首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On hillslopes and agricultural fields, discrete areas of intense, localized soil erosion commonly take place in the form of migrating headcuts. These erosional features significantly increase soil loss and landscape degradation, yet the unsteady, transient, and migratory habits of headcuts complicate their phenomenological and erosional characterization. Here a unique experimental facility was constructed to examine actively migrating headcuts typical of upland concentrated flows. Essential components of the facility include a deep soil cavity with external drainage, rainfall simulator, capacity for overland flow, and a video recording technique for data collection. Results from these experiments show that: (1) after a short period of adjustment, headcut migration attained a steady-state condition, where the rate of migration, scour hole geometry, and sediment discharge remain constant with time; (2) boundary conditions of higher rates of overland flow, steeper bed slopes, and larger initial headcut heights produced systematically larger scour holes with higher rates of soil erosion; and (3) during migration, the turbulent flow structure within the scour hole remained unchanged, consisting of an overfall nappe at the brink transitioning into a reattached wall jet with two recirculation eddies within the plunge pool. The systematic behavior of headcut development and migration enabled the application of modified jet impingement theory to predict with good success the characteristics of the impinging jet, the depth of maximum scour, the rate of headcut migration, and the rate of sediment erosion. These laboratory data and the analytical formulation can be used in conjunction with soil erosion prediction technology to improve the management of agricultural areas impacted by headcut development and ephemeral gully erosion.  相似文献   

2.
To quantify spatiotemporal variation in hydraulic properties of bank gully concentrated flow, a series of scour experiments were run under water discharge rates ranging from 30 to 120 l min?1. Concentrated flows were found to be turbulent and supercritical in the upstream catchment area and downstream gully beds. As discharge increased, values of the soil erosion rate, Reynolds number (Re), shear stress, stream power, and flow energy consumption (ΔE) increased while values of the Froude number (Fr) and the Darcy–Weisbach friction factor (resistance f ) did not. With the exception of gully headcut collapse under discharge rates of 60, 90, and 120 l min?1, a declining power function trend (P < 0.05) in the soil erosion rate developed in the upstream catchment area, headcuts, and downstream gully beds. However, increasing trends were observed in temporal variations of hydraulic properties for downstream gully beds and the upstream catchment area. Despite significant differences in temporal variation between the soil erosion rate and hydraulic property values, relative steady state conditions of the soil erosion rate and ΔE were attained following an initial period of adjustment in the upstream catchment area, headcuts, and downstream gully beds under different discharge rates. A logarithmic growth of flow energy consumption per unit soil loss (ΔEu) was observed in bank gullies and the upstream catchment area as the experiment progressed, further illustrating the actual reason behind the discrepancy in temporal variation between soil erosion rates and ΔE. Results demonstrate that ΔE can be used to estimate headcut erosion soil loss, but further quantitative studies are required to quantify coupling effects between hydraulic properties and vertical variation in soil mechanical properties on temporal variation for bank gully soil erosion rates. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper we examine whether gully-head morphology can be used as an indicator for gully development and, hence, for sediment production. A survey was conducted at five hillslopes in the Sierra de Gata where different types of channel heads occur close to each other. The survey included measurements of morphologic and pedologic properties, ground surface, channel and catchment characteristics of every gully head present (n = 59). On the basis of the observed morphologies, the heads were subdivided into four types: gradual, transitional (a short inclined section), abrupt and rilled-abrupt. The analyses showed that it is possible to explain the differences of gully heads and the role of some environmental factors on the basis of their morphologies, at least for the gradual and the abrupt types. The results suggested that steep headcuts (abrupt) were formed from secondary headcuts in the channel, which migrated upstream. The abrupt headcuts were always formed in more than one soil layer of which one was a resistant (stony) layer. However, shear strength measurements (at saturation) showed that the top layer was not always the most resistant one. Width–depth relationships indicated that gradual type headcuts were controlled by fluvial processes and abrupt headcuts by a combination of fluvial and mass-wasting processes. Gradual types occurred more downslope than the abrupt types suggesting that the incisions started by fluvial processes and migrated upwards when knickpoints developed in the channel. The rilled-abrupt types are still actively retreating. Thus, the abrupt types correspond to slower retreat rates. Abrupt gully heads may deteriorate into transitional types when plunge-pool erosion becomes less effective. The conceptual model is supported by data from ephemeral gullies in two other study areas (Sierra de la Torrecilla, Spain, and Alentejo, Portugal). Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
