首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 658 毫秒
1.
Theoretical calculations of the electrostatic field in the ionosphere are presented for different seasons and longitude zones. The corresponding current systems have been shown earlier to give good agreement with the geomagnetic Sq variations. The question of whether the electrostatic field is generated by winds in the ‘dynamo region’ or by other processes higher in the magnetosphere is evaluated in the light of recent observations. Several details of the electrostatic field variation, such as an increase near sunset, are noted.  相似文献   

2.
Observations of vertical and horizontal thermospheric winds, using the OI (3P-1D) 630 nm emission line, by ground-based Fabry-Perot interferometers in Northern Scandinavia and in Svalbard (Spitzbergen) have identified sources of strong vertical winds in the high latitude thermosphere. Observations from Svalbard (78.2N 15.6E) indicate a systematic diurnal pattern of strong downward winds in the period 06.00 U.T. to about 18.00 U.T., with strong upward winds between 20.00 U.T. and 05.00 U.T. Typical velocities of 30 m s?1 downward and 50 m s?1 upward occur, and there is day to day variability in the magnitude (30–80 m s?1) and phase (+/- 3 h) in the basically diurnal variation. Strong and persistent downward winds may also occur for periods of several hours in the afternoon and evening parts of the auroral oval, associated with the eastward auroral electrojet (northward electric fields and westward ion drifts and winds), during periods of strong geomagnetic disturbances. Average downward values of 30–50 m s?1 have been observed for periods of 4–6 h at times of large and long-lasting positive bay disturbances in this region. It would appear that the strong vertical winds of the polar cap and disturbed dusk auroral oval are not in the main associated with propagating wave-like features of the wind field. A further identified source is strongly time-dependent and generates very rapid upward vertical motions for periods of 15–30 min as a result of intense local heating in the magnetic midnight region of the auroral oval during the expansion phase of geomagnetic disturbances, and accompanying intense magnetic and auroral disturbances. In the last events, the height-integrated vertical wind (associated with a mean altitude of about 240 km) may exceed 100–150 m s?1. These disturbances also invariably cause major time-dependent changes of the horizontal wind field with, for example, horizontal wind changes exceeding 500 m s?1 within 30 min. The changes of vertical winds and the horizontal wind field are highly correlated, and respond directly to the local geomagnetic energy input. In contrast to the behaviour observed in the polar cap or in the disturbed afternoon auroral oval, the ‘expansion phase’ source, which corresponds to the classical ‘auroral substorm’, generates strong time-dependent wind features which may propagate globally. This source thus directly generates one class of thermospheric gravity waves. In this first paper we will consider the experimental evidence for vertical winds. In a second paper we will use a three-dimensional time-dependent model to identify the respective roles of geomagnetic energy and momentum in the creation of both classes of vertical wind sources, and consider their propagation and effects on global thermospheric dynamics.  相似文献   

3.
The distributions of the current and the neutral winds driven by the electric field of convection are calculated in the dynamo-region of the ionosphere. At high latitudes the convection field drives the current and wind systems which consist of two cells with the centres at about 6 and 18 hours LT. In the northern hemisphere in the dawn cells winds and currents are clockwise, in the dusk cells they are counterclockwise. The appearance of the wind system shows that the upper atmosphere moves in the direction inverse to the displacement of the ionospheric ends of the magnetic flux tubes taking part in the convection. In the disturbed conditions the calculated wind system has the directions and velocities of the winds which are in a satisfactory agreement with the data of the irregularity drifts in the lower ionosphere in the winter season.  相似文献   

4.
Numerical calculations for the electric current in the polar ionosphere have been made by assuming some realistic distributions of the electric field and conductivity. Two dynamo actions are taken into account; one of which is induced by ionospheric winds and the other by the solar wind. For the solar wind dynamo action, it is found that the secondary polarization field caused by non-uniform distribution of ionospheric conductivity is much larger than the primary field induced by the solar wind, suggesting its important effect on charged particles in the magnetosphere, and that the irrotational current having a source and sink is of the same order of magnitude as the solenoidal current closing its circuit in the ionosphere. It is also found that the solar wind is, in general, more effective than the ionospheric winds in producing polar current systems such as DP 1 and 2, but in some cases the ionospheric winds have a significant effect on the current distribution.  相似文献   

