首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to uneven spatial and temporal distribution of rainfall and lack of sufficient water management technologies, the development activities of the society are totally depending on groundwater resources. In addition to the prevailing drought-prone conditions, the improperly treated and unplanned release of effluents of industry, municipal and domestic into the nearby streams and ponds and the majority usage of groundwater for irrigation are increasing the ionic concentration of the groundwater and making it more saline. The analytical results of the collected groundwater samples show that the groundwater is alkaline, and sodium and bicarbonate are the dominant cation and anion, respectively. Gibbs variation diagram shows that the control of the chemistry of groundwater in the study area is the weathering of granitic gneisses and also the leaching of evaporated and crystallized ions from the topsoil of the irrigated areas and improperly treated industrial effluent ponds. GIS, a potential tool for facilitating the generation and use of thematic information, has been applied and analyzed for identification of groundwater quality suitable zones for domestic and irrigation purposes. 30.06% of the area is with suitable, 67.45% of the area is with moderately suitable and 2.45% of the area is with unsuitable quality of groundwater for domestic purpose. 46% of the area is with suitable, 53.36% of the area is with moderately suitable and 0.64% of the area is with unsuitable quality of groundwater for irrigation purpose.  相似文献   

2.
Combustion of coals in thermal power plants is one of the major sources of environmental pollution due to generation of huge amounts of ashes, which are disposed off in large ponds in the vicinity of the thermal power plants. This problem is of particular significance in India, which utilizes coals of very high ash content (∼55 wt%). Since the thermal power plants and the ash ponds are located in densely populated areas, there is potential chance for contamination of soil and groundwater of the surrounding areas from the toxic trace elements in the ash. An attempt has been made to study the extent of soil contamination around one of the largest thermal power plants of India located at Kolaghat, West Bengal India. Chemical analysis of the top soils and the soils collected from the different depth profiles surrounding the ash ponds, show that the top soils are enriched in the trace elements Mo, As, Cr, Mn, Cu, Ni, Co, Pb, Be, V, Zn, which show maximum enrichment (2–5) in the top soils collected from all the soil profiles. These elements are also enriched in the pond ash. Since there are no other sources of industrial effluents, it can be said that the enrichment of the trace elements (Mn, Co, Mo, Cr, Cu, Pb, Zn, As, Ni, Be, V) is attributed to their input from ash from the disposal pond. The study has been further strengthened by log-normal distribution pattern of the elements.  相似文献   

3.
Managed artificial recharge (MAR) is a well-established practice for augmentation of depleted groundwater resources or for environmental benefit. At the St-André MAR site in the Belgian dune area, groundwater resources are optimised through re-use of highly treated wastewater by means of infiltration ponds. The very high quality of the infiltration water sets this system apart from other MAR systems. The low total dissolved solid (TDS) content in the infiltration water (less than 50 mg/L) compared to the dune aquifer (500 mg/L) triggers a number of reactions, increasing the TDS through soil-aquifer passage. Multi-component reactive transport modelling was applied to analyse the geochemical processes that occur. Carbonate dissolution is the main process increasing the TDS of the infiltration water. Oxic aquifer conditions prevail between the infiltration ponds and the extraction wells. This is driven by the high flow velocities, leaving no time to consume O2 between the ponds and extraction wells. Cation exchange is important when infiltration water is replaced by native dune water or when significant changes in infiltration-water quality occur. The seasonal variation of O2 and temperature in the infiltration water are the main drivers for seasonal changes in the concentration of all major ions.  相似文献   

