首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Biological soil crusts (BSCs) have impacts on soil detachment process through surface covering, and binding and bonding (B&B) mechanisms, which might vary with successional stages of BSCs. This study was conducted to quantify the effects of surface covering, binding and bonding of BSCs on soil detachment capacity by overland flow in a 4 m long hydraulic flume with fixed bed. Two dominant BSC types, developed well in the Loess Plateau (the early successional cyanobacteria and the later successional moss), were tested using natural undisturbed soil samples collected from the abandoned farmlands. Two treatments of undisturbed crusts and one treatment of removing the above‐ground tissue of BSCs were designed for each BSC type. For comparison, bare loess soil was used as the baseline. The collected soil samples were subjected to flow scouring under six different shear stresses, ranging from 6.7 to 21.2 Pa. The results showed that soil detachment capacity (Dc) and rill erodibility (Kr) decrease with BSC succession, and the presence of BSCs obviously increased the critical shear stress, especially for the later successional moss crust. For the early successional cyanobacteria crust, Dc was reduced by 69.2% compared to the bare loess soil, where 37.7% and 31.5% are attributed to the surface covering and B&B, respectively. For the later successional moss crust, Dc decreased by 89.8% compared to the bare loess soil, where 68.9% and 20.9% contributed to the surface covering and B&B, respectively. These results are helpful in understanding the influencing mechanism of BSCs on soil erosion and in developing the process‐based erosion models for grassland and forestland. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Biological soil crusts (BSCs) are ubiquitous living covers that have been allowed to grow on abandoned farmlands over the Loess Plateau because the “Grain for Green” project was implemented in 1999 to control serious soil erosion. However, few studies have been conducted to quantify the effects of BSC coverage on soil hydraulic properties. This study was performed to assess the effects of BSC coverage on soil hydraulic properties, which are reflected by the soil sorptivity under an applied pressure of 0 (S 0 ) and ?3 (S 3 ) cm, saturated hydraulic conductivity (K s ), wetting front depth (WFD ), and mean pore radius (λ m ), for the Loess Plateau of China. Five classes of BSC coverage (i.e., 1–20%, 20–40%, 40–60%, 60–80%, and 80–100%) and a bare control were selected at both cyanobacteria‐ and moss‐covered sites to measure soil hydraulic properties using a disc infiltrometer under 2 consecutive pressure heads of 0 and ?3 cm, allowing the direct calculation of S 0 , S 3 , K s , and λ m . The WFD was measured onsite using a ruler immediately after the experiments of infiltration. The results indicated that both cyanobacteria and moss crusts were effective in changing the soil properties and impeding soil infiltration. The effects of moss were greater than those of cyanobacteria. Compared to those of the control, the S 0 , S 3 , K s , WFD , and λ m values of cyanobacteria‐covered soils were reduced by 13.7%, 11.0%, 13.3%, 10.6%, and 12.6% on average, and those of moss‐covered soils were reduced by 27.6%, 22.1%, 29.5%, 22.2%, and 25.9%, respectively. The relative soil sorptivity under pressures of 0 (RS 0 ) and ?3 (RS 3 ) cm, the relative saturated hydraulic conductivity (RK s ), the relative wetting front depth (RWFD ), and the relative mean pore radius (m ) decreased exponentially with coverage for both cyanobacteria‐ and moss‐covered soils. The rates of decrease in RS 0 , RS 3 , RK s , RWFD , and m of cyanobacteria were significantly slower than those of moss, especially for the coverage of 0–40%, with smaller ranges. The variations of soil hydraulic properties with BSC coverage were closely related to the change in soil clay content driven by the BSC coverage on the Loess Plateau. The results are useful for simulating the hydraulic parameters of BSC‐covered soils in arid and semiarid areas.  相似文献   

3.
