首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coal handling, crushing, washing, and other processes of coal beneficiation liberate coal particulate matter, which would ultimately contaminate the nearby soils. In this study, an attempt was made to determine the status of soil bio-indicators in the surroundings of a coal beneficiation plant, (in relation to a control site). The coal beneficiation plant is located at Sudamudih, and the control site is 5 km away from the contaminated site, which is located in the colony of Central Institute of Mining and Fuel Research Institute, Digwadih, Dhanbad. In order to estimate the impact of coal deposition on soil biochemical characteristics and to identify the most sensitive indicator, soil samples were taken from the contaminated and the control sites, and analyzed for soil organic carbon (SOC), soil N, soil basal respiration (BSR), substrate-induced respiration (SIR), and soil enzymes like dehydrogenase (DHA), catalase (CAT), phenol oxidase (PHE), and peroxidase (PER). Coal deposition on soils improved the SOC from 10.65 to 50.17 g kg−1, CAT from 418.1 to 804.11 μg H2O2 g−1 h−1, BSR from 8.5 to 36.15 mg CO2–C kg−1 day−1, and SIR from 24.3 to 117.14 mg CO2–C kg−1 day−1. Soils receiving coal particles exhibited significant decrease in DHA (36.6 to 4.22 μg TPF g−1 h−1), PHE (0.031 to 0.017 μM g−1 h−1), PER (0.153 to 0.006 μM g−1 h−1), and soil N (55.82 to 26.18 kg ha−1). Coal depositions significantly (P < 0.01) decreased the DHA to 8.8 times, PHE to 1.8 times, and PER to 25.5 times, but increased the SOC to 4.71 times, CAT to 1.9 times, SIR to 4.82 times, and BSR to 4.22 times. Based on principal component analysis and sensitivity test, soil peroxidase (an enzyme that plays a vital role in the degradation of the aromatic organic compounds) is found to be the most important indicator that could be considered as biomarkers for coal-contaminated soils.  相似文献   

2.
Soil carbon sequestration plays an essential role in mitigating CO2 increases and the global greenhouse effect. This paper calculates soil organic carbon (SOC) storage changes during the course of industrialization and urbanization in Yangtze Delta region, China, based on the data of the second national soil survey (1982–1985) and the regional geochemical survey (2002–2005), with the help of remote sensing images acquired in periods of 1980, 2000, 2005. The results show that soils in the top 0–20 and 0–100 cm depth in this region demonstrate the carbon sink effect from the early 1980s to the early 2000s. The SOC storage in 0–20 cm depth has resulted in increase from 213.70 to 238.65 Tg, which corresponds to the SOC density increase from 2.94 ± 1.08 to 3.28 ± 0.92 kg m−2, and mean carbon sequestration storage and rate are 1.25 Tg a−1, 17.14 g m−2 a−1, respectively. The SOC storage in 0–100 cm depth has resulted in increase from 690.26 to 792.65 Tg, which corresponds to the SOC density increase from 9.48 ± 4.22 to 10.89 ± 3.42 kg m−2, and mean carbon sequestration storage and rate are 5.12 Tg a−1, 70.32 g m−2 a−1, respectively. Urban area in Yangtze Delta region, China, increased more than 3,000 km2 and the urban growth patterns circled the central city region in the past 20 years. The SOC densities in 0–20 cm depth decrease gradually along urban–suburban–countryside and the urban topsoil is slightly enriched with SOC. Compared to the data of the second national soil survey in the early 1980s, the mean SOC density in urban area increased by 0.76 kg m2, or up 25.85% in the past 20 years. With the characteristics of SOC storage changes offered, land-use changes, farming system transition and ecological city construction are mainly attributed to SOC storage increases. Because of lower SOC content in this region, it is assumed that the carbon sink effect will go on in the future through improved soil management.  相似文献   