4.
Hydrochemical and isotopic researches were conducted in El-Sadat City groundwater system to identify groundwater alteration, recharge, residence time and extent of pollution. The groundwater salinity gradually increases as the groundwater moves from northeastern to southwestern parts of the city. Groundwater generally shows mineralization decreasing with depth, indicating that the possibility of recent water penetration far below the surface is limited. Shallow groundwater has an elevated level of nitrate, which is attributed to anthropogenic sources due to intensive agricultural activity. The limit of high nitrate water may mark the maximum penetration of groundwater from the surface, which is found in depths <100 m. The northeastern and southwestern industrial areas are highly contaminated by some heavy metals, which may originate from some local industrial effluents. The sewage oxidation ponds seem to show no effect on groundwater; hence, these ponds are not a point source for these heavy metals. Dissolved ions depict five different hydrochemical facies, and stable isotopes define the recharge mechanisms, the origin of groundwater and the hydraulic confinement of deep groundwater. The deep groundwater is untritiated and has long residence times (in the order of thousands of years). Three different hydrochemical groups have been recognized and mapped in El-Sadat City, based on the chemical and isotopic information of the groundwater. These groups have different levels of contamination. The deep groundwater samples are significantly less impacted by surface activities and it appears that these important water resources have very low recharge rates and would, therefore, be severely impacted by overabstraction. The extensive exploitation of groundwater for drinking water supply would shortly be reflected by a gradual decline of the groundwater table in El-Sadat City. Amelioration of groundwater quality requires further management strategies and efforts in the forthcoming years.  相似文献   

5.
Coal-fired power plants produce energy and many by-products (unburned carbon, fly ash, and bottom ash) that are normally stored in permitted ponds and landfills. When the storage facility fills to capacity, it is necessary to haul material off-site for disposal, construct a new storage facility, or find a use for some of the material. Because certain criteria must be met to successfully beneficiate the ash, mapping the ash reserve provides data that shows where the most promising recovery sites will be.The University of Kentucky Center for Applied Energy Research (CAER) in conjunction with Western Kentucky Energy (WKE) and the US Department of Energy are constructing an ash beneficiation plant to recover high quality fuel and lightweight aggregate from the ash ponds at WKE's Coleman Station in Hawesville, KY. To determine the locations of the most productive areas, an extensive sampling and mapping project is underway. An amphibious ATV-mounted hydraulic drill has been employed to take core samples throughout the pond. These samples are then evaluated for particle size distribution, carbon content, chemical and leaching properties. With this information as well as each drill-hole's GPS coordinates and aerial photographs of the plant site, digital maps have been produced showing trends of deposition of material in the pond. Using a Geographical Information System to compile the data, the feasibility of removing ash for beneficial re-use can assessed.  相似文献   

6.
Mathura oil refinery was commissioned during 1977 and effluent storage ponds were constructed at the same time. These storage ponds receive wastewater from the refinery at a rate of 10000 m3/day. After treatment, waste water is discharged through a 3-km pipeline to a stream leading to the Yamuna river. The groundwater-monitoring as well as water-quality monitoring was carried at 24 observation wells in the refinery site during 1997. The water quality measurements indicated total dissolved chloride and sulphate concentration of native groundwater as 400 mg/l, whereas elevated levels up to 600 mg/l were found at the wells close to polishing ponds. Thus combined transport of chloride and sulphate was simulated in the mass transport model. A three-dimensional flow, pathlines and mass transport model of the aquifer system were constructed to analyze the impact of seepage from polishing ponds contaminating the groundwater regime. The permeability of aquifer varies between 1.5–2.5 m/day. The porosity of formation was assumed as 0.2. The constant head and constant concentration boundaries were assigned to the nodes representing effluent storage ponds. Longitudinal dispersivity of 100 m, horizontal transverse dispersivity of 10 m and vertical transverse dispersivity of 0.01 m were assumed. The mass transport model was calibrated for 20 years by comparing total dissolved chloride and sulphate concentrations from 1997. The model predictions indicate further migration of contaminants on the east of effluent ponds in future. Received: 4 January 1999 · Accepted: 12 July 1999  相似文献   

