首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluids, tectonics and crustal deformation   总被引:1,自引:0,他引:1  
In the plate tectonic process, lithosphere creation at ocean ridges and its cooling leads to volatile fixation in the oceanic crust. The outer 10 km or so of all crust contains abundant water in pores and fractures and variable amounts of volatiles in minerals. When surface rocks are buried by tectonic processes, fluids must be released and modify the mechanical properties. In the subduction process hydrated oceanic crust may be decoupled from the remaining oceanic lithosphere. At depth rising aqueous fluids or melts lead to a complex series of mass-energy transfer processes which may decouple continental crust near the Moho. Continental crust if subducted, may also be decoupled from its lithosphere by degassing. Fluid release processes which create gas-solid mixtures beneath impermeable cover create low-strength systems subject to facile deformation, hydraulic fracture processes and diapiric phenomena.  相似文献   

2.
3.
4.
新疆地壳结构和演化中的若干问题   总被引:3,自引:0,他引:3  
刘训 《地学前缘》2006,13(6):111-117
以新疆独山子-泉水沟地学断面的资料为主,讨论了泉水沟-阿勒泰剖面的地壳结构主要特征。它们不仅在地表形成了三山两盆的盆山结构面貌,而且在深部的地壳结构上也有明显的不同。进而我们认识到以天山和祁连山为代表的中国西北的主要山系在地质历史上虽然属于不同时期的造山带,但真正形成现代的盆山结构是新生代以来壳幔相互作用的结果。特别是天山地区,新生代以来的造山活动和古生代时期有明显的不同,也和高原南侧喜马拉雅山的新生代造山作用不同,我们称之为“天山型造山运动和天山型造山带”。  相似文献   

5.
Several years of research on deformational history of the Alps and their Central European foreland led to the development of new models for the driving mechanism of continental drift and intraplate tectonics. It was found that a global rhythm of continental drift exists, which causes the phases of epeirogeny by regular deformation of lithospheric structures. This approach was made possible by the development of a new method of comparing and analysing paleomagnetic and tectonic data.A new map projection provided for the first time the order necessary to analyze on a global scale the relations between the direction of drift and all essential geological and geophysical data. This led to the identification of drift fields as the largest lithospheric structural units. Their geometry controls a narrowing lithospheric flow and thus the direction of plate movements. By redistributing upper mantle isotherms, the drift fields simultaneously control the course of asthenospheric counterflows, whose internal flow patterns can trigger asthenospheric upwellings and epeirogenic uplifts.Thus, besides providing a synthesis of horizontal- and vertical-tectonic hypotheses, the discovery of drift tectonic rules offers a promising framework for the understanding of the Proterozoic tectonomagmatic cycles.
Zusammenfassung Mehrjährige Untersuchungen der Deformationsgeschichte der Alpen und ihres europäischen Vorlands führten zur Entwicklung neuer Modelle für den Antrieb der Kontinentaldrift und zum Problem der intraplate tectonics. Es konnte nachgewiesen werden, daß ein weltweiter Bewegungsrhythmus der Kontinentaldrift existiert, der sich durch gesetzmäßige Deformation von Lithosphärenstrukturen in den Phasen der Epirogenese auswirkt. Dieser Nachweis wurde durch die Entwicklung einer neuen Methode zur vergleichenden Analyse paläomagnetischer und tektonischer Daten ermöglicht.Durch den Entwurf einer neuen Kartenprojektion gelang es erstmals, alle wesentlichen geologischen und geophysikalischen Daten in einer übersichtlichen Abbildung auf ihre Beziehung zur Driftrichtung hin zu untersuchen. Dies führte zur Identifizierung der Driftfelder als größte Bewegungseinheit der Lithosphäre. Ihre Geometrie regelt ein konvergierendes Fließen der Lithosphäre und damit die Richtung der Plattenbewegungen. Zugleich beeinflussen die Driftfelder über die Temperaturverteilung im oberen Mantel den Verlauf asthenosphärischer Gegenströmungen, deren interne Strömungsmuster zur Entwicklung von Aufströmen (plumes) und zu epirogenetischen Aufdomungen führen.So bietet die Entdeckung der drifttektonischen Gesetzmäßigkeiten über eine Synthese horizontal- und vertikaltektonischer Hypothesen hinaus ein vielversprechendes Bezugssystem zum Verständnis der tektonisch-magmatischen Zyklen des Proterozoikums.

