Tahtsa Range, was logged (GEOLOG) and sampled in fourteen diamond drill holes along a N—S section and from outcrop where possible. Anomalous populations of major and trace elements were defined using log probability graphs and a sequential extraction (10% hydrochloric acid— ammonium oxalate — potassium chlorate/hydrochloric acid — nitric/perchloric acids) was used to study the distribution of elements between carbonate, oxide, sulphide and silicate phases.Core logs and assays show that primary ore minerals (chalcopyrite—molybdenite) extend from the outer part of the porphyry intrusion into the surrounding hornfels where the best grades of copper are found close to the intrusive contact. Maximum copper grades, however, result from development of a supergene enrichment blanket. Within the hypogene zone, principal lithogeochemical patterns reflect the differences in composition of the hornfels, originally intermediate to basic volcanics, and the intrusion, as well as the introduction of F and trace metals (Cu, Mo, Pb, Zn and Ag). Distribution of Ag is broadly comparable to that of Cu and Mo whereas anomalous Pb and Zn are present as peripheral haloes around the potential ore zones.Emergence of strongly acidic ground water and precipitation of iron oxides, indicate that leaching processes are active. Furthermore, although primary sulphides, associated with both their oxidation products and secondary sulphides, can still be found in surface samples, sequential extractions on drill core clearly indicate vertical redistribution of copper between oxide, carbonate and sulphide phases. Using ratios of metal concentrations to TiO2, the surface concentrations of trace metals can be compared with those at depth and the relative amount of enrichment or depletion can be quantified. In highly leached sites the absolute concentrations of Cu, Mn and Zn are low which is reflected in TiO2 ratios of <1. However, Mo, Pb and Ag are enriched at the same sites (TiO2 ratios >1). In areas where physical erosion exceeds leaching (topographic lows) primary sulphides co-exist with secondary sulphide and oxide minerals. Here Cu, Mo, Pb, Zn, Mn and Ag are enriched. Fluorine is relatively unaffected by the leaching process. It would appear signature for a cale alkaline Cu and Mo porphyry deposit in an area where outcrop was intensely leached.  相似文献   

4.
The Nage Cu-Pb deposit,a new found ore deposit in the southeast Guizhou province,southwest China,is located on the southwestern margin of the Jiangnan Orogenic Belt.Ore bodies are hosted in slate and phyllite of Neoproterozoic Jialu and Wuye Formations,and are structurally controlled by EW-trending fault.It contains Cu and Pb metals about 0.12 million tonnes with grades of 0.2 wt% to 3.4 wt% Cu and 1.1 wt% to 9.27 wt% Pb.Massive and disseminated Cu-Pb ores from the Nage deposit occur as either veinlets or disseminations in silicified rocks.The ore minerals include chalcopyrite,galena and pyrite,and gangue minerals are quartz,sericite and chlorite.The H-O isotopic compositions of quartz,S-Cu-Pb isotopic compositions of sulfide minerals,Pb isotopic compositions of whole rocks and ores have been analyzed to trace the sources of ore-forming fluids and metals for the Nage Cu-Pb deposit.The δ65CuNBS values of chalcopyrite range from-0.09% to +0.33‰,similar to basic igneous rocks and chalcopyrite from magmatic deposits.δ65CuNBS values of chalcopyrite from the early,middle and final mineralization stages show an increasing trend due to63Cu prior migrated in gas phase when fluids exsolution from magma.δ34SCDT values of sulfide minerals range from 2.7‰ to +2.8‰,similar to mantle-derived sulfur(0±3‰).The positive correlation between δ65CuNBS and δ34SCDT values of chalcopyrite indicates that a common source of copper metal and sulfur from magma.δDH2OSMOW and δ18OH2O-SMOW values of water in fluid inclusions of quartz range from 60.7‰ to 44.4‰ and +7.9‰ to +9.0‰(T=260°C),respectively and fall in the field for magmatic and metamorphic waters,implicating that mixed sources for H2O in hydrothermal fluids.Ores and sulfide minerals have a small range of Pb isotopic compositions(208Pb/204Pb=38.152 to 38.384,207Pb/204Pb=15.656 to 17.708 and 206Pb/204Pb=17.991 to 18.049) that are close to orogenic belt and upper crust Pb evolution curve,and similar to Neoproterozoic host rocks(208Pb/204Pb=38.201 to 38.6373,207Pb/204Pb=15.648 to 15.673 and 206Pb/204Pb=17.820 to 18.258),but higher than diabase(208Pb/204Pb=37.830 to 38.012,207Pb/204Pb=15.620 to 15.635 and206Pb/204Pb=17.808 to 17.902).These results imply that the Pb metal originated mainly from host rocks.The H-O-S-Cu-Pb isotopes tegather with geology,indicating that the ore genesis of the Nage Cu-Pb deposit is post-magmatic hydrothermal type.  相似文献   

