首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of gas and gas hydrate within the central Yaquina Basin, a forearc basin at the Peru convergent margin, can be estimated from the interpretation of high-resolution reflection seismic data. The strongest bottom simulating reflector (BSR) is observed where the base of gas hydrate stability (BGHS) parallels strata. Where the BGHS crosscuts strata, only a small amount of gas is present beneath the BGHS. Anisotropic permeability plays a key role in controlling methane supply. Where present-day tectonic activity is observed, faults and, consequently, gas reach up to the seafloor where chemoherms formed. The warm fluids contort the BGHS and, consequently, the BSR is shifted upward. Increased heat flux and/or sediment interval velocity in this region is likely. Bright spots align beneath the actual BGHS and mark the depth of a paleo-BSR, which can be correlated with sedimentation of a particular sequence. There is clear evidence for free gas being present within the gas hydrate stability zone.  相似文献   

2.
An analysis of 3D seismic data from the northwestern part of the Ulleung Basin, East Sea, revealed that the gas hydrate stability zone (GHSZ) consists of five seismic units separated by regional reflectors. An anticline is present that documents activity of many faults. The seismic indicators of gas hydrate occurrence included bottom simulating reflector (BSR) and acoustic blanking in the gas hydrate occurrence zone (GHOZ). By the analysis of the seismic characteristics and the gradient of the sedimentary strata, the GHOZ was divided into four classes: (1) dipping strata upon strong BSR, (2) dipping strata below strong BSR, (3) parallel strata with acoustic blanking, and (4) parallel strata below weak BSR. Seismic attributes such as reflection strength and instantaneous frequency were computed along the GHOZ. Low reflection strength and high instantaneous frequency were identified above the BSR, indicating the occurrence of gas hydrate. A remarkably high reflection strength and low instantaneous frequency indicated the presence of free gas below the BSR. Considering the distribution of the gas hydrate and free gas, two gas migration processes are suggested: (1) stratigraphic migration through the dipping, permeable strata and (2) structural migration from below the GHSZ along faults.  相似文献   

3.
The presence of a wedge of offshore permafrost on the shelf of the Canadian Beaufort Sea has been previously recognized and the consequence of a prolonged occurrence of such permafrost is the possibility of an underlying gas hydrate regime. We present the first evidence for wide-spread occurrences of gas hydrates across the shelf in water depths of 60–100 m using 3D and 2D multichannel seismic (MCS) data. A reflection with a polarity opposite to the seafloor was identified ∼1000 m below the seafloor that mimics some of the bottom-simulating reflections (BSRs) in marine gas hydrate regimes. However, the reflection is not truly bottom-simulating, as its depth is controlled by offshore permafrost. The depth of the reflection decreases with increasing water depth, as predicted from thermal modeling of the late Wisconsin transgression. The reflection crosscuts strata and defines a zone of enhanced reflectivity beneath it, which originates from free gas accumulated at the phase boundary over time as permafrost and associated gas hydrate stability zones thin in response to the transgression. The wide-spread gas hydrate occurrence beneath permafrost has implications on the region including drilling hazards associated with the presence of free gas, possible overpressure, lateral migration of fluids and expulsion at the seafloor. In contrast to the permafrost-associated gas hydrates, a deep-water marine BSR was also identified on MCS profiles. The MCS data show a polarity-reversed seismic reflection associated with a low-velocity zone beneath it. The seismic data coverage in the southern Beaufort Sea shows that the deep-water marine BSR is not uniformly present across the entire region. The regional discrepancy of the BSR occurrence between the US Alaska portion and the Mackenzie Delta region may be a result of high sedimentation rates expected for the central Mackenzie delta and high abundance of mass-transport deposits that prohibit gas to accumulate within and beneath the gas hydrate stability zone.  相似文献   

