首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This quantitative microstructural study deals with textures of quartz domains within a mylonitized metapelite collected near a thrust surface corresponding to the tectonic contact between two metamorphic units, which crop out in the Aspromonte Massif, southern Calabria (Italy). The sample investigated lacks a mesoscopic stretching lineation. Therefore, quartz c-axis fabrics were investigated in two mutually orthogonal thin sections (a) parallel to the quartz rod lineation and perpendicular to the foliation (YZ plane) and (b) perpendicular to the quartz rods and perpendicular to the foliation (XZ plane); the data were generated using classical (manual measurements of quartz c-axis using U-stage) and modern methods (Computer Integrated Polarization microscopy). Both these sections show oblique foliations at ca. 40° from the main shear plane, implying that the actual X direction (stretching lineation that is absent on the mesoscopic scale) must lie between these two sections. Quartz c-axis data from the YZ section when rotated by 90° are similar with those from the XZ section. Hence, the data from the two sections are merged. These data when rotated by an angle of 50° from the direction of quartz rod lineation, gives an asymmetrical pattern indicating top-to-the-North sense of shear. This was confirmed by investigating quartz c-axis patterns in a section striking NS and perpendicular to the foliation. Based on the study it is thus concluded that this method can be used to do kinematic analysis in rocks that are devoid of stretching lineations. Apart from the above, the advantages and disadvantages of the classical and modern methods of quartz c-axis analysis are discussed.  相似文献   

2.
《Tectonophysics》2003,361(3-4):171-186
Banded iron formation (BIF) from the Quadrilátero Ferrı́fero (southeastern Brazil) shows a compositional layering with alternating iron-rich and quartz-rich layers. This layering was intensively folded and transposed at a centimeter/millimeter scale through a component of bedding-parallel shear related to flexural slip at middle to high greenschist facies conditions (400–450 °C). The microstructure and c-axis fabrics of normal limbs, inverted limb and hinge zones of a selected isoclinal fold were analyzed combining optical and scanning electron microscopy (SEM) and digital image analysis. In the normal limbs, recrystallized quartz grains show undulose extinction, relatively dry grain boundaries, c-axes at high angle to foliation and a pervasive grain shape fabric (GSF) indicating operation of crystal-plastic processes. In the inverted limb, quartz grains show more serrated and porous (“wet”) grain boundaries; the GSF is similar to that of the normal limb, but c-axes are oriented at 90° to those of the normal limb. We interpreted these characteristics as reflecting operation of solution-precipitation deformation in inverted limbs, as a consequence of grains having been rotated to an orientation that was hard to basal 〈a〉 glide, but easy to dissolution-precipitation creep. This deformation partitioning between crystal-plasticity and solution-transfer during folding/transposition of quartz may explain the common occurrence of layered quartz rocks, where individual layers show alternating c-axis fabrics with opposite asymmetries but a consistent GSF orientation. Such characteristics may reflect an earlier event of pervasive folding/transposition of a preexisting layering.  相似文献   

3.
《Journal of Structural Geology》2002,24(6-7):1087-1099
This paper investigates the geometry, microstructure, and c-axis fabrics of an outcrop scale, micaceous quartzite fold produced under greenschist facies metamorphic conditions in the Moeda quartzite, Quadrilátero Ferrı́fero granite–greenstone terrain, southeastern Brazil. The fold limbs show development of opposed SC fabrics and asymmetric quartz c-axis fabrics compatible with flexural slip along the fold surface. Towards the fold hinge, there is an increasing presence of oblique shear bands (here named S-bands) which gradually change to crenulations within the hinge zone. The oblique S-bands are interpreted to have formed through connection of several S-planes, increasing accommodation of antithetical shear along these S-planes and offset of the initial C-planes at intermediate stages of folding. This mechanism represents a kinematic inversion in the role played by the two sets of foliations in SC structures. Our observations support flexural slip for early stages of folding. However, with progressive closure of the fold, the flexural slip mechanism involves increasing contributions from oblique shear on the S-bands, thus approximating an intermediate situation between flexural slip and passive folding (shear parallel to the axial plane).  相似文献   