5.
The Gortdrum Cu-Ag-As-Sb-Hg-U orebody occurs in Lower Carboniferous strata on the downthrown side of an ENE transcurrent fault system in Southern County Tipperary, Republic of Ireland. The deposit comprises a linear discordant zone of brecciated carbonates and country rocks that are altered and mineralised. Research has indicated anomalous radioelement concentrations associated with the main copper orebody and in particular with the altered breccias within this zone. The metal association (Cu-Ag-As-Sb-Hg-U) is considered unique for Irish Carboniferous carbonate-hosted copper deposits. However, the low temperature mineral assemblage of early uranium-bearing minerals with later sulphide stages is reminiscent of many vein-type hydrothermal ore deposits. The geochemistry of uranium-enriched rocks indicates that the alteration of the basic dykes was a most significant event in the trapping of uranium within the limestones. Propylitization of the early basic dykes by CO2-bearing fluids produced the alteration which led to the development of hematite, leucoxene and clay minerals. The reducing environments attendant with such mineralogy created a favourable environment for uranium precipitation. The reduction of U+6 to U+4 by oxidation of reduced Fe in dolomitized brecciated limestone occurred prior to the main sulphide mineral sequences. The genesis of uranium in the deposit is linked to radioelement remobilization from uranium-bearing heavy minerals in sediments of upper Devonian-Lower Carboniferous age. The uranium became available to low temperature hydrothermal fluids which carried then deposited the uranium along a transcurrent fault system. The source of the heavy minerals is considered to be the Leinster Granite to the east, by which time in the Carboniferous, unroofing of the main pluton had commenced.Previous address: Department of Geology, Trinity College, Dublin 2, Ireland  相似文献   

6.
广东省新榕锰矿地质特征及成因探讨   总被引:3,自引:1,他引:3  
新榕锰矿是广东省重要的锰矿床 ,主矿体产于地下岩溶空洞内 ,矿石中伴生银的平均含量达 10 0×10 -6以上。锰矿石中含有少量的脆银矿、溴角银矿、含锑银黝铜矿、银金矿、单斜绿铜锌矿、黄铁矿、磁黄铁矿及重晶石等矿物。据各类岩石、矿石的矿物成分 ,以及成矿元素、稀土元素地球化学特征等方面研究 ,认为Fe、Mn成矿物质主要来源于元古宇云开群和泥盆系桂头组中的富铁锰质岩层 (锰铝榴石片岩、含锰千枚岩 ) ,部分来源于矿区北部断裂带中的热液硫化物 ,伴生元素Ag、Pb、Zn等也来源于矿区北部断裂带的热液多金属硫化物。有机质 (微生物 )可能参与了成矿物质的风化淋滤、迁移、沉淀富集等成矿作用。地下岩溶空洞是最有利的成矿场所。锰矿的成矿期为新生代。矿床成因类型属迁积_岩溶堆积型锰矿  相似文献   