The factors influencing soil erosion may vary with scale. It remains unclear whether the spatial variation in soil erosion resistance is controlled by regional variables (e.g. precipitation, temperature, and vegetation zone) or by local specific variables (e.g. soil properties, root traits, land use, and farming operations) when the study area enlarges from a hillslope or catchment to the regional scale. This study was performed to quantify the spatial variations in soil erosion resistance to flowing water under three typical land uses along a regional transect on the Loess Plateau and to identify whether regional or local specific variables are responsible for these changes. The results indicated that the measured soil detachment capacities (Dc) of cropland exhibited an irregular trend along the regional transect. The Dc of grassland increased with mean annual precipitation, except for two sites (Yijun and Erdos). The measured Dc of woodland displayed an inverted ‘U’ shape. The changes in rill erodibility (Kr) of three land uses were similar to Dc, whereas no distinguishable trend was found for critical shear stress (τc). No significant correlation was detected between Dc, Kr and τc, and the regional variables. The spatial variation in soil erosion resistance could be explained reasonably by changes in soil properties, root traits, land use, and farming operations, rather than regional variables. The adjustment coefficient of Kr for grassland and woodland could be well simulated by soil cohesion and root mass density (R2 = 0.70, P < 0.01), and the adjustment coefficient of critical shear stress could be estimated with aggregate stability (R2 = 0.57, P < 0.01). The results are helpful for quantifying the spatial variation in soil detachment processes by overland flow and to develop process‐based erosion model at a regional scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Plant litter can be incorporated into topsoil by a natural process, affecting the soil erosion process. This is a widespread phenomenon in erosion-prone areas. This study was conducted to investigate the effect of litter incorporation on the process of soil detachment on the Loess Plateau, China. Four common plant litters (Bothriochloa ischaemum L. Keng., Artemisia sacrorum Ledeb., Setaria viridis L. Beauv., and Artemisia capillaris Thunb.) were collected, then incorporated into the silt loam soil at five rates (0.1, 0.4, 0.7, 1.0, and 1.3 kg m−2) on the basis of our field investigation. Twenty litter–soil treatments and one bare soil control were prepared. After 50 days of natural stabilization, 30 soil samples of each treatment were collected. We used a flume test to scour the soil samples under six flow shear stress conditions (5.66, 8.31, 12.21, 15.55, 19.15, and 22.11 Pa). The results showed that the different incorporated litter masses and morphological characteristics, such as litter tissue density (ranging from 0.52 to 0.68 g cm−3), length density (2.34 to 91.00 km m−3), surface area density (LSAD; 27.9 to 674.2 m2 m−3), and volume ratio (0.003 to 0.050 m3 m−3), caused varied soil detachment capacities (0.043 to 4.580 kg·m−2·s−1), rill erodibilities (0.051 to 0.237 s m−1), and critical shear stresses (2.02 to 6.83 Pa). The plant litter incorporated within the soil reduced the soil detachment capacities by 38%–59%, lowered the rill erodibilities by 32%–46%, and increased the critical shear stresses by 98%–193% compared with the bare soil control. The soil containing B. ischaemum (L.) Keng. litter was more resistant to erosion. By comparing different parameters, we found that the contact area between the litter and soil was the main factor affecting the soil detachment process. The soil erosion resistance increased with the increasing contact area between the soil and litter. Furthermore, the litter incorporation effect on rill erodibility can be comprehensively reflected by LSAD (R2 = .93; Nash–Sutcliffe efficiency = 0.79), which could be used to adjust the rill erodibility parameter in physical process-based soil erosion models.  相似文献   

5.