4.
Multi-scale reflection seismic data, from deep-penetration to high-resolution, have been analyzed and integrated with near-surface geophysical and geochemical data to investigate the structures and gas hydrate system of the Formosa Ridge offshore of southwestern Taiwan. In 2007, dense and large chemosynthetic communities were discovered on top of the Formosa Ridge at water depth of 1125 m by the ROV Hyper-Dolphin. A continuous and strong BSR has been observed on seismic profiles from 300 to 500 ms two-way-travel-time below the seafloor of this ridge. Sedimentary strata of the Formosa Ridge are generally flat lying which suggests that this ridge was formed by submarine erosion processes of down-slope canyon development. In addition, some sediment waves and mass wasting features are present on the ridge. Beneath the cold seep site, a vertical blanking zone, or seismic chimney, is clearly observed on seismic profiles, and it is interpreted to be a fluid conduit. A thick low velocity zone beneath BSR suggests the presence of a gas reservoir there. This “gas reservoir” is shallower than the surrounding canyon floors along the ridge; therefore as warm methane-rich fluids inside the ridge migrate upward, sulfate carried by cold sea water can flow into the fluid system from both flanks of the ridge. This process may drive a fluid circulation system and the active cold seep site which emits both hydrogen sulfide and methane to feed the chemosynthetic communities.  相似文献   

5.
《Marine and Petroleum Geology》2012,29(10):1967-1978
Integrated geological, geochemical, and geophysical exploration since 2004 has identified massive accumulation of gas hydrate associated with active methane seeps on the Umitaka Spur, located in the Joetsu Basin on the eastern margin of Japan Sea. Umitaka Spur is an asymmetric anticline formed along an incipient subduction zone that extends throughout the western side of the Japanese island-arc system. Seismic surveys recognized chimney structures that seem strongly controlled by a complex anticlinal axial fault system, and exhibit high seismic amplitudes with apparent pull-up structures, probably due to massive and dense accumulation of gas hydrate. Bottom simulating reflectors are widely developed, in particular within gas chimneys and in the gently dipping eastern flank of the anticline, where debris can store gas hydrates that may represent a potential natural gas resource. The axial fault system, the shape of the anticline, and the carrier beds induce thermogenic gas migration to the top of the structure, and supply gas to the gas hydrate stability zone. Gas reaching the seafloor produces strong seepages and giant plumes in the sea water column.  相似文献   

6.
Integrated geological, geochemical, and geophysical exploration since 2004 has identified massive accumulation of gas hydrate associated with active methane seeps on the Umitaka Spur, located in the Joetsu Basin on the eastern margin of Japan Sea. Umitaka Spur is an asymmetric anticline formed along an incipient subduction zone that extends throughout the western side of the Japanese island-arc system. Seismic surveys recognized chimney structures that seem strongly controlled by a complex anticlinal axial fault system, and exhibit high seismic amplitudes with apparent pull-up structures, probably due to massive and dense accumulation of gas hydrate. Bottom simulating reflectors are widely developed, in particular within gas chimneys and in the gently dipping eastern flank of the anticline, where debris can store gas hydrates that may represent a potential natural gas resource. The axial fault system, the shape of the anticline, and the carrier beds induce thermogenic gas migration to the top of the structure, and supply gas to the gas hydrate stability zone. Gas reaching the seafloor produces strong seepages and giant plumes in the sea water column.  相似文献   

7.
Small amounts of free gas in interstitial sediment pores are known to significantly lower compressional (P-) wave velocity (Vp). This effect, combined with moderately elevated Vp from the presence of gas hydrates, is usually thought to be the cause for the often observed strong negative reflection coefficients of bottom simulating reflections (BSRs) at the base of gas hydrate stability (BGHS). At several locations however, weak BSRs have been observed, which are difficult to reconcile with a presence of gas in sediment pores. We here present a rock physics model for weak BSRs on the Hikurangi Margin east of New Zealand. Thin sections of a fine-grained mudstone sample from a submarine outcrop in the vicinity of a weak BSR show macroscopic porosity in the form of fractures and intrafossil macropores. We apply the Kuster-Toksöz theory to predict seismic velocities for a rock with water-saturated interstitial micropores and gas or hydrates in macroscopic pore space simulating fractures or compliant macropores. We match field observations of a weak BSR with a reflection coefficient of −0.016 with two end-member models; (1) rocks with gas hydrate-filled voids with a concentration of <4% of bulk sediment overlying water-filled voids, or (2) fully gas-saturated voids at a concentration of <2% beneath water-filled voids. A natural system is likely to consist of a combination of these end-members and of macroporosity filled with a mixture of water and gas or hydrate. Our results suggest weak BSRs may be caused by gas hydrate systems in fractures and macropores of fine-grained sediments with fully water-saturated interstitial pore space. Gas may be supplied into the macroscopic pore space by diffusion-driven short-range migration of methane generated within the gas hydrate stability field or, our favoured model based on additional geologic considerations, long-range advective migration from deeper sources along fractures.  相似文献   

