首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In history matching of lithofacies reservoir model, we attempt to find multiple realizations of lithofacies configuration that are conditional to dynamic data and representative of the model uncertainty space. This problem can be formalized in the Bayesian framework. Given a truncated Gaussian model as a prior and the dynamic data with its associated measurement error, we want to sample from the conditional distribution of the facies given the data. A relevant way to generate conditioned realizations is to use Markov chains Monte Carlo (MCMC). However, the dimensions of the model and the computational cost of each iteration are two important pitfalls for the use of MCMC. Furthermore, classical MCMC algorithms mix slowly, that is, they will not explore the whole support of the posterior in the time of the simulation. In this paper, we extend the methodology already described in a previous work to the problem of history matching of a Gaussian-related lithofacies reservoir model. We first show how to drastically reduce the dimension of the problem by using a truncated Karhunen-Loève expansion of the Gaussian random field underlying the lithofacies model. Moreover, we propose an innovative criterion of the choice of the number of components based on the connexity function. Then, we show how we improve the mixing properties of classical single MCMC, without increasing the global computational cost, by the use of parallel interacting Markov chains. Applying the dimension reduction and this innovative sampling method drastically lowers the number of iterations needed to sample efficiently from the posterior. We show the encouraging results obtained when applying the methodology to a synthetic history-matching case.  相似文献   

2.
Reservoir characterization needs the integration of various data through history matching, especially dynamic information such as production or 4D seismic data. Although reservoir heterogeneities are commonly generated using geostatistical models, random realizations cannot generally match observed dynamic data. To constrain model realizations to reproduce measured dynamic data, an optimization procedure may be applied in an attempt to minimize an objective function, which quantifies the mismatch between real and simulated data. Such assisted history matching methods require a parameterization of the geostatistical model to allow the updating of an initial model realization. However, there are only a few parameterization methods available to update geostatistical models in a way consistent with the underlying geostatistical properties. This paper presents a local domain parameterization technique that updates geostatistical realizations using assisted history matching. This technique allows us to locally change model realizations through the variation of geometrical domains whose geometry and size can be easily controlled and parameterized. This approach provides a new way to parameterize geostatistical realizations in order to improve history matching efficiency.  相似文献   

3.
Seismic inverse modeling, which transforms appropriately processed geophysical data into the physical properties of the Earth, is an essential process for reservoir characterization. This paper proposes a work flow based on a Markov chain Monte Carlo method consistent with geology, well-logs, seismic data, and rock-physics information. It uses direct sampling as a multiple-point geostatistical method for generating realizations from the prior distribution, and Metropolis sampling with adaptive spatial resampling to perform an approximate sampling from the posterior distribution, conditioned to the geophysical data. Because it can assess important uncertainties, sampling is a more general approach than just finding the most likely model. However, since rejection sampling requires a large number of evaluations for generating the posterior distribution, it is inefficient and not suitable for reservoir modeling. Metropolis sampling is able to perform an equivalent sampling by forming a Markov chain. The iterative spatial resampling algorithm perturbs realizations of a spatially dependent variable, while preserving its spatial structure by conditioning to subset points. However, in most practical applications, when the subset conditioning points are selected at random, it can get stuck for a very long time in a non-optimal local minimum. In this paper it is demonstrated that adaptive subset sampling improves the efficiency of iterative spatial resampling. Depending on the acceptance/rejection criteria, it is possible to obtain a chain of geostatistical realizations aimed at characterizing the posterior distribution with Metropolis sampling. The validity and applicability of the proposed method are illustrated by results for seismic lithofacies inversion on the Stanford VI synthetic test sets.  相似文献   

4.
In this paper, the Markov Chain Monte Carlo (MCMC) approach is used for sampling of the permeability field conditioned on the dynamic data. The novelty of the approach consists of using an approximation of the dynamic data based on streamline computations. The simulations using the streamline approach allows us to obtain analytical approximations in the small neighborhood of the previously computed dynamic data. Using this approximation, we employ a two-stage MCMC approach. In the first stage, the approximation of the dynamic data is used to modify the instrumental proposal distribution. The obtained chain correctly samples from the posterior distribution; the modified Markov chain converges to a steady state corresponding to the posterior distribution. Moreover, this approximation increases the acceptance rate, and reduces the computational time required for MCMC sampling. Numerical results are presented.  相似文献   