3.
In highlands of semiarid Turkey, ecosystems have been significantly transformed through human actions, and today changes are taking place very rapidly, causing harmful consequences such as soil degradation. This paper examines two neighboring land use types in Indagi Mountain Pass, Cankiri, Turkey, to determine effects of the conversion of Blackpine (Pinus nigra Arn. subsp. pallasiana) plantation from grassland 40 years ago on soil organic carbon (SOC) and soil erodibility (USLE-K). For this purpose, a total of 302 disturbed and undisturbed soil samples were taken at irregular intervals from two sites and from two soil depths of 0–10 cm (D1) and 10–20 cm (D2). In terms of SOC, conversion did not make any statistical difference between grassland and plantation; however, there were statistically significant differences with soil depth within each land use, and SOC contents significantly decreased with the soil depth (P < 0.05) and mostly accumulated in D1. SOC values were 2.4 and 1.8% for grassland and 2.8 and 1.6% for plantation, respectively, at D1 and D2. USLE-K values also statistically differed significantly with the land use, and in contrast to the statistics of SOC, there was no change in USLE-K with the soil depth. Since USLE-K was estimated using SOC, hydraulic conductivity (HC) and soil textural composition––sand (S), silt (Si), and clay (C) contents of soils––as well as SOC did not change with the land use, we ascribed the changes of USLE-K with the land uses to the differences in the HC as strongly affected by the interactions between SOC and contents of S, Si, and C. On an average, the soil of the grassland (USLE-K = 0.161 t ha h ha−1 MJ−1 mm−1) was more erodible than those of the plantation (USLE-K = 0.126 t ha h ha−1 MJ−1 mm−1). Additionally, topographic factors, such as aspect and slope, were statistically effective on spatial distribution of the USLE-K and SOC.  相似文献   

4.
This paper estimates CO2 fluxes in a municipal site for final disposal of solid waste, located in Gualeguaychu, Argentina. Estimations were made using the accumulation chamber methods, which had been calibrated previously in laboratory. CO2 fluxes ranged from 31 to 331 g m−2 day−1. Three different populations were identified: background soil gases averaging 46 g m−2 day−1, intermediate anomalous values averaging 110 g m−2 day−1 and high anomalous values averaging 270 g m−2 day−1. Gas samples to a depth of 20 cm were also taken. Gas fractions, XCO2 < 0.1, XCH4 < 0.01, XN2 ~0.71 and XO2 ~0.21, δ13C of CO2 (−34 to −18‰), as well as age of waste emplacement, suggest that the study site may be at the final stage of aerobic biodegradation. In a first approach, and following the downstream direction of groundwater flow, alkalinity and δ13C of dissolved inorganic carbon (−15 to 4‰) were observed to increase when groundwater passed through the disposal site. This suggests that the CO2 generated by waste biodegradation dissolves or that dissolved organic matter appears as a result of leachate degradation.  相似文献   

5.
6.
The study presents the effect of soil erosion on vegetation, soil accumulation (SA), SA rate (SAR), soil quality, soil mass, and the soil organic carbon (SOC) pool in Brown Andosols and Histosols in a 24-km2 area in southwest Iceland. Undisturbed prehistoric soils were distinguished from disturbed historic soils using tephrochronology. Soil erosion has been severe during historic time (last 1135 yr), resulting in the increase of the soil mass deposited in soils covered by vegetation by a factor of 7.3-9.2 and net loss of soil in unvegetated areas. The SAR correlated positively with SOC sequestration. SOC is easily transported and, given the extensive accumulation of soil, the net effect of burial and subsequent reduction in decomposition is to increase SOC storage. Nevertheless, the increased accumulation and soil depletion has decreased soil quality, including the SOC, and reduced soil resistance to erosion with the depleted SOC contributing to enrichment of atmospheric CO2. The initial terrestrial disturbance was triggered by anthropogenic land use during the Medieval Warm Period, followed by volcanic activity approximately three centuries later. The combination of harsh climate during the Little Ice Age and drastic anthropogenic perturbations has led to land degradation at a catastrophic scale.  相似文献   

7.
Though irrigation with sewage water has potential benefits of meeting the water requirements, the sewage irrigation may mess up to harm the soil health. To assess the potential impacts of long-term sewage irrigation on soil health and to identify sensitive soil indicators, soil samples were collected from crop fields that have been irrigated with sewage water for more than 20 years. An adjacent rain-fed Leucaena leucocephala plantation system was used as a reference to compare the impact of sewage irrigation on soil qualities. Soils were analyzed for different physical, chemical, biological and biochemical parameters. Results have shown that use of sewage for irrigation improved the clay content to 18–22.7%, organic carbon to 0.51–0.86% and fertility status of soils. Build up in total N was up to 2,713 kg ha−1, available N (397 kg ha−1), available P (128 kg ha−1), available K (524 kg ha−1) and available S (65.5 kg ha−1) in the surface (0.15 m) soil. Long-term sewage irrigation has also resulted a significant build-up of DTPA extractable Zn (314%), Cu (102%), Fe (715%), Mn (197.2), Cd (203%), Ni (1358%) and Pb (15.2%) when compared with the adjacent rain-fed reference soil. Soils irrigated with sewage exhibited a significant decrease in microbial biomass carbon (−78.2%), soil respiration (−82.3%), phosphatase activity (−59.12%) and dehydrogenase activity (−59.4%). An attempt was also made to identify the sensitive soil indicators under sewage irrigation, where microbial biomass carbon was singled out as the most sensitive indicator.  相似文献   