4.
Geometrical relations between quartz C-axis fabrics, textures, microstructures and macroscopic structural elements (foliation, lineation, folds…) in mylonitic shear zones suggest that the C-axis fabric mostly reflects the late-stage deformation history. Three examples of mylonitic thrust zones are presented: the Eastern Alps, where the direction of shearing inferred from the quartz fabric results from a late deformation oblique to the overall thrusting; the Caledonides nappes and the Himalayan Main Central Thrust zone, where, through a similar reasoning, the fabrics would also reflect late strain increments though the direction of shearing deduced from quartz fabric remains parallel to the overall thrusting direction. Hence, the sense of shear and the shear strain component deduced from the orientation of C-axis girdles relative to the finite strain ellipsoid axes are not simply related nor representative of the entire deformation history.  相似文献   

5.
Quartz microfabrics and associated microstructures have been studied on a crustal shear zone—the Main Central Thrust (MCT) of the Himalaya. Sampling has been done along six traverses across the MCT zone in the Kumaun and Garhwal sectors of the Indian Himalaya. The MCT is a moderately north-dipping shear zone formed as a result of the southward emplacement of a part of the deeply rooted crust (that now constitutes the Central Crystalline Zone of the Higher Himalaya) over the less metamorphosed sedimentary belt of the Lesser Himalaya. On the basis of quartz c- and a-axis fabric patterns, supported by the relevant microstructures within the MCT zone, two major kinematic domains have been distinguished. A noncoaxial deformation domain is indicated by the intensely deformed rocks in the vicinity of the MCT plane. This domain includes ductilely deformed and fine-grained mylonitic rocks which contain a strong stretching lineation and are composed of low-grade mineral assemblages (muscovite, chlorite and quartz). These rocks are characterized by highly asymmetric structures/microstructures and quartz c- and a-axis fabrics that indicate a top-to-the-south sense that is compatible with south-directed thrusting for the MCT zone. An apparently coaxial deformation domain, on the other hand, is indicated by the rocks occurring in a rather narrow belt fringing, and structurally above, the noncoaxial deformation domain. The rocks are highly feldspathic and coarse-grained gneisses and do not possess any common lineation trend and the effects of simple shear deformation are weak. The quartz c-axis fabrics are symmetrical with respect to foliation and lineation. Moreover, these rocks contain conjugate and mutually interfering shear bands, feldspar/quartz porphyroclasts with long axes parallel to the macrosopic foliation and the related structures/microstructures, suggesting deformation under an approximate coaxial strain path.On moving towards the MCT, the quartz c- and a-axis fabrics become progressively stronger. The c-axis fabric gradually changes from random to orthorhombic and then to monoclinic. In addition, the coaxial strain path gradually changes to the noncoaxial strain path. All this progressive evolution of quartz fabrics suggests more activation of the basal, rhomb and a slip systems at all structural levels across the MCT.  相似文献   

6.
Blueschist-facies rocks of the central Seward Peninsula cropout over 8000 km2. Protoliths were Lower Paleozoic-Precambrian(?) shallow-water miogeoclinal sediments that were metamorphosed during the Middle Jurassic. Thermobarometric estimates yield ‘peak’ metamorphic conditions of 10–12 kbar at 460 ± 30°C. Crystallization of blueschist-facies minerals was synkinematic with development of a transposition foliation. This foliation is parallel to lithologic contacts and is axial planar to recumbent mesoscopic isoclinal folds. These folds are refolded by larger scale recumbent tight to isoclinal folds. Both fold sets have hinges parallel to a well-developed N—S stretching lineation. Sheath folds are also present. The long axes of the sheath folds also parallel the stretching lineation. This deformation was non-coaxial as indicated by microstructures and quartz c-axis fabrics. Folds nucleated, then rotated into parallelism with the stretching direction. Kinematic indicators show unequivocal top-to-the-north shear sense, compatible with blueschist formation during mid-Jurassic collision between the Brooks Range continental margin and a N-facing island arc (Yukon-Koyukuk). Convergence of these two plates is believed to have been nearly N—S (in present co-ordinates).  相似文献   

