首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
田巍  何敏  杨亚娟  刘海伦  袁勋  吴森  朱定伟  梅廉夫 《地球科学》2015,40(12):2037-2051
边界断裂控制断陷盆地的形成和构造格局,不同边界断裂联接模式对不同类型盆地演化具有差异性.基于井控高精度3D地震资料,通过对边界断裂几何学特征描述和“四级小层”刻画,结合裂陷Ⅰ幕边界断裂不同区段的活动差异性以及与沉积中心迁移的空间匹配关系,剖析珠江口盆地惠州凹陷北部边界断裂的形成和演化.惠州凹陷北部边界断裂始新世早期分段孤立发育,逐渐以纵向和横向双向联接的模式发展.纵向联接为断层软联接和硬联接复合联接和转换,形成转换斜坡和横向背斜,控制凹(洼)陷的结构与演化,制约沉积中心及层序的迁移.横向联接表现为转换斜坡内横向断层的多阶段联接,联接过程可划分为孤立正断层、同向叠置及硬联接3个阶段,控制转换斜坡带内沉积体系的发育和展布.研究给出了一个裂陷盆地边界断裂时空演化、复合联接和转换模式的独特案例,对丰富裂陷盆地边界断裂及其与沉积层序、凹陷演化和区域动力学机制的响应关系的研究具有积极的意义和价值.   相似文献   

2.
The Isle of Wedmore covers an area of ~ 19 km2, rises up to ~ 65 m above the surrounding lowlands of the Somerset Levels, and was an island until the Middle Ages. The topography is interpreted as having been formed by a relay ramp between two right-stepping faults (the Weare Fault to the west and the Mudgley Fault to the east) which have tens of metres of downthrow to the south, and which are probably normal faults. The relay ramp has a dip of about 3° to the SW and is breached by the NW-striking Wedmore Fault, which has up to ~ 23 m downthrow to the NE. Several NE-trending faults occur in the relay ramp, which are interpreted as having formed when the relay ramp became a contractional step when the Weare and Mudgley faults underwent sinistral reactivation, or as N–S contraction occurred during the Cenozoic. Analogues for this behaviour are presented from the Liassic rocks on the coast between Lilstock and East Quantoxhead.  相似文献   

3.
Relay zones on normal faults are unlikely to have tabular geometries as depicted in idealised models. Rotation of a relay ramp between non-parallel and non-planar relay-bounding faults will inevitably lead to strain compatibility problems causing open gaps or overlaps within the relay zone. Linkage of relay-bounding faults does not evolve from a single branch point. Rather, linkage occurs at multiple points along the fault tip lines giving rise to initially discontinuous branch lines. Where linkage occurs along a discontinuous slip-aligned branch line, displacement at different levels within the relay zone is partitioned between variable amounts of ramp rotation and slip across the branch line. The linking fault propagates when strain compatibility can no longer be maintained by continuous deformation processes, such as thickening or thinning of incompetent layers within the relay ramp. Step-like changes in vertical displacement vs. distance (d − x) profiles on horizons containing apparently intact relay ramps are probably indicative of incipient breaching and can be used predict the presence of a slip-aligned branch line in the sub-surface. Despite the complexity of the strain distribution within relay zones, the total vertical displacement across the relay remains geometrically coherent at all levels.  相似文献   

4.
传递斜坡是调节区域构造应变平衡的一类重要的构造样式。根据新的三维地震资料解释和断层位移-距离关系以及相干体切片分析,探讨了渤海湾盆地辽西低凸起传递斜坡的特征,并简要分析传递斜坡与潜山油气聚集的关系。地震剖面解释表明,辽西低凸起潜山带的传递斜坡连接辽西1号断层的下盘和辽西2号断层的上盘;在数据体相干切片上,辽西1号和2号断层呈清晰的侧接形态;而位移-距离关系显示,辽西1号断层的位移沿着断层走向自南向北逐渐传递到辽西2号断层,断层位移在传递斜坡内部基本保持守恒。传递斜坡对潜山油气聚集的意义主要表现在对储层形成和改造方面,优质储层发育是JZ25-1S潜山大油气田的重要成藏要素。  相似文献   