5.
We identify the different absorption systems of Nova Delphini 1967 by studying the radial velocity variation of the absorption lines with time. The ‘premaximum’ system was visible at the time of the first observation and its velocity decreased very quickly in the early stages of the nova's development. This velocity started to increase from 16 January, 1968. We show that the ‘diffuse-enhanced’ system overtook the ‘premaximum’ system and caused its velocity to increase. The ‘principal’ system became visible on 27 August, 1967, and showed a continuous slow increase of the radial velocity, with a sudden increase near 21 April, 1968, due to a collision between the ‘principal’ and the ‘diffuse-enhanced’ systems. The ‘diffuse-enhanced’ system, visible from 17 December, 1967, disappeared on 21 April, 1968. The ‘diffuse-enhanced’ system overtook and merged with the principal shell on 21 April, 1968. Finally, we see that the ‘orion’ system became visible on 11 May, 1968 and disappeared on 9 August, 1968. This is not due to a collision, but could be produced by a change of the degree of ionization of the absorbing atoms or by the decrease of the density of the cloud of gas responsible for this system. There were also some absorption systems having a constant velocity, only visible for lines of Ca II. These systems could be produced by ejection of circumstellar gas. We show that the Nova entered the nebular stage around 28 July, 1968.  相似文献   

6.
The nonlinear evolution of a reconnecting magnetic field configuration similar to that occurring just before the onset of ‘post’-flare loops in two-ribbon flares is determined. The evolution, which is obtained by numerically solving the resistive MHD equations, shows two new features that have not yet been incorporated into contemporary models of ‘post’-flare loops. The first of these new features is the formation of a nearly stationary fast-mode shock above the region corresponding to the top of the loops. This fast-mode shock occurs just below the magnetic neutral line and between the slow-mode shocks associated with fast magnetic reconnection at the neutral line. The second new feature is the creation and annihilation of large-scale magnetic islands in the current sheet above the loops. The annihilation of the islands occurs very rapidly and appears to be a manifestation of the coalescence instability. The creation and annihilation of magnetic islands could be important in understanding the energetics of ‘post’-flare loops since the coalescence instability can produce an intermittent energy release more than an order of magnitude faster than that predicted by steady-state reconnection theories.  相似文献   

7.
Philip B. James 《Icarus》1985,64(2):249-264
The Martian CO2 cycle, which includes the seasonal condensation and subsequent sublimation of up to 30% of the planet's atmosphere, produces meridional winds due to the consequent mass flux of CO2. These winds currently display strong seasonal and hemispheric asymmetries due to the large asymmetries in the distribution of insolation on Mars. It is proposed that asymmetric meridional advection of water vapor on the planet due to these CO2 condensation winds is capable of explaining the observed dessication of Mars' south polar region at the current time. A simple model for water vapor transport is used to verify this hypothesis and to speculate on the effects of changes in orbital parameters on the seasonal water cycle.  相似文献   

8.
A dust disc within a planetary magnetosphere constitutes a novel type of dust-ring current. Such an azimuthal current carrying dust disc is subject to the dusty plasma analog of the well known finite-resistivity ‘tearing’ mode instability in regular plasma current sheets, at long wavelengths. It is proposed that the presently observed fine ringlet structure of the Saturnian ring system is a relic of this process operating at cosmogonic times and breaking up the initial proto-ring (which may be regarded as an admixture of fine dust and plasma) into an ensemble of thin ringlets. It is shown that this instability developes at a rate that is many orders of magnitude faster than any other known instability, when the disc thickness reaches a value that is comparable to its present observed value.  相似文献   

9.
Heat transport is considered both for quiet and disturbed solar winds. It is shown that heat may be transferred during solar flares by sharp fronted thermal wave pulses. Energy dissipation in the wave front arises from the firehose instability excitation. The effects of ionosonic turbulence on heat transport in a quiet solar wind are also investigated. A quasi-steady state, in which there is a balance between wave-particle interations and particle collisions is found. It is shown that the effect of wave-particle ‘collisions’ is to produce a significant decrease of the electron heat flow and electron temperature, and increase of the ion temperature relative to calculations which take into account particle particle collisions only.  相似文献   

10.
A model of ‘disparitions brusques’ (sudden disappearence of eruptive prominences) is discussed based on the Kippenhahn ans Schlüter configuration. It is shown that Kippenhahn and Schlüter's current sheet is very weakly unstable against magnetic reconnecting modes during the lifetime of quiescent prominences. Disturbances in the form of fast magnetosonic waves originating from nearby active regions or the changes of whole magnetic configuration due to newly emerged magnetic flux may trigger a rapid growing instability associated with magnetic field reconnection. This instability gives rise to disruptions of quiescent prominences and also generates high energy particles.  相似文献   