5.
The application of the ensemble Kalman filter (EnKF) for history matching petroleum reservoir models has been the subject of intense investigation during the past 10 years. Unfortunately, EnKF often fails to provide reasonable data matches for highly nonlinear problems. This fact motivated the development of several iterative ensemble-based methods in the last few years. However, there exists no study comparing the performance of these methods in the literature, especially in terms of their ability to quantify uncertainty correctly. In this paper, we compare the performance of nine ensemble-based methods in terms of the quality of the data matches, quantification of uncertainty, and computational cost. For this purpose, we use a small but highly nonlinear reservoir model so that we can generate the reference posterior distribution of reservoir properties using a very long chain generated by a Markov chain Monte Carlo sampling algorithm. We also consider one adjoint-based implementation of the randomized maximum likelihood method in the comparisons.  相似文献   

6.
A Bayesian linear inversion methodology based on Gaussian mixture models and its application to geophysical inverse problems are presented in this paper. The proposed inverse method is based on a Bayesian approach under the assumptions of a Gaussian mixture random field for the prior model and a Gaussian linear likelihood function. The model for the latent discrete variable is defined to be a stationary first-order Markov chain. In this approach, a recursive exact solution to an approximation of the posterior distribution of the inverse problem is proposed. A Markov chain Monte Carlo algorithm can be used to efficiently simulate realizations from the correct posterior model. Two inversion studies based on real well log data are presented, and the main results are the posterior distributions of the reservoir properties of interest, the corresponding predictions and prediction intervals, and a set of conditional realizations. The first application is a seismic inversion study for the prediction of lithological facies, P- and S-impedance, where an improvement of 30% in the root-mean-square error of the predictions compared to the traditional Gaussian inversion is obtained. The second application is a rock physics inversion study for the prediction of lithological facies, porosity, and clay volume, where predictions slightly improve compared to the Gaussian inversion approach.  相似文献   

7.
In this paper, we develop a procedure for subsurface characterization of a fractured porous medium. The characterization involves sampling from a representation of a fracture’s permeability that has been suitably adjusted to the dynamic tracer cut measurement data. We propose to use a type of dual-porosity, dual-permeability model for tracer flow. This model is built into the Markov chain Monte Carlo (MCMC) method in which the permeability is sampled. The Bayesian statistical framework is used to set the acceptance criteria of these samples and is enforced through sampling from the posterior distribution of the permeability fields conditioned to dynamic tracer cut data. In order to get a sample from the distribution, we must solve a series of problems which requires a fine-scale solution of the dual model. As direct MCMC is a costly method with the possibility of a low acceptance rate, we introduce a two-stage MCMC alternative which requires a suitable coarse-scale solution method of the dual model. With this filtering process, we are able to decrease our computational time as well as increase the proposal acceptance rate. A number of numerical examples are presented to illustrate the performance of the method.  相似文献   

8.
Ensemble-based methods are becoming popular assisted history matching techniques with a growing number of field applications. These methods use an ensemble of model realizations, typically constructed by means of geostatistics, to represent the prior uncertainty. The performance of the history matching is very dependent on the quality of the initial ensemble. However, there is a significant level of uncertainty in the parameters used to define the geostatistical model. From a Bayesian viewpoint, the uncertainty in the geostatistical modeling can be represented by a hyper-prior in a hierarchical formulation. This paper presents the first steps towards a general parametrization to address the problem of uncertainty in the prior modeling. The proposed parametrization is inspired in Gaussian mixtures, where the uncertainty in the prior mean and prior covariance is accounted by defining weights for combining multiple Gaussian ensembles, which are estimated during the data assimilation. The parametrization was successfully tested in a simple reservoir problem where the orientation of the major anisotropic direction of the permeability field was unknown.  相似文献   

