首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The seasonal behavior of environmentally sensitive polymetallic contaminants in groundwaters from Ankaleshwar industrial estate (AIE) India was studied. The potentially toxic elements (Co, Cr, Cu, Mn, Fe, Mo and Ni) demonstrated accentuated enrichment signatures during post-monsoon, besides colossal spatial variability on temporal scale. GIS-based accrual factor raster mapping facilitated the spot-specific quantitative and comparative appraisal of metallic distensions during post-monsoon with a decreasing hierarchy of seasonal augmentation Ni > Cu > Mn > Fe > Co > Mo > Cr. High inconsistencies and spot (pixel) strict exceedingly high accrual factors over these maps concur with diverse land use and surface-polluting sources. Inter-annual adiabatic extension of heavy metals in groundwaters implies their widespread availability in soil and atmospheric backgrounds in the region. Dissimilar performance with contrasting accretion patterns of redox-sensitive metals (Fe and Mo) is revealed by three-component color composites. Heavy metal hyper-accrual realms warrant an immediate demand for upgrading the existing waste management methodologies and aquifer remediation, as the region is highly cultivated and groundwater is the sole source of water supply for drinking, agricultural and other purposes.  相似文献   

3.
The study was taken up to establish the distributions of metals as well as to assess the extent of anthropogenic inputs into the Subarnarekha River. Bed sediments were collected; analyzed for metals; and assessed with the index of geo-accumulation (I geo), enrichment factor (EF) value, concentration factor (CF) and pollution load index (PLI). Metals in the sediment were variable in the river and there are major pollution problems at certain locations. The average concentrations of Fe, Cu, Cr, Pb, Mn, Ni, Zn, Co and Ba in mg/kg was found to be 30,802 ± 11,563, 69 ± 57, 111 ± 74, 75 ± 61, 842 ± 335, 42 ± 22, 100 ± 39, 15 ± 4 and 698 ± 435, respectively. The I geo, EF, CF and PLI indices showed that the contamination of Pb and Cu was more serious than that of Ni, Zn, Co and Ba, whereas the presence of Fe, Mn and Cr might be primarily from natural sources. The contamination of the sediments with metals at few locations is attributed to mining, industries and other anthropogenic causes. Principal component analysis was employed to better comprehend the controlling factors of sediment quality. The statistical analysis of inter-metallic relationship revealed the high degree of correlation among the metals indicated their identical behaviour during transport. PCA outcome of three factors together explained 83.8 % of the variance with >1 initial eigenvalue indicated both innate and anthropogenic activities are contributing factors as source of metal profusion in Subarnarekha River basin.The overall study reveals moderately serious pollution in the river basin principally in some locations under the anthropogenic influences.  相似文献   

4.
The study was designed to establish the distributions of trace metals, dissolved organic carbon, and inorganic nutrients as well as to assess the extent of anthropogenic inputs into the Narmada and Tapti rivers. Water and sediment qualities are variable in the rivers, and there are major pollution problems at certain locations, mainly associated with urban and industrial centers. The metal concentrations of samples of the aquatic compartments investigated were close to the maximum permissible concentration for the survival of aquatic life, except for higher values of Cu (5–763 μg l−1), Pb (24–376 μg l−1), Zn (24–730 μg l−1), and Cr (70–740 μg l−1) and for drinking water except for elevated concentrations of metals such as Pb, Fe (850–2,060 μg l−1), Cr, and Ni (20–120 μg l−1). In general, the concentrations of trace metals in the rivers vary down stream which may affect the “health” of the aquatic ecosystem and may also affect the health of the rural community that depends on the untreated river water directly for domestic use. The assessment of EF, I geo, and PLI in the sediments reveals overall moderate pollution in the river basins.  相似文献   

5.
Heavy metals distribution in core sediments, different size fractions of bed sediments (>212 urn, 90-212 jam, 63–90 urn, 53–63 urn, < 53 urn), and suspended sediments (>30 urn, 20–30 m, 10–20 urn, 2–10 urn, <2 m) have been discussed. Pb, Zn, and Cr have been accumulating in recent years in the sediments. Si, Al, Fe, Ca, and Mg dominate the bed and suspended sediment composition. Metals show increasing concentrations in finer sediments. Applying multivariate analysis to sediment composition, metals have been grouped into different factors depending upon their source of origin. Chemical fractionation studies on suspended and bed sediments show Fe, Zn, Cu, and Pb are associated with the residual fraction and Mn with the exchangeable fraction.  相似文献   