7.
Asymmetric c-axis fabrics of quartz are commonly used to determine sense of vorticity in ductile shear zones. This method seems to work if the fabric pattern resembles a model fabric proposed by Lister and Hobbs (1980). Usually, however, c-axis fabrics are rather vague. The reliability of such vague fabrics was tested in a major shear zone with known sense of vorticity. Only 62% of the c-axis fabrics predict the correct sense. Great care should therefore be taken in applying this method to determine sense of vorticity.  相似文献   

8.
It has long been recognised that within zones of intense non-coaxial deformation, fold hinges may rotate progressively towards the transport direction ultimately resulting in highly curvilinear sheath folds. However, there is a surprising lack of detailed and systematic field analysis of such “evolving” sheath folds. This case study therefore focuses on the sequential development of cm-scale curvilinear folds in the greenschist-facies El Llimac shear zone, Cap de Creus, Spain. This simple shear-dominated dextral shear zone displays superb three dimensional exposures of sheath folds defined by mylonitic quartz bands within phyllonite. Increasing amounts of fold hinge curvature (δ) are marked by hinge segments rotating into sub-parallelism with the mineral lineation (Lm), whilst the acute angle between the axial-planar hinge girdle and foliation (ω) also displays a sequential reduction. Although Lm bisects the noses of sheath folds, it is also clearly folded and wrapped-around the sheath hinges. Lm typically preserves a larger angle (θ) with the fold hinge on the lower limb (L) compared to the upper (U) limb (θL > θU), suggesting that Lm failed to achieve a steady orientation on the lower limb. Adjacent sheath fold hinges forming fold pairs may display the same sense of hinge arcing to define synthetic curvature, or alternatively opposing directions of antithetic curvature. Such patterns reflect original buckle fold geometries coupled with the direction of shearing. The ratio of long/short fold limbs decreases with increasing hinge curvilinearity, indicating sheath folds developed via stretching of the short limb, rather than migrating or rolling hinge models. This study unequivocally demonstrates that both hinges of fold pairs become curvilinear with sheaths closing in the transport direction recording greater hinge-line curvilinearity compared to adjacent return hinges. This may provide a useful guide to bulk shear sense.  相似文献   

9.
Quartz c axis fabrics and microstructures have been investigated within a suite of quartzites collected from the Loch Eriboll area of the Moine Thrust zone and are used to interpret the detailed processes involved in fabric evolution. The intensity of quartz c axis fabrics is directly proportional to the calculated strain magnitude. A correlation is also established between the pattern of c axis fabrics and the calculated strain symmetry.Two kinematic domains are recognized within one of the studied thrust sheets which outcrops immediately beneath the Moine Thrust. Within the upper and central levels of the thrust sheet coaxial deformation is indicated by conjugate, mutually interfering shear bands, globular low strain detrital quartz grains whose c axes are aligned sub-parallel to the principal finite shortening direction (Z) and quartz c axis fabrics which are symmetric (both in terms of skeletal outline and intensity distribution) with respect to mylonitic foliation and lineation. Non-coaxial deformation is indicated within the more intensely deformed and recrystallized quartzites located near the base of the thrust sheet by single sets of shear bands and c axis fabrics which are asymmetric with respect to foliation and lineation.Tectonic models offering possible explanations for the presence of kinematic (strain path) domains within thrust sheets are considered.  相似文献   

10.
Mylonites derived largely from granite, pegmatite and sedimentary quartzite occupy a 500 m thick, gently N-dipping zone along the northern flank of the Coyote Mountains, west of Tucson, in southeastern Arizona. The quartzite mylonites are exceptionally well developed and occur as discrete layers and lenses, 2–5 m thick, within yet thicker, boudinaged, sill-like lenses of mylonitic pegmatite. Mylonitization took place in the Tertiary within a normal-slip ductile shear zone. The shear zones formed in response to regional extension of continental crust. Extension is along a north-south line, and N-directed sense of shear is revealed by mica fish, oblique foliations in dynamically recrystallized quartz aggregates, and asymmetric quartz c-axis fabrics. The microstructures and c-axis fabrics, taken together, disclose that ductile and brittle deformation was achieved by intense, penetrative, non-coaxial laminar flow dominated by progressive simple shear.  相似文献   