Understanding landscape features such as gullying and soil erosion is an important issue in the long‐term dynamics and evolution of both natural, agricultural and rehabilitated (i.e. post‐mining) landscapes. Considerable research has been undertaken examining the initiation, movement and overall dynamics of such features. This study reports on a series of 34 gully heads and other erosion features, such as scour holes (five in total), located in channels in a catchment largely undisturbed by European activity in the Northern Territory, Australia over a 5 year period (2002–2007). During this period the erosion features were monitored for their headward advance/retreat, enlargement or in‐filling. The erosion features ranged in depth from 0.2 m to 1.5 m and widths of 0.3 m to 8 m. Hillslope erosion was also monitored using erosion pins. The catchment was subject to a range of rainfall regimes including extreme rainfall and a Category 5 cyclone and also was burnt every second year so that all grass cover was removed according to traditional management practice. The results of this monitoring show that the erosion features have changed little during this 5 year period. A remote sensing assessment found no relationship between erosion feature morphology and hillslope erosion. The monitored gullies heads and scour holes appear to be resilient landscape features, yet have a morphology that suggests they are ready for rapid headward movement and expansion, leading to a destabilisation of the catchment. Hillslope erosion was found to be related to wetness indices derived from a digital elevation model. Significant linkages were found between hillslope erosion and change in erosion feature depth, indicative of a strong hillslope–channel coupling. Copyright © 2010 Commonwealth of Australia  相似文献   

5.
This study investigates how medium‐term gully‐development data differ from short‐term data, and which factors influence their spatial and temporal variability at nine selected actively retreating bank gullies situated in four Spanish basin landscapes. Small‐format aerial photographs using unmanned, remote‐controlled platforms were taken at the gully sites in short‐term intervals of one to two years over medium‐term periods of seven to 13 years and gully change during each period was determined using stereophotogrammetry and a geographic information system. Results show a high variability of annual gully retreat rates both between gullies and between observation periods. The mean linear headcut retreat rates range between 0·02 and 0·26 m a–1. Gully area loss was between 0·8 and 22 m² a–1 and gully volume loss between 0·5 to 100 m³ a–1, of which sidewall erosion may play a considerable part. A non‐linear relationship between catchment area and medium‐term gully headcut volume change was found for these gullies. The short‐term changes observed at the individual gullies show very high variability: on average, the maximum headcut volume change observed in 7–13 years was 14·3 times larger than the minimum change. Dependency on precipitation varies but is clearly higher for headcuts than sidewalls, especially in smaller and less disturbed catchments. The varying influences of land use and human activities with their positive or negative effects on runoff production and connectivity play a dominant role in these study areas, both for short‐term variability and medium‐term difference in gully development. The study proves the value of capturing spatially continuous, high‐resolution three‐dimensional data using small‐format aerial photography for detailed gully monitoring. Results confirm that short‐term data are not representative of longer‐term gully development and demonstrate the necessity for medium‐ to long‐term monitoring. However, short‐term data are still required to understand the processes – particularly human activity at varying time scales – causing fluctuations in gully erosion rates. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Drainage network extension in semi‐arid rangelands has contributed to a large increase in the amount of fine sediment delivered to the coastal lagoon of the Great Barrier Reef, but gully erosion rates and dynamics are poorly understood. This study monitored annual erosion, deposition and vegetation cover in six gullies for 13 years, in granite‐derived soils of the tropical Burdekin River basin. We also monitored a further 11 gullies in three nearby catchments for 4 years to investigate the effects of grazing intensity. Under livestock grazing, the long‐term fine sediment yield from the planform area of gullies was 6.1 t ha‐1 yr‐1. This was 7.3 times the catchment sediment yield, indicating that gullies were erosion hotspots within the catchment. It was estimated that gully erosion supplied between 29 and 44% of catchment sediment yield from 4.5% of catchment area, of which 85% was derived from gully wall erosion. Under long‐term livestock exclusion gully sediment yields were 77% lower than those of grazed gullies due to smaller gully extent, and lower erosion rates especially on gully walls. Gully wall erosion will continue to be a major landscape sediment source that is sensitive to grazing pressure, long after gully length and depth have stabilised. Wall erosion was generally lower at higher levels of wall vegetation cover, suggesting that yield could be reduced by increasing cover. Annual variations in gully head erosion and net sediment yield were strongly dependent on annual rainfall and runoff, suggesting that sediment yield would also be reduced if surface runoff could be reduced. Deposition occurred in the downstream valley segments of most gullies. This study concludes that reducing livestock grazing pressure within and around gullies in hillslope drainage lines is a primary method of gully erosion control, which could deliver substantial reductions in sediment yield. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

7.