5.
A detailed field study of 39 centimetre- to metre-scale relay ramps from two outcrops was performed to investigate the development of a linkage criterion for segmented normal faults. We analysed the displacement distribution and the geometry of fault arrays containing three types of relay ramp: open, linked, and fully breached, in order to identify which parameters are relevant to fault linkage, and to establish a linkage criterion. Each relay ramp geometry has a specific graphical field on a relay displacementseparation diagram. The field including all the linked geometries (initiation of linkage) separates open and fully breached relay ramps and is interpreted as a value of relay displacement to separation ratio for which faults link during their overlap. A ‘linkage threshold’, in each studied fault system, is defined as the best-fit linear trend of linked relays. We discuss the scaling and the variability of the linkage criterion using published datasets from a wide variety of settings and scales. The observed linkage threshold is linear, with a slope value varying less than one order of magnitude. This suggests that linking relay ramps have self-similar geometries from centimetre- to kilometre-scale and that normal fault linkage is governed by similar fault interaction across a broad range of scales. The linkage criterion, which can be an effective tool to estimate relay ramp geometry at depth or at the earth surface, could therefore be used to improve investigations in determining fluid entrapment or in the evaluation of potential surface of seismic ruptures.  相似文献   

6.
伸展域构造变换带内部构造类型研究   总被引:2,自引:0,他引:2  
分别从传递带和调节带两个方面论述了构造变换带内的构造类型,将传递带内的构造类型分为传递断层等四种类型,将调节带内的构造类型划分为背斜等四种类型。分析了传递带与调节带内各构造类型的发育条件、几何形态特征以及它们之间的相互关系。研究认为,传递带和调节带内的构造类型主要取决于其发育位置处的构造背景及边界控制条件。  相似文献   

7.
High quality seismic reflection data acquired during hydrocarbon exploration activities provide evidence for the subsurface structure and evolution of one of England's most well known structures at outcrop: the Isle of Wight Monocline. It is generally seen as a major northerly verging monoclinal structure linked to the Purbeck Monocline to the west. The Isle of Wight Monocline is the result of the interplay between two inverted east-west trending, southerly dipping and overlapping down-to-the-south major syndepositional normal faults that were active during Triassic and Jurassic times: the Needles and Sandown faults. The area between the two faults tips forms an easterly-dipping relay ramp, down which sequences of all ages thicken. Both of these major normal faults were inverted during Cenozoic (Miocene: Alpine) compressional events, folding the overlying post-rift sequences of early Cretaceous to early Cenozoic (Palaeogene) age. Interpretation of the seismic reflection data suggest that previously unknown high angle, down-to-the-north reverse faults cut the northern limbs of both anticlines forming the composite monocline and are likely to come to crop in the steeply-dipping Chalk and/or the drift-covered Cenozoic sequences. Their identification marked a period of discussions and testing of the model by detailed field mapping. The existence and location of such faulting was proved through an iterative process with the result that a reverse fault zone is now mapped along the northern limb of the northern Sandown Anticline section of the Monocline. The main reverse faults on the Brighstone and Sandown anticlines result in up to circa 550 m of displacement at top Chalk level. It is thought that a series of smaller footwall short-cut faults affect the Cenozoic strata to the north of the main reverse fault, producing up-faulted sections of flatter-lying Cenozoic strata. Reverse displacements and the severity of folding on the inverted faults decreases on each fault segment in a complementary fashion in the area of the relay ramp as one fault takes up the movement at the expense of the other. The swing in strike of the Chalk in the area of shallowly dipping strata between Calbourne and Garstons is a result of deformation of the post-rift sequences across the relay ramp established between the overlapping fault tips of the Needles and Sandown faults and the interaction of the folds developed at the tips of the reverse faults.  相似文献   

8.
Map patterns of normal fault linkages near Summer Lake, Oregon, show a systematic relationship between échelon step-sense, oblique-slip sense, and the position of linking faults. Where the step sense is the same as the sense of oblique slip (e.g. left step and left-oblique slip), the faults are linked in the lower part of their relay ramp. Where the step-sense and slip-sense are opposite (e.g. left-step and right-oblique slip), the faults are linked in the upper part of the ramp. A boundary-element code is used to calculate the stress field around échelon normal faults during oblique slip, and the model results reveal a relationship similar to the field observations. If step sense and oblique-slip sense are the same, there is a greater potential for deformation ahead of the tip of the front fault and in the lower part of the ramp. If step sense and oblique-slip sense are opposite, there is a greater potential for deformation ahead of the tip of the rear fault and in the upper part of the ramp. The field-model comparison confirms that oblique slip modifies the mechanical interaction among fault segments and thus influences fault growth and the geometry of fault linkage.  相似文献   

