首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
A fuzzy inference system (FIS) and a hybrid adaptive network-based fuzzy inference system (ANFIS), which combines a fuzzy inference system and a neural network, are used to predict and model longshore sediment transport (LST). The measurement data (field and experimental data) obtained from Kamphuis [1] and Smith et al. [2] were used to develop the model. The FIS and ANFIS models employ five inputs (breaking wave height, breaking wave angle, slope at the breaking point, peak wave period and median grain size) and one output (longshore sediment transport rate). The criteria used to measure the performances of the models include the bias, the root mean square error, the scatter index and the coefficients of determination and correlation. The results indicate that the ANFIS model is superior to the FIS model for predicting LST rates. To verify the ANFIS model, the model was applied to the Karaburun coastal region, which is located along the southwestern coast of the Black Sea. The LST rates obtained from the ANFIS model were compared with the field measurements, the CERC [3] formula, the Kamphuis [1] formula and the numerical model (LITPACK). The percentages of error between the measured rates and the calculated LST rates based on the ANFIS method, the CERC formula (Ksig = 0.39), the calibrated CERC formula (Ksig = 0.08), the Kamphuis [1] formula and the numerical model (LITPACK) are 6.5%, 413.9%, 6.9%, 15.3% and 18.1%, respectively. The comparison of the results suggests that the ANFIS model is superior to the FIS model for predicting LST rates and performs significantly better than the tested empirical formulas and the numerical model.  相似文献   

2.
《Coastal Engineering》2001,42(3):199-218
A large-scale laboratory facility for conducting research on surf-zone sediment transport processes has been constructed at the U.S. Army Engineer Research and Development Center. Successful execution of sediment transport experiments, which attempt to replicate some of the important coastal processes found on long straight beaches, requires a method for establishing the proper longshore current. An active pumping and recirculation system comprised of 20 independent pumps and pipelines is used to control the cross-shore distribution of the mean longshore current. Pumping rates are adjusted in an iterative manner to converge toward the proper settings, based on measurements along the beach. Two recirculation criteria proposed by Visser [Coastal Eng. 15 (1991) 563] were also used, and they provided additional evidence that the proper total longshore flow rate in the surf zone was obtained. The success of the external recirculation system and its operational procedure, and the degree of longshore uniformity achieved along the beach, are the subjects of this paper. To evaluate the performance of the recirculation system, and as a precursor to sediment transport experiments, two comprehensive test series were conducted on a concrete beach with straight and parallel contours (1:30 slope), one using regular waves and the other using irregular waves. In the regular wave case, the wave period was 2.5 s and the average wave height at breaking was approximately 0.25 m. In the irregular wave case, the peak wave period was 2.5 s and the significant breaking wave height was approximately 0.21 m. The longshore current recirculation system proved to be very effective in establishing uniform mean longshore currents along the beach in both cases. This facility and the data presented here are unique for the following reasons: (1) the high cross-shore resolution of the recirculation system and the ease with which changes can be made to the longshore current distribution, (2) the degree of longshore uniformity achieved as a percentage of the length of the basin (even near the downdrift boundary), (3) the scale of the wave conditions generated, and (4) the relatively gentle beach slope used in the experiments (compared to previous laboratory studies of the longshore current). Measured data are provided in an appendix for use in theoretical studies and numerical model development and validation.  相似文献   

3.
Calculation of longshore sediment transport   总被引:1,自引:0,他引:1  
Calculation approaches to longshore transport of sandy sediments are discussed. The estimation of the total sediment transport rate is shown to be possibly based on the so-called CERC formula, where the proportionality factor K should be calculated from relationships of Bayram et al. [8] or Leont’yev [4]. In both cases, the results are very close to each other if the author’s determination of the wave breaking depth is used. Under the condition of contrasting variations in the sediment grain size over the coastal profile or in the case of fragmentary sand distribution on the surface of the bed, the local approach implying process-based modeling is more effective. A model is suggested to compute the local longshore sediment transport rates.  相似文献   

4.
《Ocean Engineering》2004,31(11-12):1351-1375
Sorting of sediment on a beach under wave action takes several forms. Stratified layers of finer and coarser sediment, which depend on wave climate, grain size and beach slope are formed. This complex problem can be simplified by defining the cross-shore and longshore sorting according to the angle between the breaking wave and the coast. In the present study, longshore distribution of sediment as well as corresponding beach profiles was measured in a wave basin. Three-dimensional hydraulic model experiments were performed with regular waves. Eighteen sets of experiments performed in longshore sorting mechanism using two different sand beds. The sorting of the bed material and the formation of armour coats along the beach were defined by grain size distributions and dimensionless parameters for sandy beaches.The rate of sediment transport with grain size sorting was measured in a wave basin. A method introduced sorting process was presented in this study. The sediment rate based on sorting mechanism was also discussed with known methods. It has been found that the non-uniformity of the grain size and hence sorting of the beaches play a very important role in the sand transport due to wave motion in a similar way to the case of steady flow in alluvial channels.  相似文献   