Incision as a result of fluvial erosion is an important process to model when simulating landform evolution. For gullies, it is apparent that coupled with the processes that cause incision there must be a range of processes that stop incision. Once started, rills and gullies will grow infinitely without a reduction in support area and/or being arrested by deposition and armouring. Some of these processes have been well studied under the heading of inter-rill erosion. Other limiting processes are related to the shape of the landform and how downstream deposition areas are linked geomorphically to the upstream gullies. Armouring is also an important process that reduces gully incision and extension, where the gully erodes to bedrock and the resistant base limits further development. Post-mining landscapes are new surfaces with new materials and provide the opportunity to examine gully initiation, extension and stabilization. The work presented here has largely been driven by the mining industry, where there has been a need to assess erosion over hazardous wastes like mine tailings and low-level nuclear waste. We demonstrate the usefulness of computer-based landscape evolution models and the more recent soilscape models (that include both surface and subsurface processes) to understand both fluvial and diffusive processes as well as armouring in a digital elevation model framework (as well as landscape evolution). Landscape evolution models provide insights into complex non-linear systems such as gullies. A key need is that of field data to parameterize and validate the models. It is argued that current models have more capability than field data available for parameterization and importantly the validation of model outputs.  相似文献   

8.
G. R. Hancock  K. G. Evans 《水文研究》2006,20(14):2935-2951
Gullying is a significant process in the long‐term dynamics and evolution of both natural and rehabilitated (i.e. post‐mining) landscapes. From a landscape management perspective it is important that we understand gully initiation and development, as it is well recognized that catchment disturbance can result in the development of gullies that can be very difficult to rehabilitate. This study examines gully position using geomorphic statistics relating to features such as depth, width and length in a catchment undisturbed by European activity in the Northern Territory, Australia. The results demonstrate that gullying occurs throughout the catchment and that a slope–area threshold does not exist and that gully position broadly follows the catchment area–slope relationship. Simple relationships relating catchment area and slope to gully depth, width and length provide poor results, despite these relationships having been found to apply for ephemeral gullies in cropland. The results suggest that gully initiation thresholds are low as a result of an enhanced fire regime. A threshold model for gully position that uses catchment area and slope to switch between gully and hillslope was evaluated and found broadly to capture gully position. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
The development and evolution of gullies on soil-mantled hillslopes can devastate agricultural regions and cause widespread soil and landscape degradation. Since 2000, international symposia have been organized to address gully erosion processes, and this paper and special issue provide additional context for the 7th International Symposium on Gully Erosion held at Purdue University in 2016. Several important themes of gully erosion emerged during this symposium that warranted additional discussion here. These topics include the importance and impact of technology transfer, disciplinary fragmentation as an impediment for research advancement, the difficulty in defining the erodibility of sediment within gullies, and the opportunities afforded by remote sensing technology. It is envisioned that such symposia will continue to enhance the capabilities of researchers and practitioners to monitor, model, and manage these important geomorphic processes and to mitigate landscape degradation. © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
Loess gullies are the most active and changeable landform unit on the Loess Plateau of China. Under the influence of inhomogeneous internal and external forces, various gully morphologies have been identified as specific forms of asymmetrical loess gullies in the northeastern Loess Plateau. Thus, the formation mechanisms of asymmetrical gullies should be examined to better understand the gully evolution processes in this area. In this study, a typical asymmetrical gully area and its geological background in the northeastern Loess Plateau are investigated. Then, the asymmetrical gullies are extracted and ordered under different watershed hierarchies using 5 m horizontal resolution digital elevation models. The asymmetrical gullies are characterized using the gully deviation index and gully asymmetrical coefficient to quantitatively and qualitatively describe the gully formation from the perspective of gully morphology. Subsequently, environmental factors, such as the bedrock, climate, vegetation and interactions with neighbouring watersheds, are combined to achieve an in-depth understanding of the mechanisms of asymmetrical gully formation. The results show that most watersheds shift to the right side of the watershed geometric centre line, thereby forming a specific asymmetrical gully morphology. The phenomenon in which the asymmetrical degree characteristics decrease with the increase in drainage area suggests evident morphological differences on both sides of the main channel on a small scale, and relatively weak morphological differences on both sides of the main channel on a large scale. The degree of loess gully asymmetry appears higher in the area where only the windward slope is covered by loess than in areas where all slopes are covered by loess. The interaction between adjacent watersheds also influences the formation of asymmetrical gullies. These results support the understanding of asymmetrical gully formation in relation to the underlying bedrock structure and gully reorganization, thereby contributing to the development of process-based gully evolution models.  相似文献   

11.
Gully erosion is a major cause of soil loss and severe land degradation in sub-humid Ethiopia. The objective of this study was to investigate the role and the effect of subsurface water level change on gully headcut retreat, gully formation and expansion in high rainfall tropical regions in the Ethiopian highlands. During the rainy seasons of 2017–2019, the expansion rate of 16 fixed gullies was measured and subsurface water levels were measured by piezometers installed near gully heads. During the study period, headcut retreats ranged from 0.70 to 2.35 m, with a mean value of 1.49 ± 0.56 m year−1, and average depth of the surface water level varied between 1.12 and 2.82 m, with a mean value of 2.62 m. Gully cross-section areas ranged from 2.90 to 20.90 m2, with an average of 9.31 ± 4.80 m2. Volumetric retreat of gully headcuts ranged from 4.49 to 40.55 m3 and averaged 13.34 ± 9.10 m3. Soil loss from individual gullies ranged from 5.79 to 52.31 t year−1 and averaged 17.21 ± 11.74 t year−1. The headcut retreat rate and sediment yield were closely related over the three study seasons. Elevated subsurface water levels facilitated the slumping of gully banks and heads, causing high sediment yield. When the soil was saturated, bank collapse and headcut retreat were favoured by the combination of elevated subsurface water and high rainfall. This study indicates that area exclosures are effective in controlling subsurface water level, thus reducing gully headcut retreat and associated soil loss.  相似文献   

12.