11.
A new method for determining the sense of shear in plagioclase-bearing tectonites from the (010) orientation of plagioclase feldspar is presented. The method is based on the asymmetry of the (010) plane with respect to the structural frame (foliation and lineation) and the dominant activity of the (010) slip plane in the high-temperature plasticity of plagioclase feldspar. Using examples from the Zabargad gneisses (Red Sea) the method is applied to plagioclases of An25–An45 and compared with other methods of shear-sense determination (quartz c-axis fabrics and microstructural criteria).  相似文献   

12.
The Canisp Shear Zone transects layered Lewisian gneisses near Lochinver, NW Scotland. It is a vertical ductile shear zone with a dextral shear sense, formed during Laxfordian amphibolite facies metamorphism, transposing the layering to new foliation and linear structures. Minerals in the layered gneisses show little or no shape fabric, while a strong shape fabric defines the foliation. For quartz, this shape fabric is accompanied by development of a preferred crystal orientation with fabric patterns reflecting the geometry of the shear deformation. The quartz fabric shows a pole-free area around the lineation with the c-axes concentrated in an asymmetric cross-girdle or a point maximum perpendicular to the shear plane, and a monoclinic symmetry consistent with the shear sense.  相似文献   

13.
In the Morcles nappe (lowermost Helvetic nappe in western Switzerland) two phases of folding have been established. In this article the relationship between the calcite fabrics present in folded limestones and the folding history is analysed. Calcite fabrics around the first- and second-phase folds are related to the second phase of deformation. The following fabric patterns have been found. (1) The fabric geometry around a second-phase fold from the most internal part of the inverted limb of the nappe (locality Saillon) can be related to an overall simple shear deformation sequence, the sense of shear being related to the last advance of the Morcles nappe over the underlying autochthonous sedimentary cover of the Aiguilles Rouges massif. (2) In more external parts of the inverted limb (locality Petit Pré) the fabrics around a second-phase fold are interpreted as indicating a change in the deformation history from simple shear to a strain regime which can account for shortening along the first-phase cleavage by the formation of buckle folds. This change in the local strain regime could be related to a ‘locking’ of the frontal folds of the nappe during the last overthrust shear movements. (3) In the normal limb of the nappe the fabrics around a late second-phase kink fold (locality Neimia) are earlier than the folding event and appear to be rotated passively by the fold. (4) The fabrics around a first-phase fold (locality La Routia) are later than the folding event and overprint the fold.  相似文献   

14.
In the Sambagawa schist, southwest Japan, while ductile deformation pervasively occurred at D1 phase during exhumation, low-angle normal faulting was locally intensive at D2 phase under the conditions of frictional–viscous transition of quartz (c. 300 °C) during further exhumation into the upper crustal level. Accordingly, the formation of D2 shear bands was overprinted on type I crossed girdle quartz c-axis fabrics and microstructures formed by intracrystalline plasticity at D1 phase in some quartz schists. The quartz c-axis fabrics became weak and finally random with increasing shear, accompanied by the decreasing degree of undulation of recrystallized quartz grain boundaries, which resulted from the increasing portion of straight grain boundaries coinciding with the interfaces between newly precipitated quartz and mica. We interpreted these facts as caused by increasing activity of pressure solution: the quartz grains were dissolved mostly at platy quartz–mica interface, and precipitated with random orientation and pinned by mica, thus having led to the obliteration of existing quartz c-axis fabrics. In the sheared quartz schist, the strength became reduced by the enhanced pressure solution creep not only due to the reduction of diffusion path length caused by increasing number of shear bands, but also to enhanced dissolution at the interphase boundaries.  相似文献   