6.
The presence of heavy metal concentrations was examined in natural sediments from four sites along the Jajrood river in northeast of Tehran, the capital of Iran. Besides determination of elemental concentrations (Pb, Cu, Zn, Cd, Ni and Cr), X-ray fluorescence and X-ray diffraction tests were carried out to determine other chemical components in these adsorbents. Also the ability of sediments to adsorb these heavy metal ions from aqueous solutions was investigated. Results show that the extent of adsorption increases with increase in adsorbent concentration. The amount of adsorbed Pb, Cu and Zn in sediments was much greater than that of the other metals, and Cr was adsorbed much less than others. The adsorbabilities of sediments to heavy metals increased in the order of Pb > Cu > Zn > Cd > Ni > Cr. Based on the adsorption data, equilibrium isotherms were determined at selected areas to characterize the adsorption process. The adsorption data followed Freundlich and Langmuir isotherms in most cases. Correlation and cluster analysis was performed on heavy metals adsorption and sediment components at each site to evaluate main adsorbing compounds in sediments for each metal. Results demonstrated that heavy metals sorption is mostly related to load of organic matter in the Jajrood river sediments.  相似文献   

7.
A coal-based thermal power plant is situated on the bank of the Pandu River, which is a tributary to the Ganges near Kanpur. River sediments downstream from the ash pond outfall are contaminated by fly ash. In order to establish the role of soils and sediments in retaining fly ash-derived heavy metals, copper was investigated as a model metal. A maximum concentration of 70 ppm Cu could be leached from the fly ash, confirming that it is a major source of this metal. Soil samples and river sediments were examined for Cu adsorption in the natural state as well as after treatment with H2O2, EDTA, and H2O2 followed by EDTA. The organic fraction of the samples was determined, and it had a major control on removal of Cu from a solution with 10–4 M initial concentration. Further characterization of organic matter indicated that with reference to natural samples, the humic acid fraction had a copper enrichment factor in the range 9.1–15.1. The factor for fulvic acids, in contrast, was between 3.5 and 5.5. This leads to the conclusion that river deposits rich in humic acids would withstand relatively high metal loads. Only when the metal input exceeds the maximum retention potential, would the metal be fractionated into the aqueous phase and act as a potential biocide.  相似文献   

8.
The concentration of heavy metals such as Ba, Co, Cr, Cu, Ni, Pb, Rb, Sr, V, Y, Zn, Zr were studied in soils of Balanagar industrial area, Hyderabad to understand heavy metal contamination due to industrialization and urbanization. This area is affected by the industrial activities like steel, petrochemicals, automobiles, refineries, and battery manufacturing generating hazardous wastes. The assessment of the contamination of the soils was based on the geoaccumulation index, enrichment factor (EF), contamination factor, and degree of contamination. Soil samples were collected from Balanagar industrial area from top 10–50 cm layer of soil. The samples were analyzed using X-ray fluorescence spectrometer for heavy metals. The data revealed that the soils in the study area are significantly contaminated, showing high level of toxic elements than normal distribution. The ranges of concentration of Cr (82.2–2,264 mg/kg), Cu (31.3–1,040 mg/kg), Ni (34.3–289.4 mg/kg), Pb (57.5–1,274 mg/kg), Zn (67.5–5819.5 mg/kg), Co (8.6–54.8 mg/kg), and V (66.6–297 mg/kg). The concentration of above-mentioned other elements was similar to the levels in the earth’s crust pointed to metal depletion in the soil as the EF was <1. Some heavy metals showed high EF in the soil samples indicating that there is a considerable heavy metal pollution, which could be correlated with the industries in the area. A contamination site poses significant environmental hazards for terrestrial and aquatic ecosystems. They are important sources of pollution and may results in ecotoxicological effects on terrestrial, groundwater and aquatic ecosystems.  相似文献   

9.
The competitive adsorption and the release of selected heavy metals and their speciation distribution before and after adsorption in the Yellow River sediments are discussed. The adsorption of metals onto sediments increases with increasing pH value and decreases with increasing ionic strength. The competitive coefficient K c and the distribution coefficient K d are obtained to analyze the competitive abilities of selected heavy metals, which are ranked as Pb > Cu >> Zn > Cd. The competition among selected heavy metals becomes more impetuous with increasing ion concentration in water. Speciation analysis was done by an improved analytical procedure involving five steps of sequential extraction. Cu, Pb and Zn were mainly transformed into the carbonate-bound form (50.8–87.7%) in adsorption. Most of (60.7–77.3%) Cd was transformed into the exchangeable form, and the percentage of carbonate-bound Cd was 19.7–30.4%. The release reaction was so quick that the release capacity of selected heavy metals from sediments to aqueous solution reached half of the maximum value only in 30 s. As opposed to adsorption, the release capacities of selected heavy metals were ranked as Cd > Zn >> Cu > Pb. In this study, Cd produces the most severe environmental hazards, because its concentration in the release solution is 85.8 times more than the human health criteria of US EPA.  相似文献   