Sequential aerial photographs of a small headwater catchment in the Waiapu basin, East Coast Region, North Island, New Zealand, were interpreted to measure and analyse temporal changes in active area of gullies and gully complexes for a longer time span (1939–2003) and with higher temporal resolution compared to previous studies. We focus on the conditions leading to the development of gullies and gully complexes under pasture and forest by using topographic thresholds (slope–area relationships) of catchments for the initiation of gullies and gully complexes. In addition, the influence of two different lithologies as well as the occurrence of major rainfall events was related to gully activity. Twenty gullies and four gully complexes (occupying 62·5 ha or 12·5 per cent of the catchment area) occurred in the study catchment between 1939 and 2003. However, the majority of these were not active at all of the dates studied. Gullies developed in the sandstone‐dominated Tapuwaeroa Formation tended to attain their maximum size by 1957 with a mean catchment area of 2·1 ha. Gullies developed in mudstone of the Whangai Formation attained their maximum size in 1939 with a mean catchment area of 4·31 ha. Exceptions are gullies which developed into mass movement deposits or into an earth flow deposit as well as gullies developed under indigenous forest. Topographic threshold values for gullies under pasture and indigenous forest show that values for gullies under forest plot far above the threshold line of gullies under pasture, indicating that the topographical threshold for gully development under forest is higher compared to under pasture. A threshold value of 9·4 ha in catchment area is needed for the development of gully complexes under pasture, all located in the Whangai Formation and with the same orientation as the strike of the mudstones. Gully‐complex area and dominance of mass‐movement erosion increased with larger catchment area. A decreasing distance to the threshold line for gullies under pasture indicates a later development for gully complexes. No gully complexes developed under indigenous forest, indicating that the threshold value for gully‐complex development is higher than for gully complexes under pasture and was not reached in the study area. A model of shifting topographical threshold for gully development for a given catchment is developed which depends on land use. When a catchment has an indigenous forest cover the topographical threshold is very high. After conversion to pasture, threshold values decrease drastically. With the invasion of scrub, the threshold slowly increases and returns to a similar level to that under indigenous forest after reforestation. Development of gullies and gully complexes is a highly dynamic phenomenon, and phases of expansion and inactivity indicate that models describing only unidirectional advancing stages without periods of inactivity are not suitable. Therefore, this study adds more phases to models of gully and gully‐complex development in the East Coast Region. The threshold line for gully initiation under pasture and a value of 9·4 ha in catchment area for gully‐complex initiation permits one to predict which catchments, under similar environmental settings, develop gullies and gully complexes on a physical basis. This enables land managers to implement sustainable land‐use strategies to reduce erosion rates of gullies and gully complexes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Two gullies located in the Protva River basin (central part of European Russia, 100 Ion southwest of Moscow) were studied to investigate the history of their development during Late Holocene. This case study included detailed topographic and geomorphologic surveys, geological cross-sections, and radiocarbon dating of organic matter in gully sediments. For both gullies, incision of the long profile occurred for most of the Holocene, as indicated by the limited presence