5.
南渡江三角洲海岸泥沙纵向运移与岸滩演变的响应   总被引:7,自引:0,他引:7  
南渡三角洲沿岸在盛行NNE向波浪等动力条件的作用下,泥沙产生纵向运移,岸滩遭受侵蚀或堆积,岸滩演变剧烈。本文利用基于网格的波注折射绕射模型,分析南渡江三角洲海岸波浪动力过程、破波带波能与辐射应力分布及其引起的沿岸泥沙纵向运称。浴海岸动力学地貌的角度,通过三角洲沿岸波浪动力特征、泥沙运动的分析,探讨沙质岸滩的动态与地貌演变。  相似文献   

6.
A new predictive formula for the total longshore sediment transport (LST) rate was developed from principles of sediment transport physics assuming that breaking waves mobilize the sediment, which is subsequently moved by a mean current. Six high-quality data sets on hydrodynamics and sediment transport collected during both field and laboratory conditions were employed to evaluate the predictive capability of the new formula. The main parameter of the formula (a transport coefficient), which represents the efficiency of the waves in keeping sand grains in suspension, was expressed through a Dean number based on dimensional analysis. The new formula yields predictions that lie within a factor of 0.5 to 2 of the measured values for 62% of the data points, which is higher than other commonly employed formulas for the LST rate such as the CERC equation or the formulas developed by Inman–Bagnold and Kamphuis, respectively. The new formula is well suited for practical applications in coastal areas, as well as for numerical modeling of sediment transport and shoreline change in the nearshore.  相似文献   

7.
A numerical model is developed to compute the shoreline planform in a crenulate bay beach. The new model combines polar and Cartesian coordinates and can be used effectively to compute a hooked zone shoreline in the lee of upcoast headland. The model is calibrated using laboratory data with an incident wave angle ranging from 25° to 60°. The results of calibration and verification suggest that the ratio of the sediment transport parameters by wave and longshore current in this model is close to unity, and the computed shoreline planforms for the hooked and unhooked zones are in good agreement with the ones measured, especially when a bay is close to static equilibrium. In addition, the bay shape calculated by the present model is similar to that given by the well-known empirical parabolic equation for a bay in static equilibrium. The process of bay shape development from a straight beach to a static equilibrium bay is studied using laboratory experiments and the present numerical model. The temporal variations in the computed longshore sediment transport at different locations within a bay beach are analyzed. From this the decrease in the sediment transport becomes apparent while a bay beach changes its shape from straight toward a state of equilibrium. Based on this experience, it may be concluded that the present numerical model can produce a temporal change in the shoreline planform of a crenulate bay beach from a transition state to static equilibrium subject to seasonal wave action.  相似文献   

8.
依据CERC公式,年内代表浪向作用下,广西万尾岛金滩平直岸滩中部泥沙分别向东西两侧净输沙,意味着金滩中部有淘刷趋势而两端有淤积趋势,而实际上岸滩中部滩面长年基本稳定、未有明显侵蚀现象。分析认为公式计算成果反映的输沙特征定性仍然是正确的,岸滩能够维持稳定是因为还存在自海向岸的横向输沙补给沙源。当岸滩并非平直且足够长时,应完整分析纵、横向输沙才能更为合理地反映岸滩泥沙运动特征。  相似文献   

9.
《Coastal Engineering》1999,36(3):171-195
A morphological stability analysis is carried out for a long straight coast with a longshore bar. The situation with oblique wave incidence and a wave-driven longshore current is considered. The flow and sediment transport are described by a numerical modelling system. The models comprise: (i) a wave model with depth refraction, shoaling and wave breaking, (ii) a depth integrated model for wave driven currents and (iii) a sediment transport model for the bed load transport and the suspended load transport in combined waves and current. The direction of the sediment transport is taken to be parallel to the depth integrated mean current velocity, neglecting the effects of a bed slope and secondary currents. An instability is found to develop around the bar crest. The instability is periodic in the alongshore direction, and tends to form rip channels and to steepen the offshore face of the bar between the rip channels. The alongshore wave length of the most unstable perturbation is determined for different combinations of the wave conditions and the geometry of the profile.  相似文献   