9.
In earth and environmental sciences applications, uncertainty analysis regarding the outputs of models whose parameters are spatially varying (or spatially distributed) is often performed in a Monte Carlo framework. In this context, alternative realizations of the spatial distribution of model inputs, typically conditioned to reproduce attribute values at locations where measurements are obtained, are generated via geostatistical simulation using simple random (SR) sampling. The environmental model under consideration is then evaluated using each of these realizations as a plausible input, in order to construct a distribution of plausible model outputs for uncertainty analysis purposes. In hydrogeological investigations, for example, conditional simulations of saturated hydraulic conductivity are used as input to physically-based simulators of flow and transport to evaluate the associated uncertainty in the spatial distribution of solute concentration. Realistic uncertainty analysis via SR sampling, however, requires a large number of simulated attribute realizations for the model inputs in order to yield a representative distribution of model outputs; this often hinders the application of uncertainty analysis due to the computational expense of evaluating complex environmental models. Stratified sampling methods, including variants of Latin hypercube sampling, constitute more efficient sampling aternatives, often resulting in a more representative distribution of model outputs (e.g., solute concentration) with fewer model input realizations (e.g., hydraulic conductivity), thus reducing the computational cost of uncertainty analysis. The application of stratified and Latin hypercube sampling in a geostatistical simulation context, however, is not widespread, and, apart from a few exceptions, has been limited to the unconditional simulation case. This paper proposes methodological modifications for adopting existing methods for stratified sampling (including Latin hypercube sampling), employed to date in an unconditional geostatistical simulation context, for the purpose of efficient conditional simulation of Gaussian random fields. The proposed conditional simulation methods are compared to traditional geostatistical simulation, based on SR sampling, in the context of a hydrogeological flow and transport model via a synthetic case study. The results indicate that stratified sampling methods (including Latin hypercube sampling) are more efficient than SR, overall reproducing to a similar extent statistics of the conductivity (and subsequently concentration) fields, yet with smaller sampling variability. These findings suggest that the proposed efficient conditional sampling methods could contribute to the wider application of uncertainty analysis in spatially distributed environmental models using geostatistical simulation.  相似文献   

10.
11.
This paper presents the application of a population Markov Chain Monte Carlo (MCMC) technique to generate history-matched models. The technique has been developed and successfully adopted in challenging domains such as computational biology but has not yet seen application in reservoir modelling. In population MCMC, multiple Markov chains are run on a set of response surfaces that form a bridge from the prior to posterior. These response surfaces are formed from the product of the prior with the likelihood raised to a varying power less than one. The chains exchange positions, with the probability of a swap being governed by a standard Metropolis accept/reject step, which allows for large steps to be taken with high probability. We show results of Population MCMC on the IC Fault Model—a simple three-parameter model that is known to have a highly irregular misfit surface and hence be difficult to match. Our results show that population MCMC is able to generate samples from the complex, multi-modal posterior probability distribution of the IC Fault model very effectively. By comparison, previous results from stochastic sampling algorithms often focus on only part of the region of high posterior probability depending on algorithm settings and starting points.  相似文献   

12.
Reservoir characterization needs the integration of various data through history matching, especially dynamic information such as production or four-dimensional seismic data. To update geostatistical realizations, the local gradual deformation method can be used. However, history matching is a complex inverse problem, and the computational effort in terms of the number of reservoir simulations required in the optimization procedure increases with the number of matching parameters. History matching large fields with a large number of parameters has been an ongoing challenge in reservoir simulation. This paper presents a new technique to improve history matching with the local gradual deformation method using the gradient-based optimizations. The new approach is based on the approximate derivative calculations using the partial separability of the objective function. The objective function is first split into local components, and only the most influential parameters in each component are used for the derivative computation. A perturbation design is then proposed to simultaneously compute all the derivatives with only a few simulations. This new technique makes history matching using the local gradual deformation method with large numbers of parameters tractable.  相似文献   

13.
Stochastic geostatistical techniques are essential tools for groundwater flow and transport modelling in highly heterogeneous media. Typically, these techniques require massive numbers of realizations to accurately simulate the high variability and account for the uncertainty. These massive numbers of realizations imposed several constraints on the stochastic techniques (e.g. increasing the computational effort, limiting the domain size, grid resolution, time step and convergence issues). Understanding the connectivity of the subsurface layers gives an opportunity to overcome these constraints. This research presents a sampling framework to reduce the number of the required Monte Carlo realizations utilizing the connectivity properties of the hydraulic conductivity distributions in a three-dimensional domain. Different geostatistical distributions were tested in this study including exponential distribution with the Turning Bands (TBM) algorithm and spherical distribution using Sequential Gaussian Simulation (SGSIM). It is found that the total connected fraction of the largest clusters and its tortuosity are highly correlated with the percentage of mass arrival and the first arrival quantiles at different control planes. Applying different sampling techniques together with several indicators suggested that a compact sample representing only 10% of the total number of realizations can be used to produce results that are close to the results of the full set of realizations. Also, the proposed sampling techniques specially utilizing the low conductivity clustering show very promising results in terms of matching the full range of realizations. Finally, the size of selected clusters relative to domain size significantly affects transport characteristics and the connectivity indicators.  相似文献   