7.
Douglas fir trees and associated soils were sampled from the slopes of a small ( 4 km2) drainage basin in northeastern Washington to investigate the biogeochemical response to locally uraniferous groundwater. Uranium is preferentially incorporated in needles and twigs compared to larger branches or the trunk. The U concentration in needle ash ranges from 0.2 to 5.8 μg g−1 (ppm) and shows no correlation with the U concentration in associated soils. Rather, the distribution of anomalously uraniferous douglas fir (>1.0μg g−1 U in needle ash) appears to be controlled by observed or readily inferred pathways of near-surface groundwater movement in the drainage. These pathways include: (1) general downslope movement of subsurface runoff; (2) increased flux of near-surface groundwater near the toe of an alluvial fan; and (3) emergence of uraniferous (100–150 ng ml−1 [ppb] groundwater in the vicinity of a slope spring. The data also indicate the presence of near-surface uraniferous groundwater along a structurally controlled zone that parallels the north-south strike of the valley, and that includes the slope spring. The results suggest that biogeochemical sampling may be used to supplement more direct, but more limited, measurements of groundwater quality and flow regime in areas of near-surface contaminated groundwater.  相似文献   

8.
This paper, firstly, shows the distribution of arsenic-contaminated groundwater in Samta village. This village, which is in Jessore district in Bangladesh, was chosen as a model village for investigating the mechanism of groundwater contamination. 90% of the tube wells in this village had arsenic concentrations above the Bangladesh standard of 0.05 mg/l. Tube wells with arsenic concentrations of over 0.50 mg/l were distributed in the southern part of the village with a belt-like shape from east to west. Secondly, groundwater distribution is discussed with respect to its flow and the high arsenic zone (As≥0.50 mg/l) agrees well with the drifting zone of the groundwater. Furthermore, arsenic-free water supply systems suitable for a small area in the village have been developed. A pond sand filter (PSF) system which purifies pond water is discussed in this paper. Prior to the construction of the PSF, the water quality in ponds was examined for arsenic levels. The inflow of drainage from the tube wells was found to be the major cause of arsenic contamination of pond water. The PSF installed in Samta is working very well and produces a good quality of treated water.  相似文献   

9.
Percolation ponds have become very popular methods of managed aquifer recharge due to their low cost, ease of construction and the participation and assistance of community. The objective of this study is to assess the feasibility of a percolation pond in a saline aquifer, north of Chennai, Tamil Nadu, India, to improve the storage and quality of groundwater. Electrical resistivity and ground penetrating radar methods were used to understand the subsurface conditions of the area. From these investigations, a suitable location was chosen and a percolation pond was constructed. The quality and quantity of groundwater of the nearby area has improved due to the recharge from the pond. This study indicated that a simple excavation without providing support for the slope and paving of the bunds helped to improve the groundwater quality. This method can be easily adoptable by farmers who can have a small pond within their farm to collect and store the rainwater. The cost of water recharged from this pond works out to be about 0.225 Re/l. Cleaning the pond by scrapping the accumulated sediments needs to be done once a year. Due to the small dimension and high saline groundwater, considerable improvement in quality at greater depths could not be achieved. However, ponds of larger size with recharge shafts can directly recharge the aquifer and help to improve the quality of water at greater depths.  相似文献   

10.
The effects of multiple industrial-pollutant sources on the groundwater system were evaluated in the Industrial Development Areas (IDAs) of Medak district, Andhra Pradesh (AP), India. The quality of groundwater in the region has been affected negatively due to the discharge of effluents on open land and into ponds, tanks, and streams. Water samples from surface-water bodies, dug wells,and bore wells were analyzed for their major ion concentrations. The high values of electrical conductivity (EC) and concentrations of Na+, Ca2+, Cl, and HCO3 indicate the impact of industrial effluents. Based on the hydrochemistry, the groundwater is classified into various types, such as sodium-chloride, sodium-bicarbonate, calcium-chloride, and magnesium-chloride, and its suitability for drinking and irrigation has been assessed. The present studies made it possible to demarcate areas of contaminated groundwater and those prone to contamination in the near future. Water in the area has deteriorated all along Nakka Vagu up to a maximum distance of 500–700 m from the eastern bank. The groundwater quality in and around Patancheru (to a depth of 30 m) has become hazardous. Some possible remedial measures are suggested. Electronic Publication  相似文献   

11.