8.
Assessing the influence of CO2 on soil and aquifer geochemistry is a task of increasing interest when considering risk assessment for geologic carbon sequestration. Leakage and CO2 ascent can lead to soil acidification and mobilization of potentially toxic metals and metalloids due to desorption or dissolution reactions. We studied the CO2 influence on an Fe(III) (oxyhydr)oxide rich, gleyic Fluvisol sampled in close vicinity to a Czech mofette site and compared the short-term CO2 influence in laboratory experiments with observations on long-term influence at the natural site. Six week batch experiments with/without CO2 gas flow at 3 different temperatures and monitoring of liquid phase metal(loid) concentrations revealed two main short-term mobilization processes. Within 1 h to 1 d after CO2 addition, mobilization of weakly adsorbed metal cations occurred due to surface protonation, most pronounced for Mn (2.5–3.3 fold concentration increase, mobilization rates up to 278 ± 18 μg Mn kgsoil−1 d−1) and strongest at low temperatures. However, total metal(loid) mobilization by abiotic desorption was low. After 1–3 d significant Fe mobilization due to microbially-triggered Fe(III) (oxyhydr)oxide dissolution began and continued throughout the experiment (up to 111 ± 24 fold increase or up to 1.9 ± 0.6 mg Fe kgsoil−1 d−1). Rates increased at higher temperature and with a higher content of organic matter. The Fe(III) mineral dissolution was coupled to co-release of incorporated metal(loid)s, shown for As (up to 16 ± 7 fold, 11 ± 8 μg As kgsoil−1 d−1). At high organic matter content, re-immobilization due to resorption reactions could be observed for Cu. The already low pH (4.5–5.0) did not change significantly during Fe(III) reduction due to buffering from sorption and dissolution reactions, but a drop in redox potential (from > +500 mV to minimum +340 ± 20 mV) occurred due to oxygen depletion. We conclude that microbial processes following CO2 induction into a soil can contribute significantly to metal(loid) mobilization, especially at optimal microbial growth conditions (moderate temperature, high organic carbon content) and should be considered for carbon sequestration monitoring and risk assessment.  相似文献   

9.
A field facility located in Bozeman, Montana provides the opportunity to test methods to detect, locate, and quantify potential CO2 leakage from geologic storage sites. From 9 July to 7 August 2008, 0.3 t CO2 day−1 were injected from a 100-m long, ~2.5-m deep horizontal well. Repeated measurements of soil CO2 fluxes on a grid characterized the spatio-temporal evolution of the surface leakage signal and quantified the surface leakage rate. Infrared CO2 concentration sensors installed in the soil at 30 cm depth at 0–10 m from the well and at 4 cm above the ground at 0 and 5 m from the well recorded surface breakthrough of CO2 leakage and migration of CO2 leakage through the soil. Temporal variations in CO2 concentrations were correlated with atmospheric and soil temperature, wind speed, atmospheric pressure, rainfall, and CO2 injection rate.  相似文献   

10.
Increasing CO2 levels and its consequent effects have been prominent with climate change. Three out of ten transgressed planetary boundaries reflect our planet’s status at tipping point. Soil Organic Carbon (SOC) which helps soil supply water and nutrients to plants through roots is inherently related to various ecological systems and needs urgent attention. Although the total SOC globally is more than the total carbon in biosphere and atmosphere, the vulnerability of SOC due to anthropogenic activities is unavoidable. The environmental factors affecting sequestration of SOC, soil fertility, crop production, accelerated SOC removal with rising temperatures, green-house gases emissions and climate change are interrelated. Thus, it is impossible to understand and estimate the various scenarios of impacts on SOC pool with ever-changing ecosystems and related processes in soil environment completely. Based on currently predicted climate change scenarios, if deforestation is controlled and reestablishment is achieved, tropical forests can trap atmospheric CO2 in the cheapest way and function as the largest sink on earth. The agricultural management practices (AMPs), which have been practiced in the last two decades and found helpful are suitable. However, some innovative adaptations such as crop modelling, selecting types of residue to change microbial communities, practices of grassland-grazing and low-C-emission AMPs are also necessary. To achieve the millennium development goals, we must accomplish food security, which relates all 17 sustainable development goals (SDGs) also relays agricultural systems, soil systems, ecosystem services, soil fertility and how best we nurture SOC pool with supportive AMPs.  相似文献   