8.
In this study, we present the results of the combined analyses of ocean bottom seismometer and multi-channel seismic reflection data collection offshore southwestern Taiwan, with respect to the presence of gas hydrates and free gas within the accretionary wedge sediments. Estimates of the compressional velocities along EW9509-33 seismic reflection profile are obtained by a series of pre-stack depth migrations in a layer stripping streamlined Deregowski loop. Strong BSR is imaged over most of the reflection profile while low velocity zones are imaged below BSR at several locations. Amplitude versus angle analysis that are performed within the pre-stack depth migration processes reveal strong negative P-impedance near the bottom of the hydrate stability zone, commonly underlain by sharp positive P impedance layers associated with negative pseudo-Poisson attribute areas, indicating the presence of free gas below the BSR. Ray tracing of the acoustic arrivals with a model derived from the migration velocities generally fits the vertical and hydrophone records of the four ocean-bottom seismographs (OBS). In order to estimate the Poisson’s ratios in the shallow sediments at the vicinity of the OBSs, we analyze the mode-converted arrivals in the wide-angle horizontal component. P-S mode converted reflections are dominant, while upward P-S transmissions are observed at large offsets. We observe significant compressional velocity and Poisson’s ratio pull-down in the sediment below the BSR likely to bear free gas. When compared to Poisson’s ratio predicted by mechanical models, the values proposed for the OBSs yield rough estimates of gas hydrate saturation in the range of 0–10% in the layers above the BSR and of free gas saturation in the range of 0–2% just below the BSR.  相似文献   

9.
珠江口盆地神狐海域是天然气水合物钻探和试验开采的重点区域,大量钻探取心、测井与地震等综合分析表明不同站位水合物的饱和度、厚度与气源条件存在差异。本文利用天然气水合物调查及深水油气勘探所采集的测井和地震资料建立地质模型,利用PetroMod软件模拟地层的温度场、有机质成熟度、烃源岩生烃量、流体运移路径以及不同烃源岩影响下的水合物饱和度,结果表明:生物成因气分布在海底以下1500 m范围内的有机质未成熟地层,而热成因气分布在深度超过2300 m的成熟、过成熟地层。水合物稳定带内生烃量难以形成水合物,形成水合物气源主要来自于稳定带下方向上运移的生物与热成因气。模拟结果与测井结果对比分析表明,稳定带下部生物成因气能形成的水合物饱和度约为10%,在峡谷脊部的局部区域饱和度较高;相对高饱和度(>40%)水合物形成与文昌组、恩平组的热成因气沿断裂、气烟囱等流体运移通道幕式释放密切相关,W19井形成较高饱和度水合物的甲烷气体中热成因气占比达80%,W17井热成因气占比为73%,而SH2井主要以生物成因为主,因此,不同站位甲烷气体来源占比不同。  相似文献   

10.
The occurrence of gas hydrate has been inferred from the presence of Bottom-Simulating Reflectors (BSRs) along the western continental margin of India. In this paper, we assess the spatial and vertical distribution of gas hydrates by analyzing the interval velocities and Amplitude Versus Offset (AVO) responses obtained from multi-channel seismics (MCSs). The hydrate cements the grains of the host sediment, thereby increasing its velocity, whereas the free gas below the base of hydrate stability zone decreases the interval velocity. Conventionally, velocities are obtained from the semblance analysis on the Common Mid-Point (CMP) gathers. Here, we used wave-equation datuming to remove the effect of the water column before the velocity analysis. We show that the interval velocities obtained in this fashion are more stable than those computed from the conventional semblance analysis. The initial velocity model thus obtained is updated using the tomographic velocity analysis to account for lateral heterogeneity. The resultant interval velocity model shows large lateral velocity variations in the hydrate layer and some low velocity zones associated with free gas at the location of structural traps. The reflection from the base of the gas layer is also visible in the stacked seismic data. Vertical variation in hydrate distribution is assessed by analyzing the AVO response at selected locations. AVO analysis is carried out after applying true amplitude processing. The average amplitudes of BSRs are almost constant with offset, suggesting a fluid expulsion model for hydrate formation. In such a model, the hydrate concentrations are gradational with maxima occurring at the base of hydrate stability zone.  相似文献   