9.
Bora Uzel 《Geodinamica Acta》2016,28(4):311-327
Linking of normal faults forms at all scales as a relay ramp during growth stages and represents the most efficient way for faults to lengthen during their progressive formation. Here, I study the linking of normal faulting along the active K?rka?aç Fault Zone within the west Anatolian extensional system to reconstruct fault interaction in time and space using both field- and computer-based data. I find that (i) connecting of the relay zone/ramp occurred with two breaching faults of different generations and that (ii) the propagation was facilitated by the presence of pre-existing structures, inherited from the ?zmir-Bal?kesir transfer zone. Hence, the linkage cannot be compared directly to a simple fault growth model. Therefore, I propose a combined scenario of both hangingwall and footwall fault propagation mechanisms that explain the present-day geometry of the composite fault line. The computer-based analyses show that the approximate slip rate is 0.38 mm/year during the Quaternary, and a NE–SW-directed extension is mainly responsible for the recent faulting along the K?rka?aç Fault Zone. The proposed structural scenario also highlights the active fault termination and should be considered in future seismic hazard assessments for the region that includes densely populated settlements.  相似文献   

10.
The Ming-Kush-Kökömeren Zone in the Middle Tien Shan is a transpressional structural unit, i.e., a longitudinal recent faultline depression, where manifestations of transverse shortening (intense folding, reverse and thrust faulting) are combined with left-lateral offset along the same faults; the left-lateral offset is commensurable to vertical separation along reverse and thrust faults or it even exceeds the latter. The complicated deformation within this zone has developed most intensely since the late Pliocene and reached a peak in the Pleistocene. However, the origin of this structural unit was at the onset of neotectonic stage, as evidenced from the Oligocene-lower Miocene conglomerate unit, which was formed as a product of the destruction of reactivated Hercynian thrust faults and nappes in the southern wall of the zone. The conglomerate filled a narrow ramp valley that formed in front of thrusts, probably due to the strike-slip offsets along boundary faults. Similar transpressional linear zones-Tessyk-Sary-Bulak, Uzunbulak-Oy-Kain, Kara-Köl, and Chong-Kemin (Kemin-Chilik)-are known in the Middle Tien Shan.  相似文献   

11.
《Journal of Structural Geology》1999,21(8-9):1027-1038
Large normal faults are corrugated. Corrugations appear to form from overlapping or en échelon fault arrays by two breakthrough mechanisms: lateral propagation of curved fault-tips and linkage by connecting faults. Both mechanisms include localized fault-parallel extension and eventual abandonment of relay ramps. These breakthrough mechanisms produce distinctive hanging wall and footwall geometries indicative of fault system evolution. From such geometries, we can estimate the positions of tilted relay ramps or ramp segments and ramp internal deformation in incompletely exposed or poorly imaged fault systems. We examine the evolution of normal fault corrugations at Fish Slough (California), Yucca Mountain (Nevada), and Pleasant Valley (Nevada), in the Basin and Range province. We discuss how evolution of the Pleasant Valley and Yucca Mountain systems relates to seismicity. For example, the 1915 Pleasant Valley earthquake produced four en échelon ruptures that appeared as overlapping segments of a single immature fault at depth. At Yucca Mountain, we argue that an en échelon array, which includes the Solitario Canyon and Iron Ridge faults, should be considered a single source, such that western Yucca Mountain could experience up to a Mw 6.9 earthquake compared to Mw 6.6 estimates for the largest individual segment.  相似文献   

12.
The Chalk Group of the Central Downs of the Isle of Wight forms a relay ramp between two major inverted extensional faults. Mortimore (2011) presented a structural model of this key area based on a geological map constructed from detailed logging of a limited set of exposed sections. The area has been recently mapped at 1:10,000 scale by the British Geological Survey. Our interpretation of the geological structure differs significantly from that proposed by Mortimore, and suggests that Chalk has relatively uniform dips that progressively steepen towards the hanging wall of the E-W oriented basement faults. However, a suite of mapped extensional faults indicates an element of differential movement or transpression along the main basement structures.  相似文献   

