首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Empirical mb, Ms and Mo data are used to develop an average spectral scaling relation for plate-margin earthquakes. Using equations based upon a rectangular, bilateral dislocation model with uniform rupture velocity, the spectra give values of fault rupture length and width, static stress drop and average fault displacement as a function of mb, Ms and Mo. Compared to mid-plate earthquakes of the same seismic moment, the large average plate-margin earthquake has a bigger rupture length, rupture area and average fault displacement and a smaller rupture width and static stress drop.  相似文献   

2.
3.
In this study, we accurately relocate 360 earthquakes in the Sikkim Himalaya through the application of the double-difference algorithm to 4?years of data accrued from a eleven-station broadband seismic network. The analysis brings out two major clusters of seismicity??one located in between the main central thrust (MCT) and the main boundary thrust (MBT) and the other in the northwest region of Sikkim that is site to the devastating Mw6.9 earthquake of September 18, 2011. Keeping in view the limitations imposed by the Nyquist frequency of our data (10?Hz), we select 9 moderate size earthquakes (5.3????Ml????4) for the estimation of source parameters. Analysis of shear wave spectra of these earthquakes yields seismic moments in the range of 7.95?×?1021 dyne-cm to 6.31?×?1023 dyne-cm and corner frequencies in the range of 1.8?C6.25?Hz. Smaller seismic moments obtained in Sikkim when compared with the rest of the Himalaya vindicates the lower seismicity levels in the region. Interestingly, it is observed that most of the events having larger seismic moment occur between MBT and MCT lending credence to our observation that this is the most active portion of Sikkim Himalaya. The estimates of stress drop and source radius range from 48 to 389?bar and 0.225 to 0.781?km, respectively. Stress drops do not seem to correlate with the scalar seismic moments affirming the view that stress drop is independent over a wide moment range. While the continental collision scenario can be invoked as a reason to explain a predominance of low stress drops in the Himalayan region, those with relatively higher stress drops in Sikkim Himalaya could be attributed to their affinity with strike-slip source mechanisms. Least square regression of the scalar seismic moment (M 0) and local magnitude (Ml) results in a relation LogM 0?=?(1.56?±?0.05)Ml?+?(8.55?±?0.12) while that between moment magnitude (M w ) and local magnitude as M w ?=?(0.92?±?0.04)Ml?+?(0.14?±?0.06). These relations could serve as useful inputs for the assessment of earthquake hazard in this seismically active region of Himalaya.  相似文献   

4.
5.
本文对可控震源平板-大地系统建立了质量-弹簧-阻尼器振动数学模型,并给出了各模型参数与大地粘弹性,惯性指标。通过给定不同的相对阻尼比值及系统谐振频率,相应进行了理论计算,得出了其对平板大地系统振动影响的结论。文中得出的一些结论,对实际生产具有参考意义。  相似文献   

6.
Volcanic earthquakes on Kamchatka can be divided into two large groups: earthquakes with depths of 0–40 km generated by stresses which arise during magma migration in the Earth's crust under volcanos (the first group), and the earthquakes directly connected with the eruptions (volcanic tremor, explosive earthquakes, etc.—the second group). This paper presents a review of some energetic, spectral and spatio-temporal characteristics of the Kamchatkan volcanic earthquakes of the first group and their relationship with volcanic phenomena.

Seismicity related to volcanic activity has the following specific features: a local and predominantly swarm-like pattern of earthquake origination; iteration of earthquake swarms in the same seismically active zones; many shallow and relatively small events; a small magnitude limit (up to 5.5–6); the existence of longer-period variations of volcanic earthquake foci as compared to the tectonic one; and a comparatively high value of the slope of the earthquake recurrence plot. At the same time, similarity in behaviour of some parameters of the seismic regime during the preparation and development of eruptions and prior to large earthquakes, as well as the destruction of samples, are noted.  相似文献   


7.
Dynamic source parameters are estimated from P-wave displacement spectra for 18 local earthquakes (1.2 < ML < 3.7) that occurred in two seismically active regions of Hungary between 1995 and 2004. Although the geological setting of the two areas is quite different, their source parameters cannot be distinguished. The source dimensions range from 200 to 900 m, the seismic moment from 6.3x1011 to 3.48×1014 Nm, the stress drop from 0.13 to 6.86 bar, and the average displacement is less than 1 cm for all events. The scaling relationship between seismic moment and stress drop indicates a decrease in stress drop with decreasing seismic moment. A linear relationship of M w = 0.71 M L + 0.92 is obtained between local magnitude and moment magnitude.  相似文献   