15.
江西赣中新余铁矿是我国重要的铁矿类型之一,产于震旦纪火山-沉积浅变质岩系硅铁建造中。铁矿体普遍呈现"红绸带"式形态,前人认为是多期次褶皱叠加的结果。本文通过野外调查,在整个铁矿区发现,区域透入性的拉伸线理、A型褶曲十分发育,局部地段甚至出现鞘褶皱;系统测量表明,区域拉伸线理、A型褶皱的脊线走向稳定在295°~320°之间,倾角一般小于25°。推测赣中铁矿经历了强烈的塑性流变,"红绸带"式铁矿体是塑性流变,而非多期褶皱叠加变形的结果;整个铁矿区的原始形态应是一个鼻端向南封闭的巨形鞘褶皱,但变形期后不均匀的构造抬升和剥蚀,导致了不同铁矿区现今地表出露了原始形态的不同部位。结合褶皱构造对铁成矿物质的控制作用和矿区的地层出露状态分析,认为大陂-陂头、寨口-太平山-良山一带皆处于鞘褶皱的前缘部位,具有寻找富大厚矿体的找矿前景,松山-杨家桥处于鞘褶皱的西翼,平剖面上都发育小型鞘褶皱和红绸带式重叠矿体,因而也具有良好的找矿前景。  相似文献   

16.
《Geodinamica Acta》2013,26(5):345-361
The Lower Cambrian Kocayayla Group forms the stratigraphically lowermost part of the relative autochthonous Geyikdagi unit of the Taurus Range in the Sandikli (Afyon) region. It is represented by the Celiloglu Formation, Gögebakan Formation, Kestel Çayi volcanics and the Tasoluk Formation in the ascending order. The Celiloglu Formation consists of quartzites with intercalations of metapelites. The Gögebakan Formation overlies the Celiloglu Formation along a gradational boundary, and is composed of metapelites with mafic volcanic intercalations. The Gögebakan Formation grades laterally and vertically into the Kestel Çayi volcanics (Sandikli porphyroids) consisting of rhyolites with volcanosedimentary intercalations. The Tasoluk Formation is composed of yellow quartzites and it is the uppermost unit of the Kocayayla Group gradationally overlaying Kestel Çayi volcanics. The Kocayayla Group is overlain by the Sandikli unit and there is a pronounced unconformity between them. The Sandikli unit consists of white quartzites, brown dolomites, trilobite-bearing limestones and mudstones of the Middle-Upper Cambrian age. The Lower Jurassic Ilyasli Formation unconformably covers both the Kocayayla Group and Sandikli unit. The flat-laying Neogene volcanosedimentary rocks are the youngest succesion unconformably covering the all older rock units. The Kocayayla Group was deformed and underwent a low-grade metamorphism marked by sericite-chlorite-biotite/stilpnomelane-quartz paragenesis in the metapelites of the Gögebakan and Tasoluk formations and chlorite-epidote-albite-quartz and opaque assemblage in the mafic volcanic intercalations in the Gögebakan Formation, before the deposition of the trilobite-bearing Middle-Upper Cambrian succession. The Gögebakan and Tasoluk formations and the Kestel Çayi volcanics show a single penetrative foliation which mostly obliterated the primary structures whereas beds, trace fossils and cross-stratifications are partly preserved in the quarzite beds of the Celiloglu Formation. The Gögebakan Formation has rough foliation while the Kestel Çayi volcanics displays anastomizing and continuous foliation with a prominent stretching lineation. The attitude of the stretching lineation concentrates at 25/45 and 280/43 in the Kocayayla area, and s-clasts, s/c fabrics and quartz sigmoids indicate top-NNE and ESE shear sense. This difference in shear direction is related to the post-Liassic rotation in the core of southwest-verging asymmetric anticline. After removing this younger folding it is determined that, the linear fabrics has a concentration of 280/43 with top-ESE shear sense. In the Tasoluk area, the linear fabrics clusters at 320/43 with top-NW shear sense. The difference in orientation of foliation, linear fabric and shear sense in the Lower Cambrian Kocayayla Group indicate regional scale Alpine fold event(s) that rotated the earlier deformation fabrics in the Geyikdagi unit.  相似文献   