7.
In the Bathurst District of New Brunswick there are more than 50 known occurrences of base metal sulphide mineralization within an area of Palaeozoic volcanic-sedimentary rocks approximately bounded by the Rocky Turn deposit in the north, the Key Anacon deposit in the east, the Heath Steele deposit in the south, and the Devil's Elbow deposit in the west. Only four of these occurrences are, or have been, producing mines; 19 are classed as “major occurrences”. The area is highly prospective for massive sulphide deposits of the Brunswick Mining and Smelting and Heath Steele type; it would obviously be of considerable importance to define the zones within the sequence where major occurrences should be sought.To determine whether exploration rock geochemistry could be used on a regional reconnaissance scale, 419 samples of rhyolite from an area of 2000 km2 (at an average density of one sample per 5 km2) were analyzed for total content of Cu, Pb, Zn, Ca, Mg, K, Na, Fe, and Mn. The data were processed by calculating the geometric mean of all samples in cells of approximately 10 km2. Contrary to the relations documented on a mine scale (within one kilometre of major deposits), where the clearest halos are given by major elements, it is the ore elements that give the best regional patterns.The producing mines and the most important of the known occurrences all lie in zones where rhyolite contains less than 10 ppm Cu. Element ratios considerably enhance anomalous relations. The Zn:Pb ratio of the sulphides in the main deposits is 2.4–2.8, regardless of grade. It is demonstrated that all present and past producing mines and the most important known major occurrences lie within well-defined zones of Zn:Pb ratios of 2.4–2.8. Similarly, zones where the Pb:Cu ratio is > 3.0 and the Zn:Cu ratio is > 7.0 also define the most important deposits. These ore-element relations derived from a low sample-density survey define priority zones for detailed exploration for significant major massive sulphide deposits.  相似文献   

8.
《International Geology Review》2012,54(15):1885-1901
The Dachang gold deposit is located in the Late Triassic Songpan-Ganzi Fold Belt, NE Tibetan Plateau. Gold ore is concentrated as veins along secondary faults and fracture zones in the Bayan Har Group metaturbidites. No exposed felsic plutons are present in the vicinity of the deposit. The auriferous veins contain <15% sulphide minerals, mainly arsenopyrite, pyrite, and stibnite. Gold is commonly enclosed within arsenopyrite and pyrite. Typical alteration around the ore bodies includes silicification, sericitization, and weak carbonatization.

Gold-bearing quartz samples have δ18O values of 16.9–21.2‰ (V-SMOW) from which δ18OH2O values of 6.2–9.6‰ can be calculated from the fluid inclusion temperatures (or 10.0 to 12.7‰ if we used the average arsenopyrite geothermometer temperature of 301°C). The δD values of fluid inclusions in quartz range from –90‰ to –72‰. δ34S values of gold-bearing sulphides mainly range from –5.9‰ to –2.8‰ (V-CDT). Pyrite and arsenopyrite in ores have 206Pb/204Pb ratios of 18.2888 to 18.4702, 207Pb/204Pb ratios of 15.5763 to 15.6712, and 208Pb/204Pb ratios of 38.2298 to 38.8212. These isotopic compositions indicate that the ore-forming fluids were of metamorphic origin, and the S and Pb may have been derived from the host metaturbidites of the Bayan Har Group. The Dachang Au deposit has geological and geochemical features similar to orogenic gold deposits. We propose that the ores formed when the Songpan-Ganzi Fold Belt was intensely deformed by Late Triassic folding and thrusting. Large-scale thrusting resulted in regional allochthons of different scales, followed by secondary faults or fracture zones that controlled the ore bodies.  相似文献   

9.
In this study we investigated the sulphidic mine tailings from Frongoch and Grogwynion, two abandoned lead zinc mines in mid-Wales, UK. Despite falling within the same ore field the mine waste characterisation has identified differences in the tailings from the two sites. Bulk concentrations range from 10 to 52 g kg− 1 for Pb, 1.1 to 2.9 g kg− 1 for Zn in Grogwynion and from 1.0 to 130 g kg− 1 for Pb, 11 to 110 g kg− 1 for Zn in Frongoch. An experimental (European standard leaching tests TS 14429 and TS 14405) and geochemical modelling approach was used to study the leaching composition as a function of pH and liquid/solid ratio. There was little correlation between the tailings bulk metal concentrations and the leachate composition, but variations in Pb and Zn concentrations were found to be consistent with control of dissolved Pb and Zn by secondary minerals and the mechanisms of dissolution/precipitation/sorption involving them. Specifically, the Grogwynion mine tailings with near-neutral pH have predominantly lead and zinc carbonates controlling Pb and Zn solubility in the leachates, whereas the Pb and Zn concentrations in Frongoch leachates are best modelled with a surface complexation model for metal sorption to oxyhydroxides. The different speciation results in a greater sensitivity of Grogwynion tailings to acidification with a potential release of Pb in solution up to 10 times higher than in Frongoch, despite similar bulk Pb concentrations. At acid pH, Zn is similarly dissolved to a greater extent in Grogwynion than in Frongoch tailings. There was no evidence of sulphide oxidation during the batch and column leaching tests and the suitability of using these European leaching standards for the characterisation of sulphidic mine waste materials for waste management purposes has been considered.  相似文献   