11.
Multichannel seismic reflection data from the continental margin of western India suggest the potential presence of fluid expulsion features, which may or may not be associated with gas hydrates. No typical bottom simulating reflector was observed on the reflection seismic section. As a result we look for other evidence in seismic sections in a small corridor of the western continental margin of India in order to establish the presence of gas hydrates. We study features including venting through the seafloor, pockmarks, sea floor collapse, faults acting as migration paths for fluid flow, transparent gas-charged sediment, reduction in amplitude strength, diapirism and mud-volcano. Presence of all these gas-escape features on a seismic section implies the probable presence of methane within the zone of hydrate stability field.  相似文献   

12.
13.
This study is a synthesis of gas-related features in recent sediments across the western Black Sea basin. The investigation is based on an extensive seismic dataset, and integrates published information from previous local studies. Our data reveal widespread occurrences of seismic facies indicating free gas in sediments and gas escape in the water column. The presence of gas hydrates is inferred from bottom-simulating reflections (BSRs). The distribution of the gas facies shows (1) major gas accumulations close to the seafloor in the coastal area and along the shelfbreak, (2) ubiquitous gas migration from the deeper subsurface on the shelf and (3) gas hydrate occurrences on the lower slope (below 750 m water depth). The coastal and shelfbreak shallow gas areas correspond to the highstand and lowstand depocentres, respectively. Gas in these areas most likely results from in situ degradation of biogenic methane, probably with a contribution of deep gas in the shelfbreak accumulation. On the western shelf, vertical gas migration appears to originate from a source of Eocene age or older and, in some cases, it is clearly related to known deep oil and gas fields. Gas release at the seafloor is abundant at water depths shallower than 725 m, which corresponds to the minimum theoretical depth for methane hydrate stability, but occurs only exceptionally at water depths where hydrates can form. As such, gas entering the hydrate stability field appears to form hydrates, acting as a buffer for gas migration towards the seafloor and subsequent escape.  相似文献   

14.
Seismic coherency measures, such as similarity and dip of maximum similarity, were used to characterize mass transport deposits (MTDs) in the Ulleung Basin, East Sea, offshore Korea. Using 2-D and 3-D seismic data several slope failure masses have been identified near drill site UBGH1-4. The MTDs have a distinct seismic character and exhibit physical properties similar to gas hydrate bearing sediment: elevated electrical resistivity and P-wave velocity. Sediments recovered from within the MTDs show a reworked nature with chaotic assemblage of mud-clasts. Additionally, the reflection at the base of MTDs is polarity reversed relative to the seafloor, similarly to the bottom-simulating reflector commonly used to infer the presence of gas hydrates. The MTDs further show regional seismic blanking (absence of internal reflectivity), which is yet another signature often attributed to gas hydrate bearing sediments. At the drill site UBGH1-4, no gas hydrate was recovered in sediment-cores from inside a prominent MTD unit. Instead, pore-filling gas hydrate was recovered only within thin turbidite sand layers near the base of the gas hydrate stability zone. With the analysis of seismic attributes, the seismic character of the prominent MTD (Unit 3) was investigated. The base of the MTD unit exhibits deep grooves interpreted as gliding tracks from either outrunner blocks or large clasts that were dragged along the paleo-seafloor. Similar seismic features were identified on the seafloor although the length of the gliding tracks on the seafloor is much shorter (a few hundred meters to ∼1 km), compared to over 10 km long tracks at the base of the MTD. The seismic coherency attributes allowed to estimate the volume of the failed sediment as well as the direction of the flow of sediment. Tracking the MTD and extrapolating its spatial extent from the 3-D seismic volume to adjacent 2-D seismic profiles, a possible source region of this mass failure was defined ∼50 km upslope of Site UBGH1-4.  相似文献   