11.
Compacted sewage sludge as a barrier for tailing impoundment   总被引:1,自引:1,他引:0  
The feasibility of compacted sewage sludge serving as a barrier for tailing impoundment was evaluated by the batch test and hydraulic conductivity test with respect to heavy metal retardation and impermeability. The batch test results showed that the effective removal of heavy metals approached 97.8 and 93.4% for Zn and Cd, respectively. Formation of precipitation of oxy(hydroxide) and carbonate minerals was mainly responsible for the attenuation of heavy metals in the early period of the test. Nevertheless, the further removal of heavy metals can be attributed to the sulfate reduction. The hydraulic conductivity test indicated that almost all of the heavy metals contained in simulated acid pore water were retarded by compacted sewage sludge. The hydraulic conductivity of the compacted sewage sludge ranged from 3.0 × 10−8 to 8.0 × 10−8 cm s−1, lower than 1.0 × 10−7 cm s−1, which is required by regulations for the hydraulic barrier in landfill sites. Thus, this study suggested that compacted sewage sludge could be used as a bottom barrier for tailing impoundment.  相似文献   

12.
Motivated by the rapid increase in atmospheric CO2 due to human activities since the Industrial Revolution, and the climate changes it produced, the world’s concerned scientific community has made a huge effort to investigate the global carbon cycle. However, the results reveal that the global CO2 budget cannot be balanced, unless a “missing sink” is invoked. Although numerous studies claimed to find the “missing sink”, none of those claims has been widely accepted. This current study showed that alkaline soil on land are absorbing CO2 at a rate of 0.3–3.0 μmol m−2 s−1 with an inorganic, non-biological process. The intensity of this CO2 absorption is determined by the salinity, alkalinity, temperature and water content of the saline/alkaline soils, which are widely distributed on land. Further studies revealed that high salinity or alkalinity positively affected the CO2 absorbing intensity, while high temperature and water content had a negative effect on the CO2 absorbing intensity of these soils. This inorganic, non-biological process of CO2 absorption by alkaline soils might have significant implications to the global carbon budget accounting.  相似文献   

13.
Human impacts have been severe on Icelandic soils and vegetation. In order to assess human impact on soils soil quality, soil organic C (SOC), soil bulk density (BD), soil moisture content (SMC), soil mass, and SOC sequestration were measured from two Histosol cores in West Iceland. The cores cover a period from around 665 BC to present, capturing the initial human settlement of Iceland in AD 871. Tephrochronology allowed for a reliable correlation and comparison between the two cores. The initial settlement had profound impacts on the soil quality, causing decreased SOC concentration and SMC, and increased vegetation degradation, soil exposure, eolian deposition, and BD. The total SOC pool was 34.6 kg C m2 at one of the sites, of which 60.1% was formed during historic times, driven by increased soil mass deposition from surrounding eroded areas. The SOC pool was 43.7 kg C m2 at the other site, of which 31.4% was formed during historic time, constrained by water cycling and decomposition.  相似文献   

14.
Field experiments on the CO2 flux of alpine meadow soil in the Qilian Mountain were conducted along the elevation gradient during the growing season of 2004 and 2005. The soil CO2 flux was measured using the Li-6400-09 soil respiration chamber attached to the Li-6400 portable photosynthesis system. The effects of water and heat and roots on the soil CO2 flux were statistically analyzed. The results show that soil CO2 flux along the elevation gradient gradually decreases. The soil CO2 flux was low at night, with lowest value occurring between 0200 and 0600 hours, started to rise rapidly during 0700–0830 hours, and then descend during 1600–1830 hours. The peak CO2 efflux appears during 1100–1600 hours. The diurnal average of soil CO2 efflux was between 0.56 ± 0.32 and 2.53 ± 0.76 μmol m−2 s−1. Seasonally, soil CO2 fluxes are relatively high in summer and autumn and low in spring and winter. The soil CO2 efflux, from the highest to the lowest in the ranking order, occurred in July and August (4.736 μmol m−2 s−1), June and September, and May and October, respectively. The soil CO2 efflux during the growing season is positively correlated with soil temperature, root biomass and soil water content.  相似文献   