17.
Progressive ductile shearing in the Phulad Shear Zone of Rajasthan, India has produced a complex history of folding, with development of planar, non-planar and refolded sheath folds. There are three generations of reclined folds, F1, F2 and F3, with a striping lineation (L1) parallel to the hinge lines of F1. The planar sheath folds of F1 have long subparallel hinge lines at the flanks joining up in hairpin curves at relatively small apices. L1 swerves harmoniously with the curving of F1 hinge line. There is a strong down-dip mineral lineation parallel to the striping lineation in most places, but intersecting it at apices of first generation sheath folds. Both the striping and the mineral lineation are deformed in U-patterns over the hinges of reclined F2 and F3. Folding of axial surfaces and hinge lines of earlier reclined folds by later folds was accompanied by very large stretching and led to the development of non-planar sheaths. The reclined folds of all the three generations were deformed by a group of subhorizontal folds. Each generation of fold initially grew with the hinge line at a very low angle with the Y-axis of bulk non-coaxial strain and was subsequently rotated towards the down-dip direction of maximum stretching. The patterns of deformed lineations indicate that the stretching along the X-direction was extremely large, much in excess of 6000 percent.  相似文献   

18.
Transected F1 fold structures in eastern Ireland are associated with subhorizontal stretching in the S1, cleavage whereas axial planar cleavage contains a vertical elongation direction. This suggests that the non-axial planar cleavage was influenced by a distributed strike-slip ductile shear. A major NE-SW trending F1 syncline is described in which the minor F1 folds show systematic variations in cleavage transection parameters. On the steep limb of the major syncline the cleavage transects the minor F1 folds in a consistently clockwise sense, whereas on the normal limb anticlockwise transected folds are seen. Axial planar cleavage occurs at the core of the major syncline. Fold profile analysis indicates that the buckling of the layers began before the initiation of the cleavage. Open, parallel folds at the major synclinal hinge zone are progressively ‘flattened’ on the steep limb towards a major D1 sinistral transcurrent fault. The angular transection, A, attains a maximum of 15° clockwise which diminishes to <5° at higher strains adjacent to the major fault. Incremental fibre growth in pressure shadows show a two-stage tectonic strain superposition of vertical pure shear followed by sinistral transcurrent simple shear during the development of the clockwise transecting cleavage. Anticlockwise transected folds were influenced by local dextral strike-slip on the southern margins of a rigid terrane. As a regional feature, the clockwise transection is explained by a sinistral transpressive deformation of end-Silurian age.  相似文献   

19.
A non-coaxial deformation involving pre-folding initiation of cleavage perpendicular to bedding is proposed to explain non-axial planar cleavage associated with mesoscopic folds in part of the Appalachian foreland thrust-belt of southwest Virginia. Folds are gently plunging, asymmetric, upright to slightly inclined, sinusoidal forms with non-axial fanning cleavage. They show extreme local variations in type and degree of transection and the consistency of transection direction. These relations are further complicated by hinge migration.Cleavage-fan angles, bedding-cleavage angles and δ transection values appear influenced by fold tightness, and in part by fold flattening strain. Fold flattening increments are considered simultaneous with folding. Axial surface traces, and not cleavage traces, coincide with the principal extension direction in fold profiles. Geometric modelling of cleavage fanning and bedding-cleavage angle variations for various theoretical folding modes suggest that folding in limestone and sandstone layers was by tangential longitudinal strain. Significant shape modification and change in bedding-cleavage relations occurred after limb dips of 40 and 50° were attained in limestone and sandstone respectively. Mud-rock class 1C folds with convergent cleavage fans show features transitional between buckling and flexural flow. Initiation of ‘cleavage’ fabrics during layer-parallel shortening prior to significant folding may be important for cleavage evolution in some deformed rocks.  相似文献   

20.
Spatial variations in shear strain rate are expected in ductile shear zones. Where the variation is a change in shear strain perpendicular to the displacement direction, the effect is to rotate the shear slip planes. This is a mechanism for giving a rotation of fold axes into parallelism with the slip and extension direction in a rock. If such a variation in shear strain affects rocks with a strong planar anisotropy it is possible to produce a fabric with an apparent stretching lineation parallel to fold axes, but both significantly oblique to the slip direction. A possible example of this is seen in strongly deformed quartz-mica schists from Syros, Greece, where a stretching lineation is seen parallel to fold hinges over a range of fold axes orientations of at least 40°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号