14.
An adequate representation of the detailed spatial variation of subsurface parameters for underground flow and mass transport simulation entails heterogeneous models. Uncertainty characterization generally calls for a Monte Carlo analysis of many equally likely realizations that honor both direct information (e.g., conductivity data) and information about the state of the system (e.g., piezometric head or concentration data). Thus, the problems faced is how to generate multiple realizations conditioned to parameter data, and inverse-conditioned to dependent state data. We propose using Markov chain Monte Carlo approach (MCMC) with block updating and combined with upscaling to achieve this purpose. Our proposal presents an alternative block updating scheme that permits the application of MCMC to inverse stochastic simulation of heterogeneous fields and incorporates upscaling in a multi-grid approach to speed up the generation of the realizations. The main advantage of MCMC, compared to other methods capable of generating inverse-conditioned realizations (such as the self-calibrating or the pilot point methods), is that it does not require the solution of a complex optimization inverse problem, although it requires the solution of the direct problem many times.  相似文献   

15.
Traditional ensemble-based history matching method, such as the ensemble Kalman filter and iterative ensemble filters, usually update reservoir parameter fields using numerical grid-based parameterization. Although a parameter constraint term in the objective function for deriving these methods exists, it is difficult to preserve the geological continuity of the parameter field in the updating process of these methods; this is especially the case in the estimation of statistically anisotropic fields (such as a statistically anisotropic Gaussian field and facies field with elongated facies) with uncertainties about the anisotropy direction. In this work, we propose a Karhunen-Loeve expansion-based global parameterization technique that is combined with the ensemble-based history matching method for inverse modeling of statistically anisotropic fields. By using the Karhunen-Loeve expansion, a Gaussian random field can be parameterized by a group of independent Gaussian random variables. For a facies field, we combine the Karhunen-Loeve expansion and the level set technique to perform the parameterization; that is, for each facies, we use a Gaussian random field and a level set algorithm to parameterize it, and the Gaussian random field is further parameterized by the Karhunen-Loeve expansion. We treat the independent Gaussian random variables in the Karhunen-Loeve expansion as the model parameters. When the anisotropy direction of the statistically anisotropic field is uncertain, we also treat it as a model parameter for updating. After model parameterization, we use the ensemble randomized maximum likelihood filter to perform history matching. Because of the nature of the Karhunen-Loeve expansion, the geostatistical characteristics of the parameter field can be preserved in the updating process. Synthetic cases are set up to test the performance of the proposed method. Numerical results show that the proposed method is suitable for estimating statistically anisotropic fields.  相似文献   

16.
We present a methodology that allows conditioning the spatial distribution of geological and petrophysical properties of reservoir model realizations on available production data. The approach is fully consistent with modern concepts depicting natural reservoirs as composite media where the distribution of both lithological units (or facies) and associated attributes are modeled as stochastic processes of space. We represent the uncertain spatial distribution of the facies through a Markov mesh (MM) model, which allows describing complex and detailed facies geometries in a rigorous Bayesian framework. The latter is then embedded within a history matching workflow based on an iterative form of the ensemble Kalman filter (EnKF). We test the proposed methodology by way of a synthetic study characterized by the presence of two distinct facies. We analyze the accuracy and computational efficiency of our algorithm and its ability with respect to the standard EnKF to properly estimate model parameters and assess future reservoir production. We show the feasibility of integrating MM in a data assimilation scheme. Our methodology is conducive to a set of updated model realizations characterized by a realistic spatial distribution of facies and their log permeabilities. Model realizations updated through our proposed algorithm correctly capture the production dynamics.  相似文献   

17.
Generating one realization of a random permeability field that is consistent with observed pressure data and a known variogram model is not a difficult problem. If, however, one wants to investigate the uncertainty of reservior behavior, one must generate a large number of realizations and ensure that the distribution of realizations properly reflects the uncertainty in reservoir properties. The most widely used method for conditioning permeability fields to production data has been the method of simulated annealing, in which practitioners attempt to minimize the difference between the ’ ’true and simulated production data, and “true” and simulated variograms. Unfortunately, the meaning of the resulting realization is not clear and the method can be extremely slow. In this paper, we present an alternative approach to generating realizations that are conditional to pressure data, focusing on the distribution of realizations and on the efficiency of the method. Under certain conditions that can be verified easily, the Markov chain Monte Carlo method is known to produce states whose frequencies of appearance correspond to a given probability distribution, so we use this method to generate the realizations. To make the method more efficient, we perturb the states in such a way that the variogram is satisfied automatically and the pressure data are approximately matched at every step. These perturbations make use of sensitivity coefficients calculated from the reservoir simulator.  相似文献   