15.
The effects of long-term exposure to elevated atmospheric CO2 (ambient + 340 ppmv) on carbon cycling were investigated for two plant communities in a Chesapeake Bay brackish marsh, one dominated by the C3 sedgeSchoenplectus americanus and the other by the C4 grassSpartina patens. Elevated CO2 resulted in a significant increase in porewater concentrations of DIC at 30 cm depth (p < 0.1). The CO2 treatment also yielded increases in DOC (15 to 27%) and dissolved CH4 (12–18%) in the C3 marsh (means for several depths over the period of June 1998 and June 1999), but not at a significant level. Elevated CO2 increased mean ecosystem emissions of CO2 (34–393 g C m−2 yr−1) and CH4 (0.21–0.40 g C m−2 yr−1) in the C3 community, but the effects were only significant on certain dates. For example, CO2 enrichment increased C export to the atmosphere in the C3 community during one of two winter seasons measured (p = 0.09). In the C4 community, gross photosynthesis responded relatively weakly to elevated CO2 (18% increase, p > 0.1), and the concomitant effects on dissolved carbon concentrations, respiration, and CH4 emissions were small or absent. We concluded that elevated CO2 has the potential to increase dissolved inorganic carbon export to estuaries.  相似文献   

16.
The activity concentration and the gamma-absorbed dose rates of the terrestrial naturally occurring radionuclides (232Th, 226Ra and 40K) were determined in soil samples collected from ten different locations of Sirsa district of Haryana, using HPGe detector based on high-resolution gamma spectrometry system. The range of activity concentrations of 226Ra, 232Th and 40K in the soil samples from the studied areas varies from 19.18 Bq kg−1 (Moriwala) to 40.31 Bq kg−1 (Rori), 59.43 Bq kg−1 (Pipli) to 89.54 Bq kg−1 (Fatehpur) and 223.22 Bq kg−1 (Moriwala) to 313.32 Bq kg−1 (SamatKhera) with overall mean values of 27.94, 72.75 and 286.73 Bq kg−1 respectively. The absorbed dose rate calculated from activity concentration of 226Ra, 232Th and 40K ranges between 8.84 and 18.58, 37.02 and 55.78, and 9.24 and 12.97 nGy h−1, respectively. The total absorbed dose in the study area ranges from 60.40 to 82.15 nGy h−1 with an average value of 70.12 nGy h−1. The calculated values of external hazard index (H ex) for the soil samples of the study area range from 0.36 to 0.49 with an average value of 0.42.  相似文献   

17.
The Sarcheshmeh copper mine smelter plant is one of the biggest copper producers in Iran. Long-time operation of about 25 years of the smelter plant causes release of potentially toxic heavy metals into the environment. In this paper, geochemical distribution of toxic heavy metals in 28 soil samples was evaluated around the Sarcheshmeh smelter plant. Soils developed over the nonmineralized and uncontaminated areas have an average background concentration of 41.25 mg kg−1 Cu, 26.6 mg kg−1 As, 12.7 mg kg−1 Pb, 0.9 mg kg−1 Sb, 1.9 mg kg−1 Mo, 1.7 mg kg−1 Sn, 0.2 mg kg−1 Cd, 0.15 mg kg−1 Bi, 235 mg kg−1 S and 73.4 mg kg−1 Zn, respectively. As a result of smelting process, the upper soil layers (0–5 cm) were polluted by Cu (>1,397 mg kg−1), Cd (>3.42 mg kg−1), S (>821 mg kg−1), Mo (>10.3 mg kg−1), Sb (>11.7 mg kg−1), As (>120.6 mg kg−1), Pb (>83.8 mg kg−1), Zn (>214.9 mg kg−1), and Sn (>3.7 mg kg−1), respectively. These values are much higher than the normal concentration of the elements in the uncontaminated soil layers. The elemental values decrease with distance travelled away of the smelter plant, especially at minimum wind direction. Furthermore, high contaminated values of Cu (8,430 mg kg−1), As (500 mg kg−1), Pb (331 mg kg−1), Mo (61 mg kg−1), Sb (56.2 mg kg−1), Zn (664 mg kg−1), Cd (17.2 mg kg−1), Bi (13.4 mg kg−1), and S (3,780 mg kg−1) were observed in the upper soil layers close to the smelting waste dumps. Sequential extraction analysis shows that about 270 mg kg−1 Cu, 28 mg kg−1 Pb, 50.33 mg kg−1 Zn, and 47.84 mg kg−1 As were adsorbed by Fe and Mn oxides. The carbonate phases include 151 mg kg−1 Cu, 28 mg kg−1 Pb, 25 mg kg−1 Zn, and 32.99 mg kg−1 As. Organic matter adsorbed 314.6 mg kg−1 Cu and 29.18 mg kg−1 Zn.  相似文献   