15.
Gas hydrate was discovered in the Krishna–Godavari (KG) Basin during the India National Gas Hydrate Program (NGHP) Expedition 1 at Site NGHP-01-10 within a fractured clay-dominated sedimentary system. Logging-while-drilling (LWD), coring, and wire-line logging confirmed gas hydrate dominantly in fractures at four borehole sites spanning a 500 m transect. Three-dimensional (3D) seismic data were subsequently used to image the fractured system and explain the occurrence of gas hydrate associated with the fractures. A system of two fault-sets was identified, part of a typical passive margin tectonic setting. The LWD-derived fracture network at Hole NGHP-01-10A is to some extent seen in the seismic data and was mapped using seismic coherency attributes. The fractured system around Site NGHP-01-10 extends over a triangular-shaped area of ∼2.5 km2 defined using seismic attributes of the seafloor reflection, as well as “seismic sweetness” at the base of the gas hydrate occurrence zone. The triangular shaped area is also showing a polygonal (nearly hexagonal) fault pattern, distinct from other more rectangular fault patterns observed in the study area. The occurrence of gas hydrate at Site NGHP-01-10 is the result of a specific combination of tectonic fault orientations and the abundance of free gas migration from a deeper gas source. The triangular-shaped area of enriched gas hydrate occurrence is bound by two faults acting as migration conduits. Additionally, the fault-associated sediment deformation provides a possible migration pathway for the free gas from the deeper gas source into the gas hydrate stability zone. It is proposed that there are additional locations in the KG Basin with possible gas hydrate accumulation of similar tectonic conditions, and one such location was identified from the 3D seismic data ˜6 km NW of Site NGHP-01-10.  相似文献   

16.
The Ulleung Basin, East (Japan) Sea, is well-known for the occurrence of submarine slope failures along its entire margins and associated mass-transport deposits (MTDs). Previous studies postulated that gas hydrates which broadly exist in the basin could be related with the failure process. In this study, we identified various features of slope failures on the margins, such as landslide scars, slide/slump bodies, glide planes and MTDs, from a regional multi-channel seismic dataset. Seismic indicators of gas hydrates and associated gas/fluid flow, such as the bottom-simulating reflector (BSR), seismic chimneys, pockmarks, and reflection anomalies, were re-compiled. The gas hydrate occurrence zone (GHOZ) within the slope sediments was defined from the BSR distribution. The BSR is more pronounced along the southwestern slope. Its minimal depth is about 100 m below seafloor (mbsf) at about 300 m below sea-level (mbsl). Gas/fluid flow and seepage structures were present on the seismic data as columnar acoustic-blanking zones varying in width and height from tens to hundreds of meters. They were classified into: (a) buried seismic chimneys (BSC), (b) chimneys with a mound (SCM), and (c) chimneys with a depression/pockmark (SCD) on the seafloor. Reflection anomalies, i.e., enhanced reflections below the BSR and hyperbolic reflections which could indicate the presence of gas, together with pockmarks which are not associated with seismic chimneys, and SCDs are predominant in the western-southwestern margin, while the BSR, BSCs and SCMs are widely distributed in the southern and southwestern margins. Calculation of the present-day gas-hydrate stability zone (GHSZ) shows that the base of the GHSZ (BGHSZ) pinches out at water depths ranging between 180 and 260 mbsl. The occurrence of the uppermost landslide scars which is below about 190 mbsl is close to the range of the GHSZ pinch-out. The depths of the BSR are typically greater than the depths of the BGHSZ on the basin margins which may imply that the GHOZ is not stable. Close correlation between the spatial distribution of landslides, seismic features of free gas, gas/fluid flow and expulsion and the GHSZ may suggest that excess pore-pressure caused by gas hydrate dissociation could have had a role in slope failures.  相似文献   

17.
To confirm the seabed fluid flow at the Haima cold seeps, an integrated study of multi-beam and seismic data reveals the morphology and fate of four bubble plumes and investigates the detailed subsurface structure of the active seepage area. The shapes of bubble plumes are not constant and influenced by the northeastward bottom currents, but the water depth where these bubble plumes disappear (630–650 m below the sea level) (mbsl) is very close to the upper limit of the gas hydrate stability zone in the water column (620 m below the sea level), as calculated from the CTD data within the study area, supporting the “hydrate skin” hypothesis. Gas chimneys directly below the bottom simulating reflectors, found at most sites, are speculated as essential pathways for both thermogenic gas and biogenic gas migrating from deep formations to the gas hydrate stability zone. The fracture network on the top of the basement uplift may be heavily gas-charged, which accounts for the chimney with several kilometers in diameter (beneath Plumes B and C). The much smaller gas chimney (beneath Plume D) may stem from gas saturated localized strong permeability zone. High-resolution seismic profiles reveal pipe-like structures, characterized by stacked localized amplitude anomalies, just beneath all the plumes, which act as the fluid conduits conveying gas from the gas hydrate-bearing sediments to the seafloor, feeding the gas plumes. The differences between these pipe-like structures indicate the dynamic process of gas seepage, which may be controlled by the build-up and dissipation of pore pressure. The 3D seismic data show high saturated gas hydrates with high RMS amplitude tend to cluster on the periphery of the gas chimney. Understanding the fluid migration and hydrate accumulation pattern of the Haima cold seeps can aid in the further exploration and study on the dynamic gas hydrate system in the South China Sea.  相似文献   