13.
正断层的分段构造型式及其扩展演化机制的核心内容可以归结为正断层的中继构造模式。本文从正断层的断块变形、断裂扩展以及断裂力学特征等角度,总结了正断层中继构造的扩展演化机制。正断层的断块变形是指分段断层位移转换形成的中继斜坡,可分为内倾和外倾两种斜坡类型,位移曲线揭示了中继带变形的特征。正断层的断裂扩展有多种扩展方式,可分为断层内、断层间和断层系扩展,且可以形成不同型式的中继构造。正断层中继构造是在三维空间扩展的,将断层边缘的断裂力学性质和断层面的放射状扩展方向相结合,可完整描述中继构造的空间分布规律。正断层形成于伸展构造环境,是控制油气和金属矿产资源的重要构造型式,结合SEDEX型矿床同生断层和岩体侵位控制的正断层控矿研究实例,初步讨论了正断层中继构造扩展演化在SEDEX型矿床和正断层相关控矿断裂成矿构造研究中的作用。  相似文献   

14.
Unlike for subaerial settings, the impact of subaqueous relay ramps on sediment dispersal is still poorly understood. A combination of analogue laboratory experiments in a sandbox with numerical flow calculations is used to simulate relay ramp topographies on rifting continental margins and to analyse the resulting turbidity current pathways and their deposits. Various scenarios are investigated, including inflow perpendicular and oblique to the relay ramp axis as well as flow constrained by an incised channel on the ramp and by a landward‐directed tilt of the ramp. Without channelling, most sedimentation takes place on the basin floor because the bulk of the flow follows the steepest gradient down the fault and into the rift basin. With a channel along the relay ramp, significant flow occurs initially down the ramp axis, but channel spillover and basinward ramp tilting combine to redirect much of the sediment down the fault slope into the basin. When the relay ramp has a landward‐oriented tilt, most of the current flows down the ramp and deposits its sediment load there and at the foot of the ramp. However, also here a considerable amount of the flow is shed over the hanging wall fault and into the basin, forming a secondary depocentre, while ponding redistributes thin deposits over a wider area of the basin. The quantitative dependence of these results on the specific ramp geometries remains to be investigated further but may bear great importance for refined sedimentary models in subaqueous rifted settings as well as for hydrocarbon exploration therein.  相似文献   

15.
转换斜坡是指两条倾向相同并在走向上叠覆的正断层之间的强烈旋转地带.此定义自20世纪50年代提出以来,尤其是在20世纪90年代后得到了深入的研究.转换斜坡是伸展盆地中传递带的一种类型,对储层沉积和烃类运聚具有重要意义.基于正断层的生长机制形成的转换斜坡具有显著的位移和演化特征,虽成因相似但规模悬殊.由于转换斜坡部位较小的...  相似文献   

16.
Crustal deformation due to fault slip depends strongly on fault geometry, and fault geometry is changed by the deformation of the crust. This feedback mechanism causes the geometrical evolution of the fault system. We have studied the progress of the geometrical evolution of a plate interface–branch fault system through numerical simulation, based on elastic–viscoelastic dislocation theory. If the plate interface is smooth, no significant change occurs in fault geometry. If the plate interface has a ramp, we observe the gradual horizontal motion of the ramp toward the hanging-wall side of the interface at half the plate convergence rate. The offset of the ramp decreases with time. The dip-angle of thrust faults branching from the plate interface increases more rapidly as the dip of the fault increases. We have applied these results to the plate interface–branch fault system at the India–Eurasia collision boundary and obtained a scenario for the tectonic development of the Himalayas for the last 30 Myr.  相似文献   

17.
Offset fluvial valleys, including rivers beheaded and deflected by strike-slip faults, have long been used to estimate horizontal displacements on the faults. Larger rivers crossing such faults, however, sometimes show either no offset or only a small amount of offset compared to smaller rivers crossing the same faults. The larger rivers with higher erosional rates may widen their valleys asymmetrically downstream of strike-slip faults, rather than being beheaded or deflected. Examples are described from the Yellow River near the NE margin of the Tibetan Plateau. River beheading and asymmetrical widening are two end-members of a fluvial valley's response to strike-slip faulting, whereas deflection is a combination of both. Recognition of the formation of such asymmetrical valleys related to strike-slip faulting will help to understand fault activity better over longer time spans and enable a re-evaluation of many fault histories worldwide.  相似文献   