18.
Accurate measurements to assess the influence of soil moisture on CO2 flux requires the absolute estimates of soil CO2 flux. Thus, it was constructed a calibration system where CO2 with fixed concentration flowed through the different porous material. Previous to measurement, in order to verify the performance and reliability of a closed dynamic chamber, different discontinuous air-mixing rates and times were tested. The CO2 flux was estimated through sequential lectures and the best fit for flux measurements was obtained taking short readings every 3 min, during a total time of 12 min (R 2 = 0.99). The best mixing rate was attained for 250 mL min−1, allowing 25 s of mixing previous to CO2 extraction for an infrared gas analyzer. The deviation of the measured values for dry sand from the reference CO2 flux (0.097 and 0.071 g m−2 min−1) was 5 and 7%. On dry sandy loam soil (SLS) the deviation was 2%. The measured fluxes decreased 73 and 22% with content moisture of 20 and 10% (sand), and 78% with content moisture of 31% (SLS). This work allowed to estimate how much the measured emission rates deviate from the true ones for the specified chamber and sampling conditions.  相似文献   

19.
Mangrove ecosystems play an important, but understudied, role in the cycling of carbon in tropical and subtropical coastal ocean environments. In the present study, we examined the diel dynamics of seawater carbon dioxide (CO2) and dissolved oxygen (DO) for a mangrove-dominated marine ecosystem (Mangrove Bay) and an adjacent intracoastal waterway (Ferry Reach) on the island of Bermuda. Spatial and temporal trends in seawater carbonate chemistry and associated variables were assessed from direct measurements of dissolved inorganic carbon, total alkalinity, dissolved oxygen (DO), temperature, and salinity. Diel pCO2 variability was interpolated across hourly wind speed measurements to determine variability in daily CO2 fluxes for the month of October 2007 in Bermuda. From these observations, we estimated rates of net sea to air CO2 exchange for these two coastal ecosystems at 59.8 ± 17.3 in Mangrove Bay and 5.5 ± 1.3 mmol m−2 d−1 in Ferry Reach. These results highlight the potential for large differences in carbonate system functioning and sea-air CO2 flux in adjacent coastal environments. In addition, observation of large diel variability in CO2 system parameters (e.g., mean pCO2: 390–2,841 μatm; mean pHT: 8.05–7.34) underscores the need for careful consideration of diel cycles in long-term sampling regimes and flux estimates.  相似文献   

20.
The production of organic matter and calcium carbonate by a dense population of the brittle star Acrocnida brachiata (Echinodermata) was calculated using demographic structure, population density, and relations between the size (disk diameter) and the ash-free dry weight (AFDW) or the calcimass. During a 2-year survey in the Bay of Seine (Eastern English Channel, France), organic production varied from 29 to 50 gAFDW m−2 year−1 and CaCO3 production from 69 to 104 gCaCO3 m−2 year−1. Respiration was estimated between 1.7 and 2.0 molCO2 m−2 year−1. Using the molar ratio (ψ) of CO2 released: CaCO3 precipitated, this biogenic precipitation of calcium carbonate would result in an additional release between 0.5 and 0.7 molCO2 m−2 year−1 that represented 23% and 26% of total CO2 fluxes (sum of calcification and respiration). The results of the present study suggest that calcification in temperate shallow environments should be considered as a significant source of CO2 to seawater and thus a potential source of CO2 to the atmosphere, emphasizing the important role of the biomineralization (estimated here) and dissolution (endoskeletons of dead individuals) in the carbon budget of temperate coastal ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号