8.
The pattern of local seismicity (110 events) and the source parameters of 26 local events (1.0?≤?Mw?≤?2.5) that occurred during May 2008 to April 2009 in Bilaspur region of Himachal Lesser Himalaya were determined. The digital records available from one station have been used to compute the source parameters and f max based on the Brune source model (1970) and a high-frequency diminution factor (Boore 1983) above f max. The epicentral distribution of events within 30 km of local network is broadly divided into three clusters of seismic activity: (1) a cluster located to the south of the Jamthal (JAMT) station and falls to the north of the Main Boundary Thrust (MBT) which seems to reflect the contemporary local seismicity of the segment of the MBT, (2) an elongated zone of local seismicity NE–SW trending, delineated NE of JAMT station that falls in the Lesser Himalaya between the MBT and the Main Central Thrust, and (3) NE–SW trending zone of local seismic activity located at about 10 km east of NHRI station and about 15 km northeast of NERI station and extending over a distance of about 20 km. Majority of events occur at shallow depths up to 20 km, and the maximum number of events occurs in the focal depth range between 10 and 15 km. The entire seismic activity is confined to the crust between 5 and 45 km. The average values of these source parameters range from 3.29?×?1017 to 3.73?×?1019?dyne-cm for seismic moment, 0.1 to 9.7 bars for stress drops, and 111.78 to 558.92 m for source radii. The average value of f max for these events varies from 7 to 18 Hz and seems to be source dependent.  相似文献   

9.
P-wave first motion and synthetic seismogram analysis of P- and SH-waveforms recorded at teleseismic distances on the WWSSN are used to estimate source parameters of seven of the largest earthquakes (6.1 ≤ mb ≤ 6.3) that occurred in the vicinity of North Island, New Zealand since 1965. The source parameters of three other (mb ≥ 6.1) events determined outside of this study are included and considered in the final analysis. Four of the earthquakes occurred at shallow depths (< 20 km), of which three were located within and to the north of North Island. Two of the shallow events show strike-slip and normal focal mechanisms with T-axes oriented in a manner consistent with their location in an area of known back-arc extension. One of the shallow events occurred in northern South Island and shows a reverse-type mechanism indicating horizontal contraction of the crust in an easterly azimuth. Six events occurred at intermediate depths (h = 39 to 195 km) of which five exhibit thrust mechanisms with T-axes consistently oriented near vertical. In the light of previously published plate tectonic models, the near vertical orientation of T-axes of the intermediate-depth events may be used to infer that the southern Kermadec plate boundary immediately north of North Island is not strongly coupled, and hence, not likely capable of producing great earthquakes. A similar inference cannot be made for the section of the Hikurangi Margin adjacent to North Island since the intermediate-depth events considered in this study lie to the north of this segment of the plate boundary.  相似文献   

10.
The scaling relationships for stress drop and corner frequency with respect to magnitude have been worked out using 159 accelerograms from 34 small earthquakes (M w 3.3–4.9) in the Kachchh region of Gujarat. The 318 spectra of P and S waves have been analyzed for this purpose. The average ratio of P- to S-wave corner frequency is found to be 1.19 suggestive of higher corner frequency for P wave as compared to that for S wave. The seismic moments estimated from P waves, M 0(P), range from 1.98 × 1014 N m to 1.60 × 1016 N m and those from S waves, M 0(S), range from 1.02 × 1014 N m to 3.4 × 1016 N m with an average ratio, M 0(P)/M 0(S), of 1.11. The total seismic energy varies from 1.83 × 1010 J to 2.84 × 1013 J. The estimated stress drop values do not depend on earthquake size significantly and lie in the range 30–120 bars for most of the events. A linear regression analysis between the estimated seismic moment (M 0) and corner frequency (f c) gives the scaling relation M 0 f c 3  = 7.6 × 1016 N m/s3. The proposed scaling laws are found to be consistent with similar scaling relations obtained in other seismically active regions of the world. Such an investigation should prove useful in seismic hazard and risk-related studies of the region. The relations developed in this study may be useful for the seismic hazard studies in the region.  相似文献   