Over-exploited groundwater is expected to remain the predominant source of domestic water in suburban areas of Hanoi, Vietnam. In order to evaluate the effect on groundwater recharge, of decreasing surface-water bodies and land-use change caused by urbanization, the relevant groundwater systems and recharge pathways must be characterized in detail. To this end, water levels and water quality were monitored for 3 years regarding groundwater and adjacent surface-water bodies, at two typical suburban sites in Hanoi. Stable isotope (δ18O, δD of water) analysis and hydrochemical analysis showed that the water from both aquifers and aquitards, including the groundwater obtained from both the monitoring wells and the neighboring household tubewells, was largely derived from evaporation-affected surface-water bodies (e.g., ponds, irrigated farmlands) rather than from rivers. The water-level monitoring results suggested distinct local-scale flow systems for both a Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA). That is, in the case of the HUA, lateral recharge through the aquifer from neighboring ponds and/or irrigated farmlands appeared to be dominant, rather than recharge by vertical rainwater infiltration. In the case of the PCA, recharge by the above-lying HUA, through areas where the aquitard separating the two aquifers was relatively thin or nonexistent, was suggested. As the decrease in the local surface-water bodies will likely reduce the groundwater recharge, maintaining and enhancing this recharge (through preservation of the surface-water bodies) is considered as essential for the sustainable use of groundwater in the area.

  相似文献   

12.
The problem of salt-ravaged lands is reported in many parts of the world and could be exacerbated by the presence of an endorheic pond normally associated with a saline low-lying area. An endorheic or playa pond accumulates dissolved salts which can be carried primarily by groundwater before discharging into the pond; then, intense evaporation produces salt residues which can wreak havoc on the adjacent areas. The objective of this study is to investigate the subsurface conditions and groundwater interactions beneath two endorheic saline ponds of Thailand’s Great Mekong Basin to have a better understanding and thereby efficiently manage the resources. A comprehensive analysis of the physical and geochemical properties (limited to pH, specific conductance and salinity) of the subsurface system was performed to determine the processes that regulated the migration of dissolved salt. The data collected from the deep and shallow groundwater of the basin were analyzed to determine their physical and chemical properties. Soil samples of various depths were examined to determine their respective geologic, chemical and unsaturated properties. The groundwater near the salt ponds was different from that of other areas in that its groundwater table was closer to the surface soil and its deep groundwater, which is of high pressure, was more saline than its shallow groundwater. As the capillary rise influences the topsoil, particularly in the saline pond areas, the vertical upward flow and the capillary force are thus the additional mechanisms of salt transportation to the endorheic ponds. Since these surface water bodies are the discharge sites for saline groundwater and are not perennial, a practical solution is to localize the saline groundwater.  相似文献   

13.
韩家哨村位于河北滦县李家屿灰场北部谷地,地势低于灰场,距离约800m。灰场运行期间,该区地下水出现水位升高及水质变差等问题。本文从水文地质条件角度,详细研究灰水的运移途径及其对该区地下水的影响。韩家哨村区域地下水系统分为上层滞水和孔隙一裂隙(溶隙)潜水含水层系统。潜水含水层系统水力传导系数为172.6~203.4m^2/d。地下水补给主要来源于韩家哨村以南坝后地形较高区域及灰水。灰水渗漏优势区韩家哨村南部宽约200m的带状区域。灰场堆灰形成新的地下水分水岭致使灰水在20副坝坝前垂直下渗进入风化带,沿白云岩裂隙(溶隙)补给潜水含水层,并向韩家哨村区域流动补给孔隙含水层,改变后的潜水部分通过民井向外排泄。  相似文献   