10.
Littoral sediment transport is the main reason for coastal erosion and accretion. Therefore, various types of structures are used in shore protection and littoral sediment trapping studies. Offshore breakwaters are one of these structures. Construction of offshore breakwaters is one of the main countermeasures against beach erosion. In this paper, offshore protection process is studied on the effect of offshore breakwater parameters (length, distance and gap), wave parameters (height, period and angle) and on sediment accumulation ratio, one researched in a physical model. In addition to the experimental studies, numerical model in which the formulae of the sediment discharge (i.e. the formulae of CERC and Kamphuis), was used was developed and employed. The results of the experimental and numerical studies were compared with each other.  相似文献   

11.
Natural beaches tend to exhibit an equilibrium profile that is planar nearshore and nonplanar, concave-up offshore. The longshore current on this type of beach profile depends on the horizontal distance to the location of the intersection between the planar and nonplanar profiles. As the width of the planar beach face decreases, the location of the maximum longshore current moves closer to the shore. The dependency of the corresponding longshore sediment transport rate on the location of the intersection between the two profiles is demonstrated for two energetics-based sediment transport models. Again, a narrower beach face results in the maximum sediment transport being closer to the shore. Total sediment transport rates are also a function of the planar beach face width. This suggests that longshore transport rates are modulated by the tidal elevation.  相似文献   

12.
A modeling scheme based on dynamic coupling of a high-resolution 1D cross-shore model to a 2DH area model is developed to calculate the total longshore sediment transport (LST) rate in wave-dominated coasts. The purpose of this coupling strategy aims at resolving the LST with a high-resolution (both temporally and spatially) inside the surf-zone and with a coarser spatial resolution seaward of the surf-zone. The 2DH area model operates on a fixed pre-designed regional grid (parent grid) and the 1D cross-shore model is dynamically coupled to the boundary of the parent grid with a time-varying domain, starting from the first wave breaking point and ending at the maximum wave set-up point. The time-varying domain is generated in the 1D model by resolving the landward wave propagation from the offshore conditions provided by the 2DH area model at every time step. With a high-resolution cell size the 1D model resolves the wave propagation processes and resulting LST along the profile. The coupled model is applied to study the LST in the Pomeranian Bight at the southern Baltic Sea. Simulation results are compared with three other different hierarchical modeling methods (from empirical formulas such as CERC and Kamphuis to a 2DH area simulation). The comparative study indicates that the dynamically coupled model can be a reliable tool in practical applications, especially for the areas where hydrodynamics is controlled by complex bathymetry (e.g., multiple longshore bars) or morphologically induced circulation patterns.  相似文献   

13.
夏益民 《海洋工程》1994,12(3):42-53
本文结合毛里塔尼亚友谊港下游冲刷模型的试验研究探讨了海岸波浪动床模型的相似律和试验波浪要素的确定。作者推导获得了同时满足波浪作用下岸滩剖面冲淤相似、沿程冲淤部位相似、泥沙起动相似和沉降相似的综合相似比尺公式:λρs-ρ=λ^1/3l.λ^1/6D;λd=(λD/λt)^2/3解决了波浪冲刷动床模型的基本相似问题和砂的选砂问题。对于常浪向与强浪向不一致的海岸,作者提出了采用综合考虑波高、波周期(或波  相似文献   

14.
Regional Ocean Modeling System (ROMS v 3.0), a three-dimensional numerical ocean model, was previously enhanced for shallow water applications by including wave-induced radiation stress forcing provided through coupling to wave propagation models (SWAN, REF/DIF). This enhancement made it suitable for surf zone applications as demonstrated using examples of obliquely incident waves on a planar beach and rip current formation in longshore bar trough morphology (Haas and Warner, 2009). In this contribution, we present an update to the coupled model which implements a wave roller model and also a modified method of the radiation stress term based on Mellor (2008, 2011a,b,in press) that includes a vertical distribution which better simulates non-conservative (i.e., wave breaking) processes and appears to be more appropriate for sigma coordinates in very shallow waters where wave breaking conditions dominate. The improvements of the modified model are shown through simulations of several cases that include: (a) obliquely incident spectral waves on a planar beach; (b) obliquely incident spectral waves on a natural barred beach (DUCK'94 experiment); (c) alongshore variable offshore wave forcing on a planar beach; (d) alongshore varying bathymetry with constant offshore wave forcing; and (e) nearshore barred morphology with rip-channels. Quantitative and qualitative comparisons to previous analytical, numerical, laboratory studies and field measurements show that the modified model replicates surf zone recirculation patterns (onshore drift at the surface and undertow at the bottom) more accurately than previous formulations based on radiation stress (Haas and Warner, 2009). The results of the model and test cases are further explored for identifying the forces operating in rip current development and the potential implication for sediment transport and rip channel development. Also, model analysis showed that rip current strength is higher when waves approach at angles of 5° to 10° in comparison to normally incident waves.  相似文献   