11.
Previous work showed that thin ionized layers in the ionospheric E-region conduct electric current only towards the magnetic equator, if the layers are formed by wind-shears associated with “corkscrew” tidal winds. The present paper extends this work and considers also the shears produced by height-independent winds and fields near the “transition” between collision-dominated and magnetically-dominated ion motion; the layers thus produced carry current in the poleward direction.  相似文献   

12.
The average rotation rate of the upper atmosphere can be found by analysis of the changes in the orbital inclinations of satellites, and results previously obtained have indicated that the atmospheric rotation rate appreciably exceeds the Earth's rotation rate at heights between 200 and 400 km.We have examined all such results previously published in the light of current standards of accuracy: some are accepted, some revised, and some rejected as inadequate in accuracy. We also analyse a number of fresh orbits and, adding these to the accepted and revised previous results, we derive the variation of zonal wind speed with height and local time. The rotation rate (rev/day) averaged over all local times increases from near 1.0 at 150 km height to 1.3 near 350 km (corresponding to an average west-to-east wind of 120 m/s), and then decreases to 1.0 at 400 km and probably to about 0.8 at greater heights. The maximum west-to-east winds occur in the evening hours, 18–24 h local time: these evening winds increase to a maximum of about 150 m/s at heights near 350 km and decline to near zero around 600 km. In the morning, 4–12 h local time, the winds are east to west, with speeds of 50–100 m/s above 200 km. We also tentatively conclude that, at heights above 350 km, the average rotation rate is greater in equatorial latitudes (0–25°) than at higher latitudes.  相似文献   

13.
Data on the variation of the orbital inclination of the balloon satellite Explorer 24 (1964-76A) from 1964 to 1968 have been used to determine zonal winds between 540 and 620 km. In this height region the effect of zonal winds on the orbital inclination may become very small compared to other perturbations like accelerations due to the geopotential, lunisolar gravitation and the solar radiation pressure. It is demonstrated especially that the solar radiation pressure may become the most significant force changing the orbital inclination. The diurnal mean zonal winds derived from Explorer 24 point to an exospheric rotation rate which is about 6–10% less than the rotation rate of the Earth in the analyzed height region. Since the possible errors of the data analysis are of a similar order of magnitude, it can not be excluded that the exosphere corotates with the Earth. Furthermore, a local time dependence of the zonal winds could be detected. The diurnal varitation of the zonal wind is shown to be in good agreement with the theoretical model of Blum and Harris. Our results are discussed and compared with all previous investigations of orbital inclination changes of satellites above 350 km.  相似文献   

14.
The structure of the corotating region, which forms an inner portion of a stellar magnetosphere, is reconsidered in a quasi-neutral case by taking into account the inertial effects of electrons as well as that of ions up to the first order in their mass ratio (δ=m?/m+). It is emphasized first that the magnetosphere is not globally equipotential even in the frame rotating with a central star (i.e. ?#0, where ? is the ‘non-Backus’ potential) due at least to the inertial effects of plasma particles. However, it is shown that the condition ?=0 is asymptotically recovered in the corotating region owing to the presence of the drift current which can be taken into account only when δ is not entirely neglected. This fact suggests that the deviation of the plasma motion in the outer magnetosphere from the corotation can be attributed to the non-zero ?. A globally self-consistent solution is obtained under this condition (?=0). In contrast with the solutions in the ‘force-free’ and the ‘mass-less-electron’ approximations, this solution has a disk structure in the corotation zone in which the plasma and the current density are concentrated to a thin disk near the magnetic equator. Owing to this sheet current in the disk the lines of force of the stellar magnetic field are modified to form a very elongated shape (the magnetodisk) if the plasma β-value is fairly large. Such a disk structure seems to be a common feature in the high β inner magnetospheres of various types of stars.  相似文献   