14.
Dissolved organic C (DOC) plays an important role in the mobilization of As from sediments. In West Bengal, the widely used technique for obtaining jute fiber involves retting of the jute plant in ponds (hereafter such ponds are termed jute decomposing ponds) for several weeks, which produces significant amounts of DOC in the ponds. These ponds thus act as point sources of DOC and supply huge quantities of organic C to the Bengal Delta sediments. This study has been carried out to investigate the role of such DOC in enriching the groundwater with As in the Bengal Delta. Data clearly show that due to the effect of DOC, As is mobilized from the upper 2.6 m of the sediment profile, and is fixed between 2.6 and 6.1 m, while the lower part (6.1–9 m) largely remains unaffected. The reducing conditions mainly developed due to the decay of the percolating DOC seem to help the mobilization and transportation of As and other redox sensitive elements (Fe, Mn), as well as elements (Cu, Zn) attached to oxy-hydroxides of those redox-sensitive elements. Experiments also indicate that if the DOC production at the surface continues for a longer period of time, the zone of As fixation (2.6–6.1 m) may get shifted further downwards and ultimately intercept the water table resulting in As enrichment of groundwater.  相似文献   

15.
Since July 2002, tertiary treated wastewater has been artificially recharged through two infiltration ponds in the dunes of the Belgian western coastal plain. This has formed a lens of artificially recharged water in the dunes’ fresh water lens. Recharged water is recovered by extraction wells located around the ponds. Hydraulic aspects of the artificial recharge and extraction are described using field observations such as geophysical borehole loggings and a tracer test. Borehole logs indicate recharged water up to 20 m below surface, whereas the tracer test gives field data about the residence times of the recharged water. Furthermore, a detailed solute transport model was made of the area surrounding the ponds. Groundwater flow, capture zone, residence times and volume of recharged water in the aquifer are calculated. This shows that the residence time varies between 30 days and 5 years due to the complex flow pattern. The extracted water is a mix of waters with different residence times and natural groundwater, assuring a relatively stable water quality of the extracted water.  相似文献   

16.
The assessment of the suitability of groundwater for drinking and irrigation uses was carried out in the alluvial plain of Low-Isser in the north of Algeria. The plain covers an area of 533 km2 and lies in a Mediterranean sub-humid climate. Groundwater is the main source for domestic uses and agricultural activities in this area. Groundwater samples were collected from 15 wells during dry and wet seasons in 2015, and they were analyzed for major cations and anions and compared with drinking and irrigation specification standards. The comparison of chemical concentration with WHO drinking water standards of 2006 shows that more than 30% of groundwater samples are unsuitable for drinking, and the majority of groundwater samples fell on the hard and very hard categories. Suitability of groundwater for drinking was also evaluated based on the water quality index (WQI). It shows more than 80% of samples have good or permissible water quality for dry and wet seasons. In terms of the irrigation usage, generally, groundwater in the study area is suitable for different uses in both seasons according to SAR, %Na, RSBC, and PI. However, water rock exchange processes and groundwater flow have been responsible for the dominated water type Ca–Mg–Cl.  相似文献   

17.
杨玉春 《城市地质》2011,6(4):26-30
基于2008年枯水期地下水采样数据共计65个样本点,对水质组分进行了分层统计,并进行了地下水质量评价。此外,开展了TDS、Ca2+、NO3-和硬度与取样深度的相关性分析。结果表明,垂向上,延庆盆地地下水由浅到深,地下水水质逐渐变好;横向上,上游地下水水质好于中游,中游好于下游;深层地下水已经出现较差和极差点。  相似文献   

18.
从我国火电厂粉煤灰排放现状出发,以徐家峪现行电厂储灰场为例,通过对储灰场周围水文地质环境条件和其周围多年地下水水位、水质监测结果分析,总结得出储灰场对其周围地下水环境产生了一定影响,但影响程度较小,总体未改变周围地下水使用性质。  相似文献   