10.
The Tinto and Odiel rivers drain 100 km from the Rio Tinto sulphide mining district, and join at a 20-km long estuary entering the Atlantic Ocean. A reconnaissance study of heavy metal anomalies in channel sand and overbank mud of the river and estuary by semi-quantitative emission dc-arc spectrographic analysis shows the following upstream to downstream ranges in ppm (μg g?1): As 3,000 to <200, Cd 30 to <0.1, Cu 1,500 to 10, Pb 2,000 to <10, Sb 3000 to <150, and Zn 3,000 to <200. Organic-rich (1.3–2.6% total organic carbon, TOC), sandysilty overbank clay has been analyzed to represent suspended load materials. The high content of heavy metals in the overbank clay throughout the river and estuary systems indicates the importance of suspended sediment transport for dispersing heavy metals from natural erosion and anthropogenic mining activities of the sulfide deposit. The organic-poor (0.21–0.37% TOC) river bed sand has been analyzed to represent bedload transport of naturally-occurring sulfide minerals. The sand has high concentrations of metals upstream but these decrease an order of magnitude in the lower estuary. Although heavy metal contamination of estuary mouth beach sand has been diluted to background levels estuary mud exhibits increased contamination apparently related to finer grain size, higher organic carbon content, precipitation of river-borne dissolved solids, and input of anthropogenic heavy metals from industrial sources. The contaminated estuary mud disperses to the inner shelf mud belt and offshore suspended sediment, which exhibit metal anomalies from natural erosion and mining of upstream Rio Tinto sulphide lode sources (Pb, Cu, Zn) and industrial activities within the estuary (Fe, Cr, Ti). Because heavy metal contamination of Tinto-Odiel river sediment reaches or exceeds the highest levels encountered in other river sediments of Spain and Europe, a detailed analysis of metals in water and suspended sediment throughout the system, and epidemiological analysis of heavy metal effects in humans is appropriate.  相似文献   

11.
The Tyndrum Pb+Zn veins, hosted by late Proterozoic quartzites, were probably generated in the Tournaisian (360 Ma). By determination of sulphur isotopic ratios of vein minerals three aspects of the Tyndrum mineralization were addressed, (i) sulphate sulphur sources; (ii) reduced sulphur source; (iii) isotopic equilibrium in the vein system including geothermometry. Twelve galenas have δ34S values ranging from +3.55 ‰ to +6.38 ‰ (this excludes one value of +11.21 ‰ from a large but nearly barren quartz vein). Other sulphides are enriched or depleted in 34S in the sense expected for isotopic equilibrium although there is no evidence for isotopic equilibrium between the vein minerals. The sulphide sulphur source was probably in the Dalradian metasediments where disseminated pyrite averages +6 ‰. Baryte had δ34S values averaging 14 ‰ and was therefore not in isotopic equilibrium with sulphides: a continental groundwater source is most likely.  相似文献   