of infill sediment. However, interruptions of incisions occurred in both gullies during the last -3.5 ka (the Chugunkin gully) or -2.0 ka (the Uzkiy gully), as evident from stratigraphic interpretation of the sediment record. Periods of surface stabilization are represented by buried soil horizons, whereas relatively thick sediment layers suggest periods of predominant aggradation. Similarities and differences in discovered sequences of erosion and accumulation stages for the two gullies point out the importance of distinguishing between local and regional controls. Evidence of the role of internal system behavior and self-development in the gully long-term evolution is clear from asynchronous response of different parts of gullies. In recent times (-500 years), active agricultural development of the study territory resulted in accelerated incisions, followed by deposition of catchment-derived material. The latter was limited to the upper parts of the gullies, while incisions have continued in the middle and lower parts. The impact of human activities (-500 years) has been very limited. This suggests that within the forest zone of the Russian Plain many gullies which were earlier attributed to anthropogenic factors are, in realitv, due to natural phenomena.  相似文献   

14.
Gully erosion of cultural sites in Grand Canyon National Park is an urgent management problem that has intensified in recent decades, potentially related to the effects of Glen Canyon Dam. We studied 25 gullies at nine sites in Grand Canyon over the 2002 monsoon–erosion season to better understand the geomorphology of the gully erosion and the effectiveness of erosion‐control structures (ECS) installed by the park under the direction of the Zuni Conservation Program. Field results indicate that Hortonian overland flow leads to concentrated flow in gullies and erosion focused at knickpoints along channels as well as at gully heads. Though groundcover type, soil shear strength and permeability vary systemat‐ically across catchments, gradient and, to a lesser degree, contributing drainage area seem to be the first‐order controls on gully extent, location of new knickpoints, and ECS damage. The installed ECS do reduce erosion relative to reaches without them and initial data suggest woody checkdams are preferable to rock linings, but maintenance is essential because damaged structures can exacerbate erosion. Topographic data from intensive field surveys and detailed photogrammetry provide slope–contributing area data for gully heads that have a trend consistent with previous empirical and theoretical formulations from a variety of landscapes. The same scaling holds below gully heads for knickpoint and ECS topographic data, with threshold coefficients the lowest for gully heads, slightly higher for knickpoints, and notably higher for damaged ECS. These topographic thresholds were used with 10‐cm digital elevation models to create simple predictive models for gully extent and structure damage. The model predictions accounted for the observed gullies but there are also many false‐positives. Purely topographical models are probably inadequate at this scale and application, but models that also parameterize the variable soil properties across sites would be useful for predicting erosion problems and ECS failure. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
PROCESSES OF HEADCUT GROWTH AND MIGRATION IN RILLS AND GULLIES   总被引:1,自引:0,他引:1  
lINTRoDUCTIONHeadcuterosionwithinrills,ephemeralguIlies,classicgullies,andstreamscausesseriousenvironmentalproblems.Headcuterosionacceleratesthelossoftopsoilanddecreasestheproductivityofagriculturallands.Erodedsedimentsoftenendupinreceivingstreams,causingwaterqualityproblemsandnegativelyimpactingbioIogicalprocesses.Inadditiontolandscapedegradation,gulliesarethedominantformofdamagetoearthspillways.lfagullycanmovethroughanearthspillwayandbreachthecrestofadam,thentheimpoundedfloodwaterswiI1…  相似文献   

16.