Résumé Des recherches de plusieurs années sur l'histoire déformative des Alpes et de leur avant-pays européen, permettent de développer un nouveau modèle qui répond aux problèmes de la tectonique intra-plaque et du moteur de la dérive continentale. On montre l'existence, à l'échelle mondiale, d'un rythme dans le mouvement de dérive, qui se traduit par une déformation ordonnée des structures lithosphériques aux cours des phases de l'épirogenèse. Cette conclusion résulte de l'emploi d'une méthode nouvelle d'analyse comparée des données paléomagnétiques et tectoniques.Grâce à une nouvelle projection cartographique, on a pu, pour la première fois, mettre toutes les données géologiques et géophysiques actuelles en relation avec la direction de dérive, ce qui a conduit à identifier les champs de dérive comme les unités structurales majeures de la lithosphère. Leur géométrie définit un écoulement convergent de la lithosphère et, partant, la direction des mouvements des plaques. En raison de la distribution de la température dans le manteau, les champs de dérive définissent en même temps la position de contrecourants asthénosphériques, dont la disposition interne conduit au développement de »plumes« et de bombements épirogéniques.La découverte du caractère ordonné de la dérive permet une synthèse des hypothèses »verticalistes« et »horizontalistes« en tectonique et, de ce fait, une meilleure compréhension des cycles tectono-magmatiques du Protérozoïque.

, . , . . , . , . . , , . , , , , .
  相似文献   

6.
Eduard Berg   《Tectonophysics》1973,20(1-4):165-182
Knowledge of the crustal structure is still fragmentary, despite the stimulus to geophysical work provided by the earthquake of March 28, 1964 (GMT), the underground nuclear explosion LONGSHOT, and the June 1967 series of earthquakes in the Fairbanks area. The most reliable information about struc ture has come from a combination of seismic explosion-refraction profiles, gravity surveys, and magnetic surveys. This report is a summary of recent investigations, but the results are not adequate to permit unambiguous generalizations about crustal structure.  相似文献   

7.
John Cleary 《Tectonophysics》1973,20(1-4):241-248
There have been eight large-scale refraction experiments in Australia during the last fifteen years. P1 velocities derived from these experiments are significantly higher in the Precambrian shield region than in eastern Australia. Pn-velocities are also higher beneath the shield, and appear to increase systematically from east to west across the continent. There is good evidence for an intermediate layer in all parts of Australia, with an average depth of about 20 km to the Conrad discontinuity. The crustal thickness has an average value of about 40 km, and the observed variations in thickness are apparently unrelated to topography in most cases.  相似文献   

8.
9.
10.
The focal mechanisms for 86 selected earthquakes (3.0 mb 5.5) located in central Alaska have been investigated from P-wave first motions; the data were gathered by local seismic networks. The results show a depth-dependent characteristic to the fault-plane solutions. For earthquakes having focal depths shallower than 60–70 km, the focal mechanisms indicate either strike-slip or normal faults, while for earthquakes with foci at intermediate depths the focal mechanisms correspond to thrust faults. The nature of the seismicity indicates the hinge line of the Pacific lithospheric plate under the study area to be striking N17°E from Cook Inlet towards interior Alaska. The comparison of the focal mechanisms with the seismicity shows that the strike-slip and normal faults are the predominant processes of stress release along the shallow section of the plate. The earthquakes with intermediate foci systematically occur along the inclined section of the plate. If the gently dipping nodal planes for these earthquakes are chosen as the fault planes, the focal mechanisms correspond to underthrust motions at the foci. In these, the slip vectors are oriented either to the west or north with the resultant being in the N30°W direction. The tension axes for the underthrust solutions are also found to be parallel to the local dip of the plate, indicating that the subducted plate in interior Alaska is undergoing gravitational sinking.  相似文献   