12.
The world class Jabiluka unconformity-related uranium deposit in the Alligator Rivers Uranium Field, Australia, contains >163,000 tons of contained U3O8. Mineralization is hosted by shallow-to-steeply dipping basement rocks comprising graphitic units of chlorite–biotite–muscovite schist. These rocks are overlain by flat-lying coarse-grained sandstones belonging to the Kombolgie Subgroup. The deposit was discovered in 1971, but has never been mined. The construction of an 1,150 m decline into the upper eastern sector of the Jabiluka II deposit combined with closely spaced underground drilling in 1998 and 1999 allowed mapping and sampling from underground for the first time. Structural mapping, drill core logging and petrographic studies on polished thin sections established a detailed paragenesis that provided the framework for subsequent electron microprobe and X-ray diffraction, fluid inclusion, and O–H, U–Pb and 40Ar/39Ar isotope analysis. Uranium mineralization is structurally controlled within semi-brittle shears that are sub-conformable to the basement stratigraphy, and breccias that are developed within the hinge zone of fault-related folds adjacent to the shears. Uraninite is intimately associated with chlorite, sericite, hematite ± quartz. Electron microprobe and X-ray diffraction analysis of syn-ore illite and chlorite indicates a mineralization temperature of 200°C. Pre- and syn-ore minerals extracted from the Kombolgie Subgroup overlying the deposit and syn-ore alteration minerals in the Cahill Formation have δ18Ofluid and δD fluid values of 4.0±3.7 and −27±17‰, respectively. These values are indistinguishable from illite separates extracted from diagenetic aquifers in the Kombolgie Subgroup up to 70 km to the south and east of the deposit and believed to be the source of the uraniferous fluid. New fluid inclusion microthermometry data reveal that the mineralising brine was saline, but not saturated. U–Pb and 207Pb/206Pb ratios of uraninite by laser-ablation ICP-MS suggest that massive uraninite first precipitated at ca. 1,680 Ma, which is coincident with the timing of brine migration out from the Kombolgie Subgroup as indicated by 40Ar/39Ar ages of 1,683±11 Ma from sandstone-hosted illite. Unmineralized breccias cemeted by chlorite, quartz and sericite cross-cut the mineralized breccias and are in turn cut by straight-sided, high-angle veins of drusy quartz, sulphide and dolomite. U–Pb and 207Pb/206Pb ratios combined with fluid inclusion and stable isotope data indicate that these post-ore minerals formed when mixing between two fluids occurred sometime between ca. 1,450 and 550 Ma. Distinct 207Pb/206Pb age populations occur at ca. 1,302±37, 1,191±27 and 802±57 Ma, which respectively correlate with the intrusion of the Maningkorrirr/Mudginberri phonolitic dykes and the Derim Derim Dolerite between 1,370 and 1,316 Ma, the amalgamation of Australia and Laurentia during the Grenville Orogen at ca. 1,140 Ma, and the break-up of Rodinia between 1,000 and 750 Ma.  相似文献   

13.
《Applied Geochemistry》1993,8(6):605-616
The Cigar Lake U deposit is located in northern Saskatchewan in the eastern part of the Athabasca Sandstone Basin, and consists of a high-grade ore body (up to 55% U) located at a depth of ∼430 m. As part of a study to evaluate the analog features of this deposit with respect to a disposal vault for waste nuclear fuel, colloids (1–450 nm) and suspended particles (450nm) in groundwater have been investigated to evaluate their effect on element transport through the U deposit. Tangential-flow ultrafiltration was used to concentrate particles from 501 groundwater samples in order to characterize the size distribution, concentration, composition and natural radionuclide content of particles in representative parts of the U deposit. Although Cigar Lake groundwaters contain particles in all sizes ranging from 10 nm to slightly larger than 20 μm, most samples contained a relatively high concentration of colloids in the 100–400 nm size range. Particle compositions are similar to the composition of minerals in the sandstones and ore body, suggesting that particles in groundwater are generated by the erosion of fracture-lining minerals. As a result, particle concentrations in groundwater are affected by the integrity of the host rock. In some piezometers the high initial concentrations of suspended particles, which may have been drilling artifacts, decreased during the collection of the first 350 1. Although colloid concentrations fluctuated during sampling, there are no indications that these concentrations will be permanently reduced by continued groundwater pumping. The observed colloid and suspended particle concentrations in the deep groundwaters are too low to have a significant impact on radionuclide migration, provided that radionuclide sorption is reversible. If radionuclides are irreversibly sorbed to particles they cannot sorb to the host rock and their migration can only be evaluated with an understanding of particle mobility. The data for dissolved and particulate U, Th and Ra were used to calculate field-derived distribution ratios (Rd) between particles and groundwater. The wide range of observed Rd values indicates that these radionuclides in particulate form are not in equilibrium with groundwater. U-series isotope data indicated that most of the U and Ra on particles was derived from groundwater. Some particles could have retained their U for as long as 8000 a. The U and Ra contents of particles in the ore and surrounding clay zones are significantly higher than in particles from sandstone, suggesting that the clay has been an effective barrier to particle migration.  相似文献   