10.
The concentrations and speciation of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in the sediments of the nearshore area, river channel and coastal zones of the Yangtze estuary, China, were systematically investigated in this study. The concentrations of all heavy metals except Ni in the sediments of the nearshore area were higher than those of the river channel and coastal zones. In the nearshore area, the concentrations of most heavy metals except Hg in the sediments of the southern branch were higher than those of the northern branch because of the import of pollutants from the urban and industrial activities around. When compared with the threshold effect level (TEL) and geochemical background levels, Cr, Ni and As accumulated and posed potential adverse biological effects. The speciation analysis suggested that Cd, Pb and Zn in the sediments of the three zones showed higher bioavailability than the other heavy metals, and thus posed ecological risk. Significant correlations were observed among Cr, Cu, Ni and Zn (r > 0.77) in the nearshore area, Ni, Cu, Zn and Pb (r > 0.85) in the river channel and Ni, Cu, Cr, Pb and Zn (r > 0.75) in the coastal zone. Principal component analysis (PCA) indicated that the discharge of unban and industrial sewage, shipping pollution and the properties of the sediments (contents of Fe, Mn, Al, TOC, clay and silt) dominated the distribution of heavy metal in the nearshore area, river channel and coastal zones of the Yangtze estuary.  相似文献   

11.
The concentrations of heavy metals (As, Ba, Co, Cr, Cu, Ni, Mo, Pb, Sr, V and Zn) were studied in soils to understand metal contamination due to industrialization and urbanization around Manali industrial area in Chennai, Southern India. This area is affected by the industrial activity and saturated by industries like petrochemicals, refineries, and fertilizers generating hazardous wastes. The contamination of the soils was assessed on the basis of geoaccumulation index, enrichment factor (EF), contamination factor and degree of contamination. Soil samples were collected from the industrial area of Manali from the top 10-cm-layer of the soil. Soil samples were analyzed for heavy metals by using Philips MagiX PRO-2440 Wavelength dispersive X-ray fluorescence spectrometry. The data revealed elevated concentrations of Chromium (149.8–418.0 mg/kg), Copper (22.4–372.0 mg/kg), Nickel (11.8–78.8 mg/kg), Zinc (63.5–213.6 mg/kg) and Molybdenum (2.3–15.3 mg/kg). The concentrations of other elements were similar to the levels in the earth’s crust or pointed to metal depletion in the soil (EF < 1). The high-EFs for some heavy metals obtained in the soil samples show that there is a considerable heavy metal pollution, which could be correlated with the industries in the area. Contamination sites pose significant environmental hazards for terrestrial and aquatic ecosystems. They are important sources of pollution and may result in ecotoxicological effects on terrestrial, groundwater and aquatic ecosystems. In this perspective there is need for a safe dumping of waste disposal in order to minimize environmental pollution.  相似文献   

12.
13.
阎琨  庞国涛  李伟  毛方松 《物探与化探》2022,46(4):1030-1036
为揭示茅尾海入海河口表层沉积物中重金属分布特征及生态风险,在茅岭江、大榄江、钦江入海河口采集13件表层沉积物样品进行重金属分析。研究结果表明,茅尾海沉积物中重金属As、Cd、Cr、Cu、Hg、Pb、Zn含量平均值分别为7.78×10-6、0.14×10-6、37.6×10-6、18.9×10-6、0.004 8×10-6、22.5×10-6、54.7×10-6,均低于GB 18668—2002的一类标准。沉积物中重金属空间分布差异较大,茅尾海东部工业区和西部茅岭江附近具有较高的重金属含量。重金属污染分析表明,大部分重金属元素显示为无污染—轻度污染水平,Cr具有中等污染水平;生态风险分析显示,重金属总体处于较低潜在风险,东部工业区Hg、Cd显示出中等生态风险。通过相关性分析、聚类分析、主成分分析探讨重金属污染物来源,结果显示重金属污染主要受河流控制,Hg、As、Cd还受到临港工业区废水排放的影响。综合研究表明,茅尾海生态环境总体较好,但建议重点关注东部工业区重金属排污状况。  相似文献   