11.
The Yagan area of the southernmost Sino–Mongolian border is characterized by an extensional structure where a large metamorphic core complex (Yagan–Onch Hayrhan) and voluminous granitoids are exposed. New isotopic age data indicate that the granitoids, which were previously regarded as Paleozoic in age, were emplaced in early and late Mesozoic times. The early Mesozoic granitoids have 228±7 Ma U–Pb zircon age, and consist of linear mylonitic quartz monzonites and biotite monzogranites. Their chemical compositions are similar to those of potassic granites and shoshonitic series, and show an intraplate and post-collisional environment in tectonic discrimination diagrams. Their fabrics reveal that they experienced syn-emplacement extensional deformation. All these characteristics suggest that the adjustment, thinning and extensional deformation at middle to lower crustal levels might have occurred in the early Mesozoic. The late Mesozoic granitoids have a U–Pb zircon age of 135±2 Ma, and are made up of large elliptical granitic plutons. They are high-K calc-alkaline, and were forcefully emplaced in the dome extensional setting. Both the early and late Mesozoic granitoids have Nd (t) values of −2.3 to +5, in strong contrast with the negative Nd (t) values (−11) of the Precambrian host rocks. This suggests that juvenile mantle-derived components were involved in the formation of the granitoids. The similar situation is omnipresent in Central Asia. This study demonstrates that tectonic extension, magmatism and crustal growth are closely related, and that post-collisional and intraplate magmatism was probably a significant process for continental growth in the Phanerozoic.  相似文献   

12.
The lower plate is the dominant agent in modern convergent margins characterized by active subduction,as negatively buoyant oceanic lithosphere sinks into the asthenosphere under its own weight.This is a strong plate-driving force because the slab-pull force is transmitted through the stiff sub-oceanic lithospheric mantle.As geological and geochemical data seem inconsistent with the existence of modernstyle ridges and arcs in the Archaean,a periodically-destabilized stagnant-lid crust system is proposed instead.Stagnant-lid intervals may correspond to periods of layered mantle convection where efficient cooling was restricted to the upper mantle,perturbing Earth's heat generation/loss balance,eventually triggering mantle overturns.Archaean basalts were derived from fertile mantle in overturn upwelling zones(OUZOs),which were larger and longer-lived than post-Archaean plumes.Early cratons/continents probably formed above OUZOs as large volumes of basalt and komatiite were delivered for protracted periods,allowing basal crustal cannibalism,garnetiferous crustal restite delamination,and coupled development of continental crust and sub-continental lithospheric mantle.Periodic mixing and rehomogenization during overturns retarded development of isotopically depleted MORB(mid-ocean ridge basalt)mantle.Only after the start of true subduction did sequestration of subducted slabs at the coremantle boundary lead to the development of the depleted MORB mantle source.During Archaean mantle overturns,pre-existing continents located above OUZOs would be strongly reworked;whereas OUZOdistal continents would drift in response to mantle currents.The leading edge of drifting Archaean continents would be convergent margins characterized by terrane accretion,imbrication,subcretion and anatexis of unsubductable oceanic lithosphere.As Earth cooled and the background oceanic lithosphere became denser and stiffer,there would be an increasing probability that oceanic crustal segments could founder in an organized way,producing a gradual evolution of pre-subduction convergent margins into modern-style active subduction systems around 2.5 Ga.Plate tectonics today is constituted of:(1)a continental drift system that started in the Early Archaean,driven by deep mantle currents pressing against the Archaean-age sub-continental lithospheric mantle keels that underlie Archaean cratons;(2)a subduction-driven system that started near the end of the Archaean.  相似文献   