Application of a simple headcut advance model for gullies   总被引:1,自引:0,他引:1       下载免费PDF全文
Gully erosion begins in streambanks and uplands as a consequence of adjustments in driving forces on the landscape imposed by changes in land use or climate. The deleterious effects of gullies worldwide have led to many site‐specific studies of gully form and function. In the continental United States, gully erosion in agricultural land has destroyed valuable farmland yet, prediction of gully processes remains problematic on a national scale. This research has proposed a simple method to predict gully headcut advance. When combined with SWAT hydrologic flow routines, the model predicted gully headcut advance with reasonable accuracy on a daily time step for time periods exceeding two decades. The model was tested in two distinct land resource areas of the United States with differing climate, soils, cover and drainage. The inputs for the headcut model have been kept simple as the model will be applied over large areas. Model inputs consist of headcut height, headcut resistance (based on soil erodibility and a root‐cover factor), and daily flow. The model is compared with an annual time step model used in assessment of headcut advance and appears to offer a better way to assess gully headcut advance. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
Cuesta escarpment retreat is a principal mode of exhumation in regions of layered sedimentary rock. On the Colorado Plateau, this process acts as a mechanism for maintaining high‐relief topography and facilitating drainage divide migration. Quantitative estimates of cuesta evolution are difficult to evaluate over glacial‐interglacial timescales, and thus rates of geomorphic change along individual escarpments have mostly been constrained over millions of years. Several studies have addressed this problem by dating colluvium‐mantled talus flatirons. However, this technique has not been applied systematically on the Colorado Plateau. This study quantifies geomorphic change along a single Colorado Plateau cuesta using 36Cl surface exposure dating. We present 33 ages from a single generation of talus flatirons below the Coal Cliffs of central Utah. Landscape evolution is further constrained using 14 ages from in‐situ bedrock, 3 ages from boulders on gully interfluves, and two ages from terrace alluvium. Results suggest a colluvial apron was deposited below the cuesta beginning as early as Marine Isotope Stage 3, and the latest depositional phase occurred near the Last Glacial Maximum. A switch from apron deposition to incision initiated flatiron formation sometime between 19.7 ± 2.5 and 11.8 ± 1.6 ka, broadly coincident with the transition from glacial to interglacial conditions. Our results have several important implications. Climatic changes during the end of the last glacial period appear to have shifted the balance between deposition and erosion below the Coal Cliffs, emptying the sediment reservoir at their base and increasing their height via bedrock incision. The climatic forcing could be imparted by several mechanisms, including local controls on debris generation / mobilization and base level changes exerted by transverse streams. Similar processes may have occurred during previous glacial‐interglacial transitions, implying that the escarpment retreat processes may be partially modulated by orbitally‐controlled variations in Earth's climate over larger timescales. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

18.