Soil detachment in concentrated flow is due to the dislodging of soil particles from the soil matrix by surface runoff. Both aggregate stability and shear strength of the topsoil reflect the erosion resistance of soil to concentrated runoff, and are important input parameters in predicting soil detachment models. This study was conducted to develop a formula to predict soil detachment rate in concentrated flow by using the aggregate stability index (As), root density (Rd) and saturated soil strength (σs) in the subtropical Ultisols region of China. The detachment rates of undisturbed topsoil samples collected from eight cultivated soil plots were measured in a 3.8 m long, 0.2 m wide hydraulic flume under five different flow shear stresses (τ = 4.54, 9.38, 15.01, 17.49 and 22.54 Pa). The results indicated that the stability index (As) was well related with soil detachment rate, particularly for results obtained with high flow shear stress (22.54 Pa), and the stability index (As) has a good linear relationship with concentrated flow erodibility factors (Kc). There was a positive linear relationship between saturated soil strength (σs) and critical flow shear stress (τc) for different soils. A significant negative exponential relationship between erodibility factors (Kc) and root density (Rd) was detected. This study yielded two prediction equations that allowed comparison of their efficiency in assessing soil detachment rate in concentrated flow. The equation including the root density (Rd) may have a better correlation coefficient (R2 = 0.95). It was concluded that the formula based on the stability index (As), saturated soil strength (σs) and root density (Rd) has the potential to improve methodology for assessing soil detachment rate in concentrated flow for the subtropical Chinese Ultisols. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Vegetation restoration is identified as an effective approach to control soil erosion and affects soil detachment and resistance to concentrated flow on the Loess Plateau. However, the effects of vegetation restoration at gully heads in loess-tableland remains unclear. This study was performed to investigate the effects of nine vegetation restoration types at gully heads on soil detachment rate (Dr) and soil resistance to concentrated flow (i.e. soil erodibility, Kr and critical shear stress, τc). Undisturbed soil samples were collected from nine vegetation-restored lands and one slope cropland (as the control) and were subjected to a hydraulic flume to obtain Dr values of gully heads under six inflow discharges (0.5–3.5 L s-1). The results showed that the Dr values of nine revegetated gully heads were 77.11% to 95.81% less than that of slope cropland, and the grassland dominated by Cleistogenes caespitosa and the shrubland dominated by Hippophae rhamnoides had a relatively greater decrease in Dr than those of other seven restoration types. The Dr value of nine revegetated gully heads could be better simulated by stream power than by flow velocity and shear stress and was also significantly affected by soil disintegration rate (positively), soil bulk density, saturated hydraulic conductivity, organic matter content, and water-stable aggregate stability (negatively). Additionally, roots with diameters of 0 to 0.5 mm showed a greater effect on Dr than those with larger diameters. Compared to cropland, the nine restored types reduced Kr by 76.26% to 94.26% and improved τc by 1.51 to 4.68 times. The decrease in Kr and the increase in τc were significantly affected by organic matter content, water-stable aggregate, mean weight diameter of aggregate and root mass density. The combination of grass species (Cleistogenes caespitosa) and shrub (Hippophae rhamnoides) could be considered the best vegetation restoration types for improving soil resistance of gully heads to concentrated flow. © 2019 John Wiley & Sons, Ltd.  相似文献   

7.
The effects of root systems on soil detachment by overland flow are closely related to vegetation types. The objective of this study was to quantify the effects of two gramineous roots (Paspalum mandiocanum with shallow roots and Pennisetum giganteum with deep roots) on soil detachment capacity, rill erodibility, and critical shear stress on alluvial fans of benggang in south-east China. A 4-m-long and 0.12-m-wide flume was used. Slope steepness ranged from 9% to 27%, and unit flow discharge ranged from 1.39 × 10−3 to 4.19 × 10−3 m2 s−1. The mean detachment capacities of P. mandiocanum and P. giganteum lands were 18% and 38% lower than that of bare land, respectively, and the effects of root on reducing soil detachment were mainly reflected in the 0- to 5-cm soil layer. The most important factors in characterizing soil detachment capacity were root length density and soil cohesion, and soil detachment capacity of the two grass lands could be estimated using flow shear stress, soil cohesion, and root length density (NSE = 0.90). With the increase in soil depth, rill erodibility increased, whereas shear stress decreased. The mean rill erodibilities of P. mandiocanum and P. giganteum lands were 81% and 61% as much as that of bare land, respectively. Additionally, rill erodibilities of the two grass lands could be estimated as an exponential function by root length density and soil cohesion (NSE = 0.88). The mean critical shear stress of P. mandiocanum and P. giganteum lands was 1.29 and 1.39 times that of bare land, respectively, and it could be estimated with a linear function by root length density (NSE = 0.76). This study demonstrated that planting of the two grasses P. mandiocanum and P. giganteum could effectively reduce soil detachment and enhance soil resistance to erosion on alluvial fans, with the deep roots of P. giganteum being more effective than the shallow roots of P. mandiocanum. The results are helpful for understanding the influencing mechanism of root systems on soil detachment process.  相似文献   

8.