18.
High-quality three-dimensional (3D) seismic reflection and borehole data from the Egersund Basin, offshore Norway are used to characterise the structural style and determine the timing of growth of inversion-related anticlines adjacent to a segmented normal fault system. Two thick-skinned normal faults, which offset Permian clastics and evaporites, delineate the north-eastern margin of the basin. These faults strike NNW-SSE, have up to 1900 m of displacement and are separated by an ESE-dipping, c. 10 km wide relay ramp. Both of these faults display exclusively normal separation at all structural levels and tip out upwards into the upper part of the Lower Cretaceous succession. At relatively shallow structural levels in the hangingwalls of these faults, a series of open, low-amplitude, fault-parallel anticlines are developed. These anticlines, which are asymmetric and verge towards the footwalls of the adjacent faults, are interpreted to have formed in response to mild inversion of the Egersund Basin. The amplitude of and apparent shortening associated with the anticlines vary along strike, and these variations mimic the along-strike variations in throw observed on the adjacent fault segments. We suggest that this relationship can be explained by along-strike changes in the propensity of the normal faults to reactivate during shortening; wider damage zones and lower angles of internal friction, coupled with higher pore fluids pressures at the fault centre, mean that reactivation is easier at this location than at the fault tips or in the undeformed country rock. Seismic-stratigraphic analysis of growth strata indicate that the folds initiated in the latest Turonian-to-earliest Coniacian (c. 88.6 Ma) and Santonian (c. 82.6 Ma); the control on this c. 6 Myr diachroneity in the initiation of fold growth is not clear, but it may be related to strain partitioning during the early stages of shortening. Anticline growth ceased in the Maastrichtian and the inversion event is therefore interpreted to have lasted at least c. 20 Myr. This study indicates that 3D seismic reflection data is a key tool to investigate the role that normal fault segmentation can play in controlling the structural style and timing of inversion in sedimentary basins. Furthermore, our results highlight the impact that this structural style variability may have on the development of structural and stratigraphic hydrocarbon traps in weakly-inverted rifts.  相似文献   

19.
Relay ramps are a common feature formed during the growth of normal fault systems. We performed analogue experiments to investigate the structure and evolution of relay ramps. An extending rubber sheet induces extension at the base of a sand pack (brittle crust analogue). Silicone bars between the rubber and the sand control the location of fault nucleation. We tested the role of fault spacing, fault length, overlap length and fault strike in the evolution of relay ramps. The modelled relay ramps evolved in three stages, characterized by the growth of the normal faults, their interaction and linkage. Interaction and linkage occurred only when the combined length of the two interacting faults was larger than eight times their spacing. The length to width ratio of the relay ramps during the interaction stage showed preferred geometries, clustering around three. The propagation of the fault tips was observed both before and after the linkage stage. Overlap length and spacing relations of the modelled relay ramps are similar to those in nature, at different scales, and can be explained using existing mechanical models. Nevertheless, the further propagation of the fault tips after linkage has not been described previously.  相似文献   

20.
The Helena salient is a prominent craton–convex curve in the Cordillera thrust belt of Montana, USA. The Lombard thrust sheet is the primary sheet in the salient. Structural analysis of fold trends, cleavage attitudes, and movement on minor faults is used to better understand both the geometry of the Lombard thrust and the kinematic development of the salient.Early W–E to WNW–ENE shortening directions in the Lombard sheet are indicated by fold trends in the center of the thrust sheet. The same narrow range of shortening directions is inferred from kinematic analysis of movement on minor faults and the orientations of unrotated cleavage planes along the southern lateral ramp boundary of the salient. As the salient developed, the amount and direction of shortening were locally modified as listric detachment faults rotated some tight folds to the NW, and as right-lateral simple shear, caused by lock-up and folding of the Jefferson Canyon fault above the lateral ramp, rotated other folds northeastward. Where the lateral ramp and frontal-oblique ramp intersect, folds were rotated back to the NW. Our interpretation of dominant W–E to WNW–ESE shortening in the Lombard sheet, later altered by local rotations, supports a model of salient formation by primary parallel transport modified by interactions with a lateral ramp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号