14.
Heavy metal pollution and their fractionations in the sediments of Changjiang River in Nanjing Reach was monitored for cadmium (Cd), lead (Pb), zinc (Zn), chromium (Cr), and copper (Cu). Moreover, the biological enrichment of metals by riverine plants was studied. The results demonstrated there were highly significant variations among different sampling stations for the concentrations of tested metals. The highest range was for Cu (38.8–120.4 mg kg−1), followed by Cr (74.4–120.0 mg kg−1), Zn (80.9–121.1 mg kg−1), Ni (26.0–55.5 mg kg−1), Pb (15.8–46.7 mg kg−1) and Cd (0.28–0.48 mg kg−1). Cd was the element with highest biological enrichment factor (BEF). The highest BEF of Cd in Erigeron bonariensis reached 3.0, indicating a significant Cd enrichment in this aquatic plant. In addition, 60% of Cd was found in reducible fraction and exchangeable and acid-soluble fraction, which was consistent with its high mobility. The consistency of Cd fraction in sediment and suspended particle indicated they came from the same source. Accumulated Cd concentration calculated according to the release curve showed significant relativity with the total Cd concentration in the sediment.  相似文献   

15.
Spatial distribution and temporal trends studies were carried out at Katedan Industrial Development Area (KIDA) near Hyderabad, capital of Andhra Pradesh state, India under Indo-Norwegian Institutional Cooperation Program, to find out the extent of contamination in streams and lake sediments from the discharge of industrial effluents. Stream and lake sediment samples were collected from the five lakes in the study area and connecting water streams. The samples were analyzed by XRF spectrometer for toxic elements. The studies reveal that the stream sediments with in the KIDA and the impounded Noor Mohammed Lake down stream have high concentration of some of the toxic elements like chromium, nickel, lead, arsenic, zinc etc. The geology of the area indicates that the study area consists of residual soil of acidic rocks, which are predominantly of Archaean gneisses and granites having low to medium concentrations of chromium and nickel. The source of these high concentration of elements like lead 2,300 mg/kg, copper 1,500 mg/kg, arsenic 500 mg/kg, chromium 500 mg/kg etc. cannot be derived from the surrounding acidic rocks and may be attributed to the industrial effluents released in the ditches and random dumping of hazardous solid waste. It was observed that the metal concentrations increased in the streams during the dry season (pre-monsoon period). After the monsoon rains, the metal concentrations in the streams were reduced by half which may be due to dilution. The eroded sediments are deposited in the lake where very high concentrations were encountered. Overflowing of the lake will spread the contamination further downstream. The lake sediments will remain as a major source of contamination by desorption to the water phase regardless of what happens to the effluent discharge in the KIDA. However, some samples showed enrichment of lead, arsenic and nickel during post-monsoon, which were collected near the dumpsite due to the leaching of toxic elements from the dump site to the lakes. Some of the toxic elements like nickel and copper have not shown any dilution but have increased after the rains, which could be due to the leaching of arsenic from the dumpsite to the lake along with rainwater. Geochemical maps showing the distribution of heavy/trace elements in streams and lakes are prepared and presented in this paper. Effect of toxic elements on the health of the residents in the surrounding residential areas is also discussed.  相似文献   

16.
During the last two decades, the coastal environment of southeast India has experienced intense developments in industry, urbanization and aquaculture. Moreover, the 2004 mega tsunami has devastated this coast, thus affecting the coastal sediment characteristics. These two phenomena prompted a study to characterize the sediment, to understand the mechanisms influencing the distribution of heavy metals and to create baseline data for future impact assessment. Results showed that the coastal sediment was carpeted with a mosaic of sand and silty sand with a minor amount of clay. Heavy metal values showed maximum variation for Fe and minimum for Cd. Their average values showed the following decreasing trend: Fe > Cu > Zn > Pb > Cr > Ni > Cd. This study shows that the major source of metals at Kalpakkam coast are land-based anthropogenic ones, such as, discharge from industrial waste, agricultural waste, urban, municipal and slum sewage into the Buckingham canal, which in turn discharges into the sea through backwaters, particularly during northeast monsoon period. A clear signature of the role of backwater discharge increasing the concentration of a few metals in the coastal sediments during monsoon period was observed. Assessments of the degree of pollution, concentration factor (CF), geoaccumulation index (I geo) and pollution load index (PLI) have been calculated. CF values and I geo indicated that the coastal sediment is moderately polluted by Cu and Cd. Increase in Cu, Pb and Zn concentration during the monsoon period (October–January) compared to the rest of the year was noticed. Factor analysis and correlation among the heavy metals concluded that Cr, Ni, Cd and Fe are of crustal origin, whereas, Cu, Pb and Zn are from anthropogenic sources. Organic carbon content in the sediment increased during monsoon period, pointing to the role of land runoff and backwater discharge in enhancing its content. The study also elucidates the impact of the recent tsunami in depleting metal content in the coastal sediment as compared to the pre-tsunami period.  相似文献   