A laser altimeter, making 4000 measurements per second, was used to measure channel and gully morphology. The laser measurements provide quick, accurate and readily obtained data on the cross-section and morphology of channels and gullies in relation to the adjacent landscape. Although ground based techniques can be used to make these measurements, using a laser altimeter mounted in an aircraft allows data to be collected faster, with greater density and detail, and in areas with limited access for ground surveys. The laser altimeter data are valuable for measuring channel and gully cross-sections and roughness in relation to the surrounding landscape, for assessing soil loss from gullies and channels, and for providing input to the understanding of gully and channel dynamics in the landscape.  相似文献   

19.
Few models can predict ephemeral gully erosion rates (e.g. CREAMS, EGEM). The Ephemeral Gully Erosion Model (EGEM) was specifically developed to predict soil loss by ephemeral gully erosion. Although EGEM claims to have a great potential in predicting soil losses by ephemeral gully erosion, it has never been thoroughly tested. The objective of this study was to evaluate the suitability of EGEM for predicting ephemeral gully erosion rates in Mediterranean environments. An EGEM‐input data set for 86 ephemeral gullies was collected: detailed measurements of 46 ephemeral gullies were made in intensively cultivated land in southeast Spain (Guadalentin study area) and another 40 ephemeral gullies were measured in both intensively cultivated land and abandoned land in southeast Portugal (Alentejo study area). Together with the assessment of all EGEM‐input parameters, the actual eroded volume for each ephemeral gully was also determined in the field. A very good relationship between predicted and measured ephemeral gully volumes was found (R2 = 0·88). But as ephemeral gully length is an EGEM input parameter, both predicted and measured ephemeral gully volumes have to be divided by this ephemeral gully length in order to test the predictive capability of EGEM. The resulting relationship between predicted and measured ephemeral gully cross‐sections is rather weak (R2 = 0·27). Therefore it can be concluded that EGEM is not capable of predicting ephemeral gully erosion for the given Mediterranean areas. A second conclusion is that ephemeral gully length is a key parameter in determining the ephemeral gully volume. Regression analysis shows that a very significant relation between ephemeral gully length and ephemeral gully volume exists (R2 = 0·91). Accurate prediction of ephemeral gully length is therefore crucial for assessing ephemeral gully erosion rates. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
In Mediterranean areas the dynamics of gully development act as an important indicator of desertification. However, little is known about the influence of climate and land‐use changes, and almost no field data exist to assess the sensitivity of a landscape to gully erosion. Two important components of gully erosion studies are the prediction of where gullies begin and where they end. To address some of these issues, topographical thresholds for gully initiation and sedimentation in six different Mediterranean study areas were established. Field measurements of local soil surface slope (S) and drainage‐basin area (A) at the point of initiation of ephemeral gullies in intensively cultivated fields (five datasets) and permanent gullies in rangelands (three datasets) were carried out. A negative power relationship of the form S = aAb was fitted through all datasets, and defined as the mean topographical threshold for gullying in the respective area. Topographically controlled slopes of sedimentation at the gully bottom were also measured. Compared to theoretical relationships for channel initiation by overland flow, relatively low values for b are obtained, suggesting a dominance of overland flow and an influence of subsurface flow. The influence of landsliding at steeper slopes appeared from the flattening of the overall negative trend in the higher slope range (S > 0·30) of the integrated dataset. Comparing the threshold lines of our datasets to the average trend lines through data found in literature revealed that vegetation type and cover could better explain differences in topographical thresholds level than climatic conditions. In cultivated fields, soil structure and moisture conditions, as determined by the rainfall distribution, are critical factors influencing topographical thresholds rather than daily rainfall amounts of the gully‐initiating events. In rangelands, vegetation cover at the time of incision appears to be the most important factor differentiating between topographical thresholds, overruling the effect of average annual rainfall amounts. Soil texture and rock fragment cover contributed little to the explanation of the relative threshold levels. Differences in regression slopes (b) between the S–A relationships found in this study have been attributed to the soil characteristics in the different study areas, determining the relative importance of subsurface flow and Hortonian overland flow. Sedimentation slopes where both ephemeral and permanent gullies end were generally high because of the high rock fragment content of the transported sediment. A positive relationship was found between the rock fragment content at the apex of the sedimentation fan and the slope of the soil surface at this location. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号