Accurate prediction of soil detachment capacity is fundamental to establish process-based erosion models and improve soil loss assessment. Few studies were conducted to reveal the mechanism of detachment process for yellow soil on steep cropland in the subtropical region of China using field experiments. This study was performed to determine soil detachment characteristics and explore the relationships between soil detachment capacity (D c) and flow rate, slope gradient, mean velocity, shear stress, stream power and unit stream power. Field experiments were conducted on intact soil with flow rates ranging from 0.2 × 10−3 to 0.5 × 10−3 m−3 s−1 and slope gradients varying from 8.8 to 42.4%. The results showed the following. (a) D c of yellow soil was smaller than other soils because of its high clay content. (b) D c was more susceptible to flow than to slope gradient. Power functions were derived to depict the relationship between D c and the flow rate and slope gradient (R2 = 0.91). (c) D c was better simulated by power functions of the stream power (R2 = 0.83) than functions of the shear stress or the unit stream power. (d) Considering its accuracy, simplicity and accessibility, the power function based on flow rate and slope gradient is recommended to predict D c of yellow soil in the field. The results of this study provide useful support for revealing soil detachment mechanism and developing process-based soil erosion models for the subtropical region of China.  相似文献   

9.
Soil erosion in sloping cropland is a key water and soil conservation issue in the Loess Plateau region, China. How surface roughness influences soil detachment remains unclear due to the inconsistent results obtained from existing studies. The objectives of the present study were to evaluate the effects of tillage practices on soil detachment rate in sloping cropland and establish an accurate empirical model for the prediction of soil detachment rates. A series of movable bed experiments were conducted on sloping surfaces under three different tillage practices (manual dibbling, manual hoeing, and contour drilling), with a smooth surface (non-tillage) as a control. The research indicated that soil detachment rate significantly increased with roughness (p < 0.05) since the average soil detachment rate was the highest under the contour drilling treatment (6.762 g m−2 s−1), followed by manual hoeing (4.180 g m−2 s−1), and manual dibbling (3.334 g m−2 s−1); the lowest detachment rate was observed under the non-tillage treatment (3.214 g m−2 s−1). Slope gradient and unit discharge rate were positively correlated with soil detachment rate and proved to be more influential than soil surface roughness. Four composite hydraulic parameters were introduced to estimate soil detachment rate on tilled surfaces. Regression analyses revealed that stream power was the most effective predictor of soil detachment rate compared with unit length shear force, shear stress, and unit stream power. By integrating surface roughness as a variable, the detachment rate could be accurately described as a nonlinear function of stream power and surface roughness. The results of the present study indicate that tillage practice could influence soil loss on sloping cropland, considering the higher soil detachment rates under all tillage practices tested compared with non-tillage. The results are attributed mainly to concentrated flow caused by the high water storage levels on tilled surfaces, which could damage surface microtopography and, subsequently, the development of headcuts.  相似文献   

10.
Biological soil crust (BSC), as a groundcover, is widely intergrown with grass. The effects of grass combined with BSCs on slope hydrology and soil erosion during rainfall are still unclear. In this study, simulated rainfall experiments were applied to a soil flume with four different slope cover treatments, namely, bare soil (CK), grass cover (GC), BSC, and GC + BSC, to observe the processes of runoff and sediment yield. Additionally, the soil moisture at different depths during infiltration was observed. The results showed that the runoff generated by rainfall for all treatments was in the following order: BSC > GC + BSC > CK > GC. Compared with CK, GC promoted infiltration, and BSC inhibited infiltration. The BSCs obviously inhibited infiltration at a depth of 8 cm. When the rainfall continued to infiltrate down to 16 and 24 cm, the effects of grass on promoting infiltration were stronger than those of BSCs on inhibiting infiltration. Compared with CK, the flow velocity of the BSC, GC and GC + BSC treatments was reduced by 62.8%, 32.3% and 68.3%, respectively. The BSCs and grass increased the critical shear stress by increasing the resistance. Additionally, the average sediment yield of GC and both treatments with BSCs was reduced by 80.8% and >99%, respectively, compared with CK. The soil erosion process was dominated by the soil detachment capacity in the CK, BSC and GC + BSC treatments, while the GC treatment showed a transport-limited process. This study provides a scientific basis for the reasonable spatial allocation of vegetation in arid and semiarid areas and the correction of vegetation cover factors in soil erosion prediction models.  相似文献   

11.