14.
The Hongshan copper deposit is a typical cryptoexplosive breccia-type deposit, which occurs in a metamorphic rock series of the Mesoproterozoic Taoxiyuan Formation. Orebodies are distributed inside and outside porphyry-cryptoexplosive breccia pipes. The isotope geochemistry of the deposit is consistent with the origin of porphyry breccia: the δ18OH2O values ranging from 1.2‰ to 6.1‰ and the δ34S values varying from 0 to 2.5‰. 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of pyrite, which coexists with ore minerals, indicate it was derived from the orogenic belt. Thermodynamic analysis indicates that the main metals were deposited largely as a result of the decreasing of proton concentrations associated with H2S and CO2 exsolution during explosion and temperature dropping. Based on K-Ar dating of quartz coexisting with ore minerals, the age of mineralization was estimated to be 97.1–98.8 Ma, which suggests that mineralization occurred between the Early and Late Cretaceous. According to the relevant information obtained, a diagenetic and metallogenic pattern in the area has been presented in this paper.  相似文献   

15.
The Tongyu copper deposit, located in the western part of the North Qinling Orogen, China, is one of several volcanic-hosted massive sulphide(VHMS) deposits with industrial value and is also a typical example of mineralization related to the subduction and metallogenesis during the Caledonian orogeny. We conducted systematic lead-sulphur isotope geochemical analyses of the Tongyu deposit to understand the possible ore-forming material sources and tectonic settings. Twenty-six sulphide samples yielded clustered δ~(34)S_(CDT) values of 1.13‰-3.36‰, average 2.22‰, and show a tower-type distribution,implying that the sulphur of the Tongyu copper deposit mainly originated from a mantle source. The Pb isotope compositions of sulphides(~(206)Pb/~(204)Pb = 17.59225-18.56354, average 18.32020; ~(207)Pb/~(204)Pb =15.51770-15.69381, average 15.66217; ~(208)Pb/~(204)Pb= 37.99969-39.06953, average 38.52722) are close to the values of the volcanic host rocks(~(206)Pb/~(204)Pb= 18.10678-18.26293, average 18.21158; ~(207)Pb/~(204)Pb =15.63196-15.68188, average 15.65345; ~(208)Pb/~(204)Pb= 38.43676-38.56360, average 38.49171), thus consistent with the Pb in ores and volcanic host rocks having been derived from a common source that was island-arc Pb related to oceanic crust subduction. The northward subduction of the Palaeo-Qinling oceanic crust triggered dehydration of the slab, which generated a large amount of high-oxygen-fugacity aqueous hydrothermal fluid. The fluid rose into the mantle wedge, activated and extracted metallogenic material and promoted partial melting of the mantle wedge. The magma and ore-forming fluid welled up and precipitated, finally forming the Tongyu VHMS copper deposit.  相似文献   

16.
Draa Sfar is a Visean, stratabound, volcanogenic massive sulphide ore deposit hosted by a Hercynian carbonaceous, black shale-rich succession of the Jebilet terrane, Morocco. The ore deposit contains 10 Mt grading 5.3 wt.% Zn, 2 wt.% Pb, and 0.3 wt.% Cu within two main massive sulphides orebodies, Tazakourt (Zn-rich) and Sidi M'Barek (Zn–Cu rich). Pyrrhotite is by far the dominant sulphide (70 to 95% of total sulphides), sphalerite is fairly abundant, chalcopyrite and galena are accessory, pyrite, arsenopyrite and bismuth minerals are rare. Pyrrhotite is monoclinic and mineralogical criteria indicate that it is of primary origin and not formed during metamorphism. Its composition is very homogeneous, close to Fe7S8, and its absolute magnetic susceptibility is 2.10− 3 SI/g. Ar–Ar dating of hydrothermal sericites from a coherent rhyolite flow or dome within the immediate deposit footwall indicates an age of 331.7 ± 7.9 Ma for the Draa Sfar deposit and rhyolite volcanism.The Draa Sfar deposit has undergone a low-grade regional metamorphic event that caused pervasive recrystallization, followed by a ductile–brittle deformation event that has locally imparted a mylonitic texture to the sulphides and, in part, is responsible for the elongated and sheet-like morphology of the sulphide orebodies. Lead isotope data fall into two compositional end-members. The least radiogenic end-member, (206Pb/204Pb = 18.28), is characteristic of the Tazakourt orebody, whereas the more radiogenic end-member (206Pb/204Pb  18.80) is associated with the Sidi M'Barek orebody, giving a mixing trend between the two end-members. Lead isotope compositions at Draa Sfar testify to a significant continental crust source for the base metals, but are different than those of the Hajar and South Iberian Pyrite Belt VMS deposits.The abundance of pyrrhotite versus pyrite in the orebodies is attributed to low fO2 conditions and neither a high temperature nor a low aH2S (below 10− 3) is required. The highly anoxic conditions required to stabilize pyrrhotite over pyrite are consistent with formation of the deposit within a restricted, sediment-starved, anoxic basin characterized by the deposition of carbonaceous, pelagic sediments along the flank of a rhyolitic flow-dome complex that was buried by pelitic sediments. Deposition of sulphides likely occurred at and below the seafloor within anoxic and carbonaceous muds.Draa Sfar and other Moroccan volcanogenic massive sulphide deposits occur in an epicontinental volcanic domain within the outer zone of the Hercynian belt and formed within a sedimentary environment that has a high pelagic component. In spite of the diachronous emplacement between the IPB deposits (late Devonian to Visean) and Moroccan deposits (Dinantian), all were formed around 340 ± 10 Ma following a major phase of the Devonian compression.  相似文献   