13.
利用高精度的SRTM 数字高程模型(DEM),定量勾画出青藏高原东南缘大尺度地形地貌的特征。分析表明,高原东南缘地貌特征为“负地形”,即海拔高程与地形坡度,与地形起伏度之间均为负相关关系,与高原中部的“正地形”--海拔高程或地形坡度与地形起伏度之间呈正相关关系,形成鲜明对比。但是,在高原东南缘,在河谷之间保留有高海拔、低起伏的残留面。这些残留面与高原内部的平坦面具相似的渐变地貌特征,从腹地的正地形逐渐变为川西的高海拔平坦面与深切河谷相间的负地形。虽然随着河流下切深度往南逐渐增加,残留面虽越来越少,但仍然可以识别,最终终止在雅砻江逆冲断裂带附近,该断裂带以南地区没有明显负地形特征。北东向展布的雅砻江逆冲断裂带对应着50~200 km宽的地形相对陡变带。综合区域新构造和构造地貌研究的最新成果表明: 1)雅砻江逆冲断裂带可能代表着现今正经受侵蚀改造和弱化的高原老边界,该边界以北和以南地区抬升历史不同; 2)三江地区的峰值抬升期已过,目前以侵蚀为主。虽然不能排除与河流侵蚀对应的均衡反弹抬升作用,但具有真正意义的地壳增厚型的构造抬升较弱。国际上流行的高原东缘下地壳流动模式的依据之一是从高原内外流分界线到南中国海,存在一个区域上延伸数千公里的抬升前低海拔“类夷平面”的残留面。地貌特征,构造和地质综合分析都表明高原东缘不存在这样的类夷平面,不支持解释高原东缘地形演化和相应构造变形的下地壳流动模式。  相似文献   

14.
15.
京津冀协同发展区是中国东部规划的战略开发区之一,也是华北地区主要的活动构造区,新构造活动强烈,活动断裂发育,地震频发,具有潜在的地质安全隐患问题。基于张家口地区、雄安新区及邻区、北京及关键构造部位调查研究结果,结合已有研究成果,系统分析了京津冀协同发展区主要活动断裂几何学、运动学和动力学特征及其工程地质、地质灾害特征,采用ArcGIS平台的空间分析功能,初步完成了京津冀协同发展区地壳稳定性评价。研究结果表明,京津冀协同发展区发育邢台-河间-唐山、石家庄-通州NNE向构造带和张家口-渤海NWW向区域性活动构造带,其中全新世活动断裂11条,晚更新世活动断裂16条,第四纪断裂23条;冀北及冀东南地区现今构造应力场最大水平主应力方向为近EW向,而太行山东缘南段为NNE向,北段为NW向;NNE向活动断裂带总体表现为顺时针扭动正断活动,倾向SE,NWW向活动断裂带晚更新世以来具有明显的活动性,整体表现为反时针扭动正断活动,倾向SW。京津冀协同发展区地壳稳定性总体较好,不稳定区及次不稳定区主要分布在邢台、唐山、延怀盆地和全新世活动断裂带内,利于重要城镇和重大工程规划建设。研究成果将为京津冀协同发展区宏观发展战略提供地质支撑。  相似文献   

16.
Based on lithological, structural and geophysical characteristics, the Proterozoic Grenville Orogen of southern Ontario and New York has been divided into domains that are separated from each other by ductile shear zones. In order to constrain the timing of metamorphism, U-Pb ages were determined on metamorphic and igneous sphenes from marbles, calc-silicate gneisses, amphibolites, granitoids, skarns and pegmatites. In addition, U-Pb ages were obtained for monazites from metapelites and for a rutile from an amphibolite. These mineral ages constrain the timing of mineral growth, the duration of metamorphism and the cooling history of the different domains that make up the southern part of the exposed Grenville Orogen. Based on the ages from metamorphic minerals, regional and contact metamorphism occurred in the following intervals:Central Granulite Terrane:Adirondack Highlands: 1150 Ma; 1070–1050 Ma; 1030–1000 MaCentral Metasedimentary Belt:Adirondack Lowlands 1170–1130 MaFrontenac domain 1175–1150 MaSharbot Lake domain ca. 1152 MaFlzevir domain: 1240 Ma; 1060–1020 MaBancroft domain: ca. 1150 Ma; 1045–1030 MaCentral Gneiss Belt: ca. 1450 Ma; ca. 1150 Ma; 1100–1050 MaGrenville FrontTectonic Zone ca. 1000 Ma.Combination of mineral ages with results from thermobarometry indicates that metamorphic pressures and temperatures recorded by thermobarometers were reached polychronously in the different domains that are separated by major shear zones. Some of these shear zones such as the Robertson Lake shear zone and the Carthage-Colton shear zone represent major tectonic boundaries. The Grenville Orogen is made up of a collage of crustal terranes that have distinct thermal and tectonic histories and that were accreted laterally by tectonic processes analogous to those observed along modern active continental margins. The subsequent history of the orogen is characterized by slow time-integrated cooling rates of 3±1°C/Ma and denudation rates of 120±40m/Ma.  相似文献   