19.
To identify the causes of salinization and arsenic contamination of surface water on an embanked island (i.e., polder) in the tidal delta plain of SW Bangladesh we collected and analyzed water samples in the dry (May) and wet (October) seasons in 2012–2013. Samples were collected from rice paddies (wet season), saltwater ponds used for brine shrimp aquaculture (dry season), freshwater ponds and tidal channels (both wet and dry season), and rainwater collectors. Continuous measurements of salinity from March 2012 to February 2013 show that tidal channel water increases from ~0.15 ppt in the wet season up to ~20 ppt in the dry season. On the polder, surface water exceeds the World Health Organization drinking water guideline of 10 μg As/L in 78% of shrimp ponds and 27% of rice paddies, raising concerns that produced shrimp and rice could have unsafe levels of As. Drinking water sources also often have unsafe As levels, with 83% of tubewell and 43% of freshwater pond samples having >10 μg As/L. Water compositions and field observations are consistent with shrimp pond water being sourced from tidal channels during the dry season, rather than the locally saline groundwater from tubewells. Irrigation water for rice paddies is also obtained from the tidal channels, but during the wet season when surface waters are fresh. Salts become concentrated in irrigation water through evaporation, with average salinity increasing from 0.43 ppt in the tidal channel source to 0.91 ppt in the rice paddies. Our observations suggest that the practice of seasonally alternating rice and shrimp farming in a field has a negligible effect on rice paddy water salinity. Also, shrimp ponds do not significantly affect the salinity of adjacent surface water bodies or subjacent groundwater because impermeable shallow surface deposits of silt and clay mostly isolate surface water bodies from each other and from the shallow groundwater aquifer. Bivariate plots of conservative element concentrations show that all surface water types lie on mixing lines between dry season tidal channel water and rainwater, i.e., all are related by varying degrees of salinization. High As concentrations in dry season tidal channel water and shrimp ponds likely result from groundwater exfiltration and upstream irrigation in the dry season. Arsenic is transferred from tidal channels to rice paddies through irrigation. Including groundwater samples from the same area (Ayers et al. in Geochem Trans 17:1–22, 2016), principal components analysis and correlation analysis reveal that salinization explains most variation in surface water compositions, whereas progressive reduction of buried surface water by dissolved organic carbon is responsible for the nonconservative behavior of S, Fe, and As and changes in Eh and alkalinity of groundwater.  相似文献   

20.
Aluminium has received great attention in the second half of the 20th century, mainly in the context of the acid rain problem mostly in forest soils. In this research the effect of land use and depth of the groundwater on Al, pH and DOC concentration in groundwater under Dutch sandy soils has been studied. Both pH and DOC concentration play a major role in the speciation of Al in solution. Furthermore, the equilibrium with mineral phases like gibbsite, amorphous Al(OH)3 and imogolite, has been considered. Agricultural and natural land use were expected to have different effects on the pH and DOC concentration, which in turn could influence the total Al concentration and the speciation of Al in groundwater at different depths (phreatic, shallow and deep). An extensive dataset (n = 2181) from the national and some provincial monitoring networks on soil and groundwater quality was used. Land use type and groundwater depth did influence the pH, and Al and DOC concentrations in groundwater samples. The Al concentration ranged from <0.4 μmol L−1 at pH > 7 to 1941 μmol L−1 at pH < 4; highest Al concentrations were found for natural-phreatic groundwater. The DOC concentration decreased and the median pH increased with depth of the groundwater. Natural-phreatic groundwater showed lower pH than the agricultural-phreatic groundwater. Highest DOC concentrations were found for the agricultural-phreatic groundwater, induced by the application of organic fertilizers. Besides inorganic complexation, the NICA-Donnan model was used to calculate Al3+ concentrations for complexation with DOC. Below pH 4.5 groundwater samples were mainly in disequilibrium with a mineral phase. This disequilibrium is considered to be the result of kinetic constraints or equilibrium with organic matter. Log K values were derived by linear regression and were close to theoretical values for Al(OH)3 minerals (e.g. gibbsite or amorphous Al(OH)3), except for natural-phreatic groundwater for which lower log K values were found. Complexation of Al with DOC is shown to be an important factor for the Al concentrations, especially at high DOC concentrations as was found for agricultural-phreatic groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号