15.
Wave-induced currents may drive nearshore mixing and transport processes, including coastal pollutant dispersion, littoral drift, and long-term morphological changes through beach erosion and accretion. In this study, a numerical model is newly developed to simulate wave climate and localized currents in complicated coastal environments. The model developed is based on a quadtree grid system. The two-dimensional hydrodynamic governing equations are solved by using an explicit Adams-Bashforth finite difference scheme. Effects of wave breaking, shoaling, refraction, diffraction, wave-current interaction, set-up and set-down, turbulent mixing, bed friction, and shoreline movement are incorporated in the model. Results are presented for set-up at a beach in a flume due to normally incident waves, and longshore currents generated by oblique waves on a plane beach.  相似文献   

16.
岬湾相间的琼州海峡南岸在海岸动力条件作用下,岸滩发生侵蚀或堆积,特别是南岸中部的南渡江三角洲沿岸岸滩演变剧烈。该文从海岸动力地貌的角度,对琼州海峡南岸的海岸动力特征、泥沙运动以及岸滩演变进行分析。根据海峡南部三维潮流场数值模拟结果,结合经验公式初步分析潮流引起的泥沙运移速率和方向,得到岸外水域总的泥沙运移趋势为从西向东。根据波浪动力计算分析沿岸泥沙运移,探讨沙质岸滩的动态与地貌演变之间的关系,得出海峡南岸海岸地貌演变与盛行的NE和NNE向风浪有密切关系,岸滩的演变过程主要受制于这两个方向的风浪及其引起的泥沙沿岸运移。  相似文献   

17.
A critical review of conceptual and mathematical models developed in recent decades on sediment transport in the swash zone is presented. Numerous studies of the hydrodynamics and sediment transport in the swash zone in recent years have pointed out the importance of swash processes in terms of science advancement and practical applications. Evidently, the hydrodynamics of the swash zone are complex and not fully understood. Key hydrodynamic processes include both high-frequency bores and low-frequency infragravity motions, and are affected by wave breaking and turbulence, shear stresses and bottom friction. The prediction of sediment transport that results from these complex and interacting processes is a challenging task. Besides, sediment transport in this oscillatory environment is affected by high-order processes such as the beach groundwater flow. Most relationships between sediment transport and flow characteristics are empirical, based on laboratory experiments and/or field measurements. Analytical solutions incorporating key factors such as sediment characteristics and concentration, waves and coastal aquifer interactions are unavailable. Therefore, numerical models for wave and sediment transport are widely used by coastal engineers. This review covers mechanisms of sediment transport, important forcing factors, governing equations of wave-induced flow, groundwater interactions, empirical and numerical relations of cross-shore and longshore sediment transport in the swash zone. Major advantages and shortcomings of various numerical models and approaches are highlighted and reviewed. These will provide coastal modelers an impetus for further detailed investigations of fluid and sediment transport in the swash zone.  相似文献   

18.
陈子燊 《海洋与湖沼》1993,24(5):467-476
根据1990年现场调查及前期观察资料,论述了海南岛新海弧形海湾不同岸段由主要动力驱动过程和海滩地貌结构组成的4种海滩地貌状态,为Ⅰ.隐蔽段消散类型,Ⅱ.脊-沟体系与低潮台地类型,Ⅲ.韵律海滩与砂坝类型,Ⅳ.开敞段消散类型。应用泥沙粒级参数概率模型分析近岸泥沙纵向运动趋势,结果表明,常波况下,沿岸泥沙存在双向运动,湾顶海滩为汇集地带,泥沙纵向运动主趋势为西南向;高能条件下,海岸北段可出现北向泥沙运动  相似文献   

19.
20.
The ocean wave system in nature is very complicated and physical model studies on floating breakwaters are expensive and time consuming. Till now, there has not been available a simple mathematical model to predict the wave transmission through floating breakwaters by considering all the boundary conditions. This is due to complexity and vagueness associated with many of the governing variables and their effects on the performance of breakwater. In the present paper, Adaptive Neuro-Fuzzy Inference System (ANFIS), an implementation of a representative fuzzy inference system using a back-propagation neural network-like structure, with limited mathematical representation of the system, is developed. An ANFIS is trained on the data set obtained from experimental wave transmission of horizontally interlaced multilayer moored floating pipe breakwater using regular wave flume at Marine Structure Laboratory, National Institute of Technology Karnataka, Surathkal, India. Computer simulations conducted on this data shows the effectiveness of the approach in terms of statistical measures, such as correlation coefficient, root-mean-square error and scatter index. Influence of input parameters is assessed using the principal component analysis. Also results of ANFIS models are compared with that of artificial neural network models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号