18.
Highly concentrated gas hydrate deposits are likely to be associated with geological features that promote increased fluid flux through the gas hydrate stability zone (GHSZ). We conduct conventional seismic processing techniques and full-waveform inversion methods on a multi-channel seismic line that was acquired over a 125 km transect of the southern Hikurangi Margin off the eastern coast of New Zealand’s North Island. Initial processing, employed with an emphasis on preservation of true amplitude information, was used to identify three sites where structures and stratal fabrics likely encourage focused fluid flow into and through the GHSZ. At two of the sites, Western Porangahau Trough and Eastern Porangahau Ridge, sub-vertical blanking zones occur in regions of intensely deformed sedimentary layering. It is interpreted that increased fluid flow occurs in these regions and that fluids may dissipate upwards and away from the deformed zone along layers that trend towards the seafloor. At Eastern Porangahau Ridge we also observe a coherent bottom simulating reflection (BSR) that increases markedly in intensity with proximity to the centre of the anticlinal ridge. 1D full-waveform inversions conducted at eight points along the BSR reveal much more pronounced low-velocity zones near the centre of the ridge, indicating a local increase in the flux of gas-charged fluids into the anticline. At another anticline, Western Porangahau Ridge, a dipping high-amplitude feature extends from the BSR upwards towards the seafloor within the regional GHSZ. 1D full-waveform inversions at this site reveal that the dipping feature is characterised by a high-velocity zone overlying a low-velocity zone, which we interpret as gas hydrates overlying free gas. These results support a previous interpretation that this high-amplitude feature represents a local “up-warping” of the base of hydrate stability in response to advective heat flow from upward migrating fluids. These three sites provide examples of geological frameworks that encourage prolific localised fluid flow into the hydrate system where it is likely that gas-charged fluids are converting to highly concentrated hydrate deposits.  相似文献   

19.
In the last decades gas hydrate occurrence along the Chilean continental margin has been well documented. In order to better define the seismic character of the hydrate-bearing sediments, we performed a detailed velocity analysis by using the pre-stack depth migration on part of multichannel reflection seismic line RC2901-734 located offshore Coyhaique.  相似文献   

20.
2D and 3D seismic reflection and well log data from Andaman deep water basin are analyzed to investigate geophysical evidence related to gas hydrate accumulation and saturation. Analysis of seismic data reveals the presence of a bottom simulating reflector (BSR) in the area showing all the characteristics of a classical BSR associated with gas hydrate accumulation. Double BSRs are also observed on some seismic sections of area (Area B) that suggest substantial changes in pressure–temperature (P–T) conditions in the past. The manifestation of changes in P–T conditions can also be marked by the varying gas hydrate stability zone thickness (200–650 m) in the area. The 3D seismic data of Area B located in the ponded fill, west of Alcock Rise has been pre-stack depth migrated. A significant velocity inversion across the BSR (1,950–1,650 m/s) has been observed on the velocity model obtained from pre-stack depth migration. The areas with low velocity of the order of 1,450 m/s below the BSR and high amplitudes indicate presence of dissociated or free gas beneath the hydrate layer. The amplitude variation with offset analysis of BSR depicts increase in amplitude with offset, a similar trend as observed for the BSR associated with the gas hydrate accumulations. The presence of gas hydrate shown by logging results from a drilled well for hydrocarbon exploration in Area B, where gas hydrate deposit was predicted from seismic evidence, validate our findings. The base of the hydrate layer derived from the resistivity and acoustic transit-time logs is in agreement with the depth of hydrate layer interpreted from the pre-stack depth migrated seismic section. The resistivity and acoustic transit-time logs indicate 30-m-thick hydrate layer at the depth interval of 1,865–1,895 m with 30 % hydrate saturation. The total hydrate bound gas in Area B is estimated to be 1.8 × 1010 m3, which is comparable (by volume) to the reserves in major conventional gas fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号