11.
Olteanu  Paul  Vacareanu  Radu 《Natural Hazards》2021,109(3):2509-2534

Evaluating inelastic displacement demand of structures exposed to seismic hazard is required for the design of new buildings as well as for seismic risk assessment of existing structures. Most of the buildings are designed to withstand strong earthquakes by responding in the nonlinear range. Having special parts of the structure designed to develop a stable hysteretic behaviour allows the structure to deform in order to accommodate the displacement demand imposed by strong ground motions. This paper is centred on finding a correspondence between the maximum elastic and inelastic displacement responses of the single degree of freedom (SDOF) systems subjected to earthquakes generated by Vrancea seismic source. Vrancea intermediate-depth earthquakes are responsible for the seismic hazard throughout Romanian territory. They have distinctive features, such as large displacement demand and large predominant periods, which makes Romania a special seismic environment. Using a database of Romanian and Japanese strong ground motions generated by intermediate-depth earthquakes and performing nonlinear dynamic analysis on the SDOF oscillators following the Takeda model, this study estimates the inelastic to elastic displacement ratio of reinforced concrete systems. Soil conditions, epicentral distance and magnitude influence on inelastic response is analysed using constant ductility response spectra. The main findings of the study are: the local increase of the inelastic to elastic displacement ratio for type C soil (Eurocode 8 classification) for large magnitude earthquakes and the significant effect of soil conditions on the inelastic response of the SDOF systems. The inelastic amplification was evaluated using a functional form depending on system ductility, soil conditions and earthquake magnitude.

  相似文献   

12.
《Tectonophysics》1987,134(4):323-329
Since 1982, eighteen telemetric stations in Greece have continuously been recording variations in the telluric field. Transient changes of the telluric field, called seismic electric signals, SES, have been observed simultaneously at some stations from several hours to several days before an earthquake. The lead-time, Δt, of the SES, which is the time difference between the occurrence of the earthquake and the SES, varies between 6 h and 4 days.Four large earthquakes (M = 5.3–6.4) which occurred in 1983 in the Cephalonia region in Greece, showed clear SES with lead-times falling into two groups (I and II) of several hours and a few days respectively.For the four events, we studied P-wave spectra of the UME Swedish seismological station, at a teleseismic distance of 26°. Both short- and long-period instruments were employed. Brune's model (1970) was used to calculate source dimensions and relative values of other source dynamic parameters.Two groups of high and low stress-drop were found. Events with lead-times of group I show high stress-drop, while events with lead-times of group II show low stress-drop. The relative values of stress-drop differ by a factor of 4 between the two groups (high and low) while within each group they exhibit only a small scatter.The largest relative seismic moment, M0, is found for the largest event. The three other events with comparable magnitudes have similar seismic moments. The same relation was found for the radiated energy, Es.  相似文献   

13.
The measurements of the parameters of split shear (S) waves from local deep-focus earthquakes recorded in 2005–2007 by a network of 12 seismic stations in Southern Sakhalin are presented. The results revealed the heterogeneous distribution of the anisotropic properties beneath Southern Sakhalin. The azimuths of the fast S-wave polarization beneath the stations in the central part of the peninsula are oriented along the NNW and NNE-NE directions normal to and along the Kuril Trench. Beneath the stations located along the western and eastern coasts, the azimuths of the fast S-wave polarization change their direction from NNW in the northern area to E-SE in the southern area. The highest anisotropy degree (up to 0.9–1.5%) is recorded beneath the central part of Southern Sakhalin. The maximum values of the discrepancy in the arrival time of the split S-waves are observed when the azimuth of the fast S-wave is oriented along the NNE beneath the active fault zones. The analysis of the variations of the S-wave lag time shows their weak depth dependence. The highest anisotropy is assumed in the upper layers of the medium (down to a depth of about 250 km). The results obtained for the dominating wave frequency of 1–5 Hz represent mainly the medium-scale anisotropy of the top of the studied region.  相似文献   

14.
Earthquake source parameters and crustal Q are being estimated simultaneously through the inversion of S-wave displacement spectra from three-component recordings of ten local cratonic intraplate earthquakes from 3-6 broadband stations in the eastern Indian shield, wherein, an iterative Levenberg-Marquardt inversion technique is used. The estimated seismic moment (Mo) and source radii (r) vary from 7.4 x 1012 to 7.1 x 1014 N-m and 144.2 to 211.3 m, respectively, while estimated stress drops (Δσ) and multiplicative factor (Emo) values range from 0.11 to 4.13 MPa and 1.33 to 2.16, respectively. The corner frequencies range from 6.23 to 8.62 Hz while moment magnitudes vary from 2.44 to 3.57. The radiated seismic energy and apparent stresses range from 8.3 x 106 to 2.0 x 1010 Joules and 0.06 to 0.94 MPa, respectively, wherein the estimated corner frequencies and seismic moment satisfy the relation Mo ∞ f c –(3+ε) for ε = 12.7. Thus, the source scaling of these events clearly deviates from the self-similarity i.e. f–3. Estimated Zuniga parameters reveal that all selected events satisfy the partial stress drop model, which is in good agreement with the global observations. Our estimated crustal S-wave quality factors vary from 1091 to 4926 with an average of 3006, suggesting a less heterogeneous crustal structure underlying the study region.We also perform moment tensor inversion of five selected local events using ISOLA software, which reveals that the dominant deformation mode for the eastern Indian shield is left-lateral strike slip motion with minor normal dip-slip component on an almost vertical plane. This observation suggests that neotectonic vertical movements might have played a key role in generating these earthquakes. Our modeling also depicts that the seismically mildly active Singhbhum shear zone and Eastern Ghats mobile belt are characterized by the left-lateral strike motion while two events in the Chotanagpur half graben belt suggest a normal dip-slip motion along a south dipping plane. A north-south orientation of P-axis is found to be dominant in the area, which is consistent with the prevailing north–south compression over the Indian plate.  相似文献   