15.
We report observations of Neptune made in H-(1.4–1.8 μm) and K’-(2.0–2.4 μm) bands on 14 and 16 July 2009 from the 10-m W.M. Keck II Telescope using the near-infrared camera NIRC2 coupled to the Adaptive Optics (AO) system. We track the positions of 54 bright atmospheric features over a few hours to derive their zonal and latitudinal velocities, and perform radiative transfer modeling to measure the cloud-top pressures of 50 features seen simultaneously in both bands. We observe one South Polar Feature (SPF) on 14 July and three SPFs on 16 July at ~65?°S. The SPFs observed on both nights are different features, consistent with the high variability of Neptune’s storms. There is significant dispersion in Neptune’s zonal wind velocities about the smooth Voyager wind profile fit of Sromovsky et al. (Icarus, 105:140, 1993), much greater than the upper limit we expect from vertical wind shear, with the largest dispersion seen at equatorial and southern mid-latitudes. Comparison of feature pressures vs. residuals in zonal velocity from the smooth Voyager wind profile also directly reveals the dominance of mechanisms over vertical wind shear in causing dispersion in the zonal winds. Vertical wind shear is not the primary cause of the difference in dispersion and deviation in zonal velocities between features tracked in H-band on 14 July and those tracked in K’-band on 16 July. Dispersion in the zonal velocities of features tracked over these short time periods is dominated by one or more mechanisms, other than vertical wind shear, that can cause changes in the dispersion and deviation in the zonal velocities on timescales of hours to days.  相似文献   

16.
Photometric observations of the short-period (RS CVn-type) eclipsing binary system CG Cyg have been presented. Two sets of results, obtained from an analysis of theB, V andR light curves, represent ‘occultation’ and ‘transit’ solutions. The occultation solution is preferred as it gives a better fit to the colour curve. This hypothesis may also offer a more promising explanation of the observed peculiarities such as period changes and the light variation outside eclipses.  相似文献   

17.
The article tries to provide a perspective summary of the planetary science to be performed with future extremely large telescopes (ELTs) as an outcome of the workshop on ‘Future Ground-based Solar System Research: Synergies between Space Probes and Space Telescopes’ held on 8–12 September 2008 in Portoferraio on Isola d’ Elba, Italy. It addresses science cases on solar system objects that might challenge the capabilities of ELTs and that provide a major step forward in the knowledge and understanding of planetary system objects per se and all populations. We also compile high-level requirements for such telescopes and their instrumentation that should enable successful ELT usage for research on objects in the Solar System, the ‘disturbing foreground to real astronomy’.  相似文献   

18.
The magnetic fields produced by a three-dimensional current system, consisting of a flow into the morning part of the auroral oval along tail-like field lines, along the auroral oval and out from the evening part of the oval along tail-like field lines, are computed. It is demonstrated that the major parts of the well-known ‘positive bay’ in low latitudes on the Earth's surface, the positive H variation at the synchronous distance and the positive Bs variation along the magnetotail during magnetospheric substorms can be caused by the proposed current system.  相似文献   

19.
High-resolution spectra of nine supergiants and three comparison stars taken with CCD echelle spectrographs in the coude’ foci of the 1-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences and 2-m telescope of Terskol Observatory (with R = 40000 and R = 45000, respectively) are reported in a tabular and graphic form. Two hundred (α Cam, O9.5 Ia) to 1000 (HD 12953, A1 Ia-0) stellar and interstellar lines and bands are identified in the 3600–7800 ÅÅ wavelength interval and most of them have their central intensities and heliocentric radial velocities measured. A spectral classification based on weak photospheric absorptions is tested. This is actual for the brightest supergiants and hypergiants, where the formation regions of strong lines, which are traditionally used for classification, also include the bases of stellar winds. Radial gradients of velocity are revealed in the atmospheres of supergiants. The cases of the refinement of the effective wavelengths, analysis of blends, and revealing of wind anomalies in line profiles are illustrated. The atlas is used extensively as a teaching tool.  相似文献   

20.
Occurrences of the flare-associated microwave bursts as well as their peak flux and energy excess spectra have been examined in relation to the pre- and post-maximum phases of the respective flares during the period 1969–72. Results obtained are: (i) about 76% of the flare-associated bursts occur in the pre-maximum phase and the remaining 24% occurs in the post-maximum phase irrespective of the flare classification, intensity-wise or area-wise; (ii) ‘impulsive’ and ‘gradual rise and fall’ bursts are relatively more important in the pre-maximum phase while ‘post burst increase’ bursts show comparatively higher occurrences in the post-maximum phase; (iii) peak flux and energy excess spectra of the concurrent microwave bursts in the pre-maximum phase of the flare are mostly of ‘inverted U’ and ‘increasing with frequency’ spectral types. Of these, ‘impulsive’ bursts are predominantly of the ‘inverted U’ and the ‘grf’ bursts are of the ‘increasing with frequency’ spectral type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号