17.
 The Lengenbach Pb-Zn-As-Tl-Ba mineralisation is located in Triassic dolostones of the Penninic zone in the Swiss Alps where Alpine metamorphism reached upper greenschist to lower amphibolite grade. Geochemical data are used to constrain the origin of this unique occurrence. Two metamorphic redox environments are present: the As(III)-rich zone is controlled by barite-pyrite while the reduced zone contains graphite or pyrrhotite-pyrite and formally zerovalent As. The As(III)-rich zone is characterised by a mineral assemblage consistent with fO2 in the stability field of barite+pyrite. An As-(Pb, Tl)-rich sulphide melt coexisted with a hydrothermal fluid at >kk300 °C in this zone. Mineralised dolostones are anomalous in As, Pb, Ag, Tl, Hg, Zn, Ba, Cd, Fe, Cu, Mo, U, V, B, Ga, Cr and possibly Sn and Au (in order of decreasing enrichment). As, Pb and Zn are present in the 0.1 to 1% range, Tl and Ag reach several hundred ppm. Uraninite is concentrated in silicate-rich bands and yields a late Alpine U-Pb age of 18.5±0.5 Ma. Pb- and S isotopic variations are interpreted by metamorphic overprinting and re-equilibration within an isochemically metamorphosed mineralisation. Hydrothermal sulphides are more strongly affected by uranogenic Pb than massive Pb-As-sulphides representing a former sulphide melt. The least overprinted mineralisation is characterised by 206Pb/204Pb U003U=18.44−18.56, 207Pb/204Pb=15.60−15.75, 208Pb/204Pb =38.44−38.84 and δ34S (sulphide)=−25±2‰. S isotopic variations are largely a result of sulphide-sulphate re-equilibration yielding temperatures of 450± 30 °C. 87Sr/86Sr ratios of mineralised samples are lower than or equal to host dolostones, precluding major infiltration of basement-derived fluids during Alpine metamorphism. The Sr source (87Sr/86Sr close to 0.708) probably was seawater with a radiogenic, detrital mineral component. The genesis of the unique Lengenbach mineralisation is interpreted as the result of isochemical metamorphic overprinting of a carbonate hosted stratiform sulphide mineralisation. Well-crystallised sulphide minerals in fissures and druses formed during retrograde cooling of a sulphide melt in equilibrium with a hydrothermal fluid. The primary mineralisation was probably formed at or close below the sea floor and fed by sulphide-poor hydrothermal fluids. Sulphide was largely derived from seawater by open system bacterial sulphate reduction. U, V and Mo may be seawater-derived. Received: 1 February 1995/Accepted: 10 January 1996  相似文献   