17.
《Gondwana Research》2015,28(4):1487-1493
Receiver function imaging along a temporary seismic array (ANTILOPE-2) reveals detailed information of the underthrusting of the Indian crust in southern Tibet. The Moho dips northward from ~ 50 km to 80 km beneath the Himalaya terrane, and locally reaches ~ 85 km beneath the Indus–Yalung suture. It remains at ~ 80 km depth across the Lhasa terrane, and shallows to ~ 70 km depth under the Qiangtang terrane. An intra-crustal interface at ~ 60 km beneath the Lhasa terrane can be clearly followed southward through the Main Himalaya Thrust and connects the Main Boundary Thrust at the surface, which represents the border of the Indian crust that is underthrusting until south of the Bangong–Nujiang Suture. A mid-crustal low velocity zone is observed at depths of 14–30 km beneath the Lhasa and Himalaya terranes probably formed by partial melt and/or aqueous fluids.  相似文献   

18.
The Levantine Basin—crustal structure and origin   总被引:1,自引:0,他引:1  
The origin of the Levantine Basin in the Southeastern Mediterranean Sea is related to the opening of the Neo-Tethys. The nature of its crust has been debated for decades. Therefore, we conducted a geophysical experiment in the Levantine Basin. We recorded two refraction seismic lines with 19 and 20 ocean bottom hydrophones, respectively, and developed velocity models. Additional seismic reflection data yield structural information about the upper layers in the first few kilometers. The crystalline basement in the Levantine Basin consists of two layers with a P-wave velocity of 6.0–6.4 km/s in the upper and 6.5–6.9 km/s in the lower crust. Towards the center of the basin, the Moho depth decreases from 27 to 22 km. Local variations of the velocity gradient can be attributed to previously postulated shear zones like the Pelusium Line, the Damietta–Latakia Line and the Baltim–Hecateus Line. Both layers of the crystalline crust are continuous and no indication for a transition from continental to oceanic crust is observed. These results are confirmed by gravity data. Comparison with other seismic refraction studies in prolongation of our profiles under Israel and Jordan and in the Mediterranean Sea near Greece and Sardinia reveal similarities between the crust in the Levantine Basin and thinned continental crust, which is found in that region. The presence of thinned continental crust under the Levantine Basin is therefore suggested. A β-factor of 2.3–3 is estimated. Based on these findings, we conclude that sea-floor spreading in the Eastern Mediterranean Sea only occurred north of the Eratosthenes Seamount, and the oceanic crust was later subducted at the Cyprus Arc.  相似文献   

19.
The Eastern Ghats are a prominent topographic feature on the Indian Peninsula, stretching from the southern tip of the peninsula to near Bhubaneswar (20°N, 86°E) along the east coast. The belt is characterised by occurrences of high grade metamorphic rocks such as pyroxene granulites, sillimanite gneisses, charnockites and gabbro-anorthosite masses. The gravity field over the Eastern Ghats is appreciably positive as compared to the surrounding low grade gneissic terrain.Analysis of the gravity field along the coastal and southern granulite terrain comprising the Eastern Ghats shows that a large number of gravity highs are associated with charnockites of basic and intermediate nature as well as gabbro-anorthosite masses. The lows appear to be associated with acid charnockites, syenite masses or granitic intrusives.The boundary between the Eastern Ghats terrain and the adjoining Dharwar/Bastar cratons appears to be a faulted one. The crust underneath the Eastern Ghats is inferred to be of a higher density than that of the Dharwar/Bastar cratons to its west. The gravity field over the Eastern Ghats is compared to that of similar terrains in other parts of the world. It is inferred that the Eastern Ghats are characterised by a crust of higher than normal density.  相似文献   