15.
16.
Advances in earthquake data acquisition and processing techniques have allowed for improved quantification of source parameters for local Australian earthquakes. Until recently, only hypocentral locations and local magnitudes (ML) had been determined routinely, with little attention given to the inversion of additional source parameters. The present study uses these new source data (e.g. seismic moment, stress drop, source dimensions) to further extend our understanding of seismicity and the continental stress regime of the Australian landmass and its peripheral regions.

Earthquake activity within Australia is typically low, and the proportion of small to large events (i.e. the b value) is also low. It is observed that average stress drops for southeastern Australian earthquakes appear to increase with seismic moment to relatively high levels, up to approximately 10 MPa for ML 5.0 earthquakes. This is thought to be indicative of high compressive crustal stress, coupled with strong rocks and fault asperities. Furthermore, the data indicates that shallow focus earthquakes (shallower than 6 km) appear to produce lower than average stress drops than deeper earthquakes (between 6 and 20 km) with similar moment.

Recurrence estimates were obtained for a discrete seismogenic zone in southeastern Australia. Decreasing b values with increasing focal depth for this zone indicate that larger earthquakes (with high stress drops) tend to occur deeper in the crust. This may offer an explanation for the apparent increase of stress drop with hypocentral depth. Consequently, earthquake hazard estimates that assume a uniform Gutenburg–Richter distribution with depth (i.e. constant b value) may be too conservative and therefore slightly overestimate seismic hazard for surface sites in southeastern Australia.  相似文献   


17.
The earthquake magnitude is a quantity sampling the spectrum of the far-field radiation.With a suit of properly defined magnitudes in a sufficiently broad range of frequencies, the radiated spectrum can be restored and analyzed.A method is proposed for the extraction of stress drop, fault length and seismic moment from magnitudes on a routine basis. Thereby, the theoretical spectrum as predicted by the ω-square model of Aki is utilized.In applying the method to earthquakes which occurred in several parts of Asia over a time-span of 3 years, it is shown that in most cases earthquakes in a given region are characterized by the same stress drop, varying however from region to region. In one region a change of the stress drop with time is found, eventually indicating a change in the state of stress in the particular region during the time interval investigated.  相似文献   

18.
19.
A data set of three-component short-period digital seismograms recorded in Friuli after the strong earthquake of 6th May 1976, allowed the local magnitude ML and the seismic moment M0 to be estimated in the range 0 < ML < 2. The data set including the same parameters for the higher-magnitude Friuli events (ML 5) shows two different slopes for the relation Log M0 = CML + d for the two different ranges of ML. One finds C ~ 1.0 (for 0 < ML < 2) and C ~1.5 (for5 ML 6.2), respectively.This implies that apparent stress release increases at low magnitudes, while it appears to be comparatively independent of the magnitude and to have an average value of about 100 bar for higher-magnitude earthquakes. Conversely, the fault dimensions do not appear to be magnitude-dependent for ML < 2; for higher-magnitude events the linear fault dimensions range from about 1 km at ML ~ 5 to about 12 km for the strong earthquake of 6th May 1976 (ML = 6.2).  相似文献   

20.
本文利用半经验、半理论的方法对世界各主要地震汇集和研究机构所给出的集集主震基本震源参数进行了综合计算和评定。根据这些参数重新计算了集集主震的标量地震矩、破裂面积、应力降等。根据这些参数之间的内在联系 ,从地震分类学的角度 ,判定集集地震是发生于板块边缘的大地震。可供研究台湾岛上地震活动性以及台湾地区板块构造演化问题参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号