18.
《International Geology Review》2012,54(10):1239-1262
The Chahgaz Zn–Pb–Cu volcanogenic massive sulphide (VMS) deposit occurs within a metamorphosed bimodal volcano–sedimentary sequence in the south Sanandaj–Sirjan Zone (SSZ) of southern Iran. This deposit is hosted by rhyodacitic volcaniclastics and is underlain and overlain by rhyodacitic flows, volcaniclastics, and pelites. Peperitic textures between rhyodacite flows and contact pelites indicate that emplacement of the rhyodacite occurred prior to the lithification of the pelites. The rhyodacitic flows are calc-alkaline, and show rare earth and trace elements features characteristic of arc magmatism. Zircons extracted from stratigraphic footwall and hanging-wall rhyodacitic flows of the Chahgaz deposit yield concordant U–Pb ages of 175.7 ± 1.7 and 172.9 ± 1.4 Ma, respectively, and a mean age of 174 ± 1.2 Ma. This time period is interpreted to represent the age of mineralization of the Chahgaz deposit. This Middle Jurassic age is suggested as a major time of VMS mineralization within pull-apart basins formed during Neo-Tethyan oblique subduction-related arc volcano-plutonism in the SSZ. Galena mineral separates from the layered massive sulphide have uniform lead isotope ratios of 206Pb/204Pb?=?18.604–18.617, 207Pb/204Pb?=?15.654–15.667, and 208Pb/204Pb?=?38.736–38.769; they show a model age of 200 Ma, consistent with the derivation of Pb from a Late Triassic, homogeneous upper crustal source.  相似文献   

19.
The use of mineral deposit density regression models to estimate the number of undiscovered deposits is gaining acceptance in mineral resources assessments. The deposit density regression models currently in use are based on well-established power law relationships between deposit density (deposits/km2) and the areal extent of the host rocks in well explored regions (control areas) worldwide. Although these generalized or global deposit density models can generate guideline estimates that are useful at the terrane scale, locally-derived terrane-based deposit density regression models may potentially yield more relevant estimates at the terrane scale. Using 12 selected komatiite-defined control areas in the Kalgoorlie Terrane, Western Australia, we found that the size (km2) of the control areas had power law relationships with (i) nickel sulphide deposit density, and (ii) nickel endowment density (nickel metal/km2). Regression analyses showed that both power law relationships are statistically significant at the 5% level. This suggests that nickel sulphide deposit and endowment density models could be used to estimate the number of undiscovered nickel sulphide deposits and amount of nickel metal endowment in less explored komatiites in the Kalgoorlie Terrane. This study shows that global geological relationships can be viably downscaled onto local geological terranes thereby supporting the hypothesis that the processes of mineral deposit formation and preservation are scale-independent and self-similar.  相似文献   

20.
The Ortaklar VMS deposit is hosted in the Koçali Complex consisting of basalts and deep sea pelagic sediments, which formed by rifting and continental break-up of the southern Neotethyan in Late Triassic. The basalts are of NMORB-type without notable crustal contamination. From the surface to depth, the Ortaklar deposit consists of a gossan zone, a thick massive ore zone and a poorly developed stockwork zone. Primary mineralisation is characterised by distinctive facies including sulphide breccias (proximal), graded beds (distal), stockworks and chimney fragments. Ore mineral abundances decrease in the order of pyrite, magnetite, chalcopyrite, and sphalerite. Two distinct phases of mineralisation, massive magnetite and massive sulphide, are present in the Ortaklar deposit. Textural evidence (e.g., magnetite replacing sulphides) and the spatial relationships with the host rocks indicate that magnetite and sulphide minerals were generated in different stages. The transition from sulphide to magnetite mineralisation is interpreted to relate to variation in H2S content of ore fluids. The 1st stage massive sulphide ore might have formed by early hydrothermal fluids rich in Fe and H2S. The 2nd stage massive magnetite might have formed by later neutral hydrothermal fluids rich in Fe but poor in H2S, replacing the pre-existing sulphide ore.The alteration patterns, mineral paragenesis, lithological features (massive ore-stockwork ore-gossan) of the Ortaklar deposit together with its trace elements, Cu-Pb-Zn-Au-Ag and REE signatures are all consistent with a Cyprus-type VMS system. The δ34S values in pyrite and chalcopyrite samples range from 2.6 to 5.7‰, indicating that the hydrothermal fluids were associated with sub-seafloor igneous activity, typical of Cyprus-type VMS deposits. However, magnetite formed later than sulphide minerals in the Ortaklar deposit, contrasting with typical Cyprus-type VMS deposits where magnetite generally occurs in lower sections. Consequently, although the Ortaklar deposit generally conforms to Cyprus-type deposits, it is distinguished from them by its late stage and high magnetite concentration. Thus, the Ortaklar deposit is thought to be an exceptional and perhaps unique Cyprus-type VMS deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号