20.
During the last twenty years, the structure of the earth's crust and mantle of young orogenic systems has been investigated by means of seismic measurements. Therefore, it is possible now to discuss detailed problems. This paper deals with the crustal structure in the transition zone between the central part and the hinterland of an orogene.As demonstrated by three examples taken from the Western Alps, the Southern Apennines, and the Crimea, it can be stated that the crustal structure in these zones is anomalous. It is typical that, within the upper 20 km, a high-velocity layer exists which is separated from the crust/mantle boundary, being situated at a depth of 40–50 km, by an extreme low-velocity layer. Thus the existence of sialic material under basic material is indicated. The relation between the shallow high-velocity layer and the crust of the hinterland, no more than 20–30 km thick, is different in the cases described here. The crustal structure of the Eastern Alps and of the Caucasus is briefly discussed.Finally, this anomalous crustal structure and the tectonic development of an orogene are discussed.
Zusammenfassung In den letzten 20 Jahren ist mit Hilfe seismischer Messungen die Struktur der Erdkruste und des oberen Erdmantels in jungen Orogenen erforscht worden, so daß es heute möglich ist, Detailfragen zu diskutieren. In der vorliegenden Arbeit wird die Krustenstruktur im Übergangsbereich zwischen der zentralen Zone und dem Hinterland bzw. einem intern benachbarten geantiklinalen Bereich untersucht.An drei Beispielen aus mediterranen Orogenen — West-Alpen, Süd-Apennin und Krim — wird gezeigt daß die Krustenstruktur in diesen Zonen anomal ist. Diese Beispiele sind dadurch charakterisiert, daß in den oberen 20 km eine Schicht hoher Geschwindigkeit mit etwa 7 km/s auftritt, die von der Kruste/Mantel-Grenze in 40 bis 50 km Tiefe durch eine Zone extrem geringer Geschwindigkeit getrennt ist. Der Zusammenhang zwischen der flachen Hoch-Geschwindigkeits-Schicht und der nur 20 bis 30 km mächtigen Kruste des Hinterlandes ist in den behandelten Fällen unterschiedlich. Kurz werden die Verhältnisse in den Ostalpen und dem Kaukasus behandelt.Abschließend wird der Zusammenhang zwischen dieser anomalen Krustenstruktur und den Vorstellungen über den tektonischen Werdegang eines Orogens diskutiert.

Résumé Durant les 20 dernières années on a étudié, à l'aide d'enregistrements sismiques la structure de la croûte terrestre et du manteau supérieur dans les jeunes orogènes. Ceci permet aujourd'hui de discuter quelques questions de détail. Le présent travail a pour but d'étudier la structure de la croûte terrestre de la zone transitoire entre la zone centrale et l'arrière-pays ou une zone géoanticlinale interne voisine.L'étude de trois exemples tirés d'orogènes méditerranéens — Alpes occidentales, Apennins du sud et Crimée — indique que la structure de la croûte terrestre de ces zones est anormale. Elle est caracterisée par ceci: il existe dans les premiers 20 km d'épaisseur, une couche à vitesse élevée de 7 km/s environ, laquelle est nettement séparée de la limite croûte-manteau supérieur, à 40 à 50 km de profondeur, par une couche d'une vitesse extrêmement basse. La liaison entre la couche de haute vitesse à faible profondeur et la croûte de l'arrière-pays d'une épaisseur ne dépassant pas 20 à 30 km, est différente dans les cas cités. La structure de la croûte terrestre dans la région des Alpes orientales et du Caucase est brièvement discutée.Finalement la liaison entre cette structure anormale et le développement tectonique d'une orogène sont discutés.

. 20 , . , . — , — , . , 20 — 9 / —, - 40–50 . . . .
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号