17.
The Houjing River flows through Kaohsiung, the most industrialized city in southern Taiwan. In this study, heavy metal concentrations in water and sediments from samples along the river were investigated to illustrate metal contamination levels and call for the awareness of industrial pollution prevention. The heavy metal concentrations in the water samples were low and appear to pose little direct risk to aquatic life and irrigation, but heavy metal concentrations in the sediments are locally very high and present an environmental risk. Cadmium, Cu, and Zn were found in higher concentrations in the river sediments than those recommended in some sediment quality guidelines and findings of river sediments in similar studies worldwide. Hence, the ecological risk of heavy metal contamination in sediments was assessed using the pollution load index (PLI) and potential ecological risk index (RI). Three of the eleven sites sampled were found to have PLI values higher than 1 and 8 of them had ‘considerable’ to ‘very high’ RI values, suggesting a considerable ecological risk. These findings provide an insight into elemental metal contamination of the Houjing River and present a baseline data set, which will be critical for future development and environmental protection plans devised for the region.  相似文献   

18.
The Yangtze River Delta Region is one of the most important economic development areas in China. In the process of its industrialization and urbanization, a great deal of wastewater is poured into rivers, lakes and coasts. Researches on contamination and bioavailability of heavy metals can help us to assess the ecological risks in the aquatic environment of the Yangtze River Delta. The samples were collected from three environmental compartments including the Yangtze River, Taihu Lake, and the south coast of Jiangsu. The concentrations of heavy metals were determined by ICP-MS. Metal speciation was determined by the sequential extraction procedure modified based on Tessier's scheme. Among the seven elements of Cu, Pb, Zn, Cr, Cd, Co, Ni detected, the contents of Cr, Zn did not vary significantly, while Cd and Pb varied significantly. Compared to the background values (loess in the basement), all metals detected except Co, Cr exceeded the background level. Cd had the greatest exceeding values, reaching 2 to 7 times. Ni and Pb were followed. The contents of Zn were comparatively high in lake sediments, especially in the lake bays. Ni was enriched in fiver sediments and Cu was highest in sediments from the Yangtze River estuary. Cd and Pb were concentrated in the coastal sediments. Comparatively, in space, Cr was associated with the carbonate fractions in the bay of lake. Cu-bound Fe-Mn oxides and Ni in residual form were highest in the open lake. In the river environment, Fe/Mn oxide-bound Pb, exchangeable Cd were the highest fractions. In the estuary environment, Pb and Zn bound carbonates, Cd-bound Fe-Mn oxides are the largest fractions. Cd in the exchangeable fraction, Cu-bound Fe-Mn oxides had the larger proportions in the coast. In general, the bioavailability of Cu and Cd were high in lake environment, the available Pb, Cd were remarked in river environment, and Pb and Zn were easily assimilated by creatures in estuary.  相似文献   

19.
The Sarno River basin area is one of the most polluted in Europe and it is due to the waste products of the tomato industry, the leather tanneries and the pharmaceutical industry. This area also has been densely populated and urbanized since the Middle Bronze Age, as testified by the presence of numerous archeological sites, including the ancient Pompeii town, and environmental degradation that characterizes the area is absolutely unacceptable. This paper represents a detailed study to assess the potentially harmful element content of topsoils. In total, 283 soil samples were collected and analyzed, after an aqua regia extraction, by a combination of inductively coupled plasma atomic emission and inductively coupled plasma mass spectrometry for 53 elements. Univariate and multivariate analyses were carried out to show the single-element geochemical distribution and the distribution of factor scores of the elemental associations resulting from R-mode factor analysis. Maps showing elements and the association factor score distributions have been obtained using GeoDAS and ArcGIS software. The assessment of the soil contamination was also carried out using the contamination factor and degree of contamination. The results obtained indicate that soil pollution has different anthropogenic sources. Specifically, Cr pollution derives from tanneries discharging wastewaters in the main water bodies of the basin while Cu contamination seems to depend on widespread agricultural practices. Tin, Pb, Hg, Zn, Cd, Sb anomalies are found mainly in urban and industrial areas, sometimes close to roads with high traffic levels while there is a substantial coincidence with background values for other elements (Co, Ni, Se, Tl and V).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号