18.
The Bayesian framework is the standard approach for data assimilation in reservoir modeling. This framework involves characterizing the posterior distribution of geological parameters in terms of a given prior distribution and data from the reservoir dynamics, together with a forward model connecting the space of geological parameters to the data space. Since the posterior distribution quantifies the uncertainty in the geologic parameters of the reservoir, the characterization of the posterior is fundamental for the optimal management of reservoirs. Unfortunately, due to the large-scale highly nonlinear properties of standard reservoir models, characterizing the posterior is computationally prohibitive. Instead, more affordable ad hoc techniques, based on Gaussian approximations, are often used for characterizing the posterior distribution. Evaluating the performance of those Gaussian approximations is typically conducted by assessing their ability at reproducing the truth within the confidence interval provided by the ad hoc technique under consideration. This has the disadvantage of mixing up the approximation properties of the history matching algorithm employed with the information content of the particular observations used, making it hard to evaluate the effect of the ad hoc approximations alone. In this paper, we avoid this disadvantage by comparing the ad hoc techniques with a fully resolved state-of-the-art probing of the Bayesian posterior distribution. The ad hoc techniques whose performance we assess are based on (1) linearization around the maximum a posteriori estimate, (2) randomized maximum likelihood, and (3) ensemble Kalman filter-type methods. In order to fully resolve the posterior distribution, we implement a state-of-the art Markov chain Monte Carlo (MCMC) method that scales well with respect to the dimension of the parameter space, enabling us to study realistic forward models, in two space dimensions, at a high level of grid refinement. Our implementation of the MCMC method provides the gold standard against which the aforementioned Gaussian approximations are assessed. We present numerical synthetic experiments where we quantify the capability of each of the ad hoc Gaussian approximation in reproducing the mean and the variance of the posterior distribution (characterized via MCMC) associated to a data assimilation problem. Both single-phase and two-phase (oil–water) reservoir models are considered so that fundamental differences in the resulting forward operators are highlighted. The main objective of our controlled experiments was to exhibit the substantial discrepancies of the approximation properties of standard ad hoc Gaussian approximations. Numerical investigations of the type we present here will lead to the greater understanding of the cost-efficient, but ad hoc, Bayesian techniques used for data assimilation in petroleum reservoirs and hence ultimately to improved techniques with more accurate uncertainty quantification.  相似文献   

19.
Two methods for generating representative realizations from Gaussian and lognormal random field models are studied in this paper, with term representative implying realizations efficiently spanning the range of possible attribute values corresponding to the multivariate (log)normal probability distribution. The first method, already established in the geostatistical literature, is multivariate Latin hypercube sampling, a form of stratified random sampling aiming at marginal stratification of simulated values for each variable involved under the constraint of reproducing a known covariance matrix. The second method, scarcely known in the geostatistical literature, is stratified likelihood sampling, in which representative realizations are generated by exploring in a systematic way the structure of the multivariate distribution function itself. The two sampling methods are employed for generating unconditional realizations of saturated hydraulic conductivity in a hydrogeological context via a synthetic case study involving physically-based simulation of flow and transport in a heterogeneous porous medium; their performance is evaluated for different sample sizes (number of realizations) in terms of the reproduction of ensemble statistics of hydraulic conductivity and solute concentration computed from a very large ensemble set generated via simple random sampling. The results show that both Latin hypercube and stratified likelihood sampling are more efficient than simple random sampling, in that overall they can reproduce to a similar extent statistics of the conductivity and concentration fields, yet with smaller sampling variability than the simple random sampling.  相似文献   

20.
Uncertainty in future reservoir performance is usually evaluated from the simulated performance of a small number of reservoir realizations. Unfortunately, most of the practical methods for generating realizations conditional to production data are only approximately correct. It is not known whether or not the recently developed method of Gradual Deformation is an approximate method or if it actually generates realizations that are distributed correctly. In this paper, we evaluate the ability of the Gradual Deformation method to correctly assess the uncertainty in reservoir predictions by comparing the distribution of conditional realizations for a small test problem with the standard distribution from a Markov Chain Monte Carlo (MCMC) method, which is known to be correct, and with distributions from several approximate methods. Although the Gradual Deformation algorithm samples inefficiently for this test problem and is clearly not an exact method, it gives similar uncertainty estimates to those obtained by MCMC method based on a relatively small number of realizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号