Measurements of temporal variations in soil detachability under different land uses are badly needed to develop new algorithms or evaluate the existing ones for temporal adjustment of soil detachability in continuous soil erosion models. Few studies have been conducted in the Loess Plateau to quantify temporal variations in detachment rate of runoff under different land uses. The objectives of this study were to investigate the temporal variations of soil detachment rate under different land uses and to further identify the potential factors causing the change in detachment rate in the Loess Plateau. Undisturbed soil samples were collected in the fields of arable land (millet, soybean, corn, and potato), grassland, shrub land, wasteland, and woodland and tested in a laboratory flume under a constant hydraulic condition. The measurements started in mid‐April and ended in early October, 2006. The results showed that soil detachment rate of each land use fluctuated considerably over time. Distinctive temporal variation in detachment rate was found throughout the summer growing season of measurement in each land use. The maximum detachment rates of different land uses varied from 0·019 to 0·490 kg m–2 s–1 and the minimum detachment rates ranged from 0·004 to 0·092 kg m–2 s–1. Statistical analysis using a paired‐samples t‐test indicated that variations in soil detachment rate differed significantly at the 0·05 level between land uses in most cases. The major factors responsible for the temporal variation of soil detachment were tillage operations (such as planting, ploughing, weeding, harvesting), soil consolidation, and root growth. The influence of tillage operations on soil detachment depended on the degree of soil disturbance caused by the operations. The consolidation of the topsoil over time after tillage was reflected by increases in soil bulk density and soil cohesion. As soil bulk density and cohesion increased, detachment rate decreased. The impact of root density was inconclusive in this study. Further studies are needed to quantify the effects of root density on temporal variations of soil detachment. This work provides useful information for developing temporal adjustments to soil detachment rate in continuous soil erosion models in the Loess Plateau. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Periodic submersion and exposure due to the operation of the Three Gorges Reservoir (TGR) alter the soil properties and plant characteristics at different elevations within the water level fluctuation zone (WLFZ), possibly influencing the soil detachment capacity (Dc), but the vertical heterogeneity of this effect is uncertain. Soil samples were taken from 6 elevation segments (5 m per segment) along a slope profile in the WLFZ of the TGR to clarify the vertical heterogeneity of Dc. Scouring experiments were conducted at 5 slope gradients (17.6%, 26.8%, 36.4%, 46.6%, and 57.7%) and 5 flow rates (10, 15, 20, 25, and 30 L min−1) to determine Dc. The results indicate that the soil properties and biomass parameters of the WLFZ exhibit strongly vertical heterogeneity. Dc fluctuates with increasing elevation, with maximum and minimum average values at elevations of 145–150 m and 165–170 m, respectively. Linear equations accurately describe the relationships between Dc and hydrodynamic parameters, for which the shear stress (τ), stream power (ω), and unit energy of water-carrying section (E) perform much better than the unit stream power (U). Furthermore, a clear improvement is achieved when using a general index of flow intensity to estimate Dc. Furthermore, Dc is significantly and negatively correlated with the mean weight diameter (MWD, p < 0.05) and organic matter content (p < 0.01) but not significantly correlated with other soil properties (p > 0.05). The rill erodibility at elevations of 145–150 m and 170–175 m is greater than that at other elevations. The critical hydraulic parameters were highest in the 165–170 m segments. Both the rill erodibility and the critical parameters fluctuate vertically along the sloping surface. This research highlights the vertical heterogeneity of Dc and is helpful for better understanding the mechanisms responsible for soil detachment in the WLFZ of the TGR.  相似文献   

13.
Near soil surface characteristics change significantly with vegetation restoration, and thus, restoration strategies likely affect soil erodibility. However, few studies have been conducted to quantify the effects of vegetation restoration strategies on soil erodibility in regions experiencing rapid vegetation restoration. This study was conducted to evaluate the effects of vegetation restoration strategies on soil erodibility, reflected by soil cohesion (Coh), penetration resistance (PR), saturated conductivity (Ks), number of drop impacts (NDI), mean weight diameter of soil aggregates (MWD), and soil erodibility K factor on the Loess Plateau. One slope farmland and five 25-year-restored lands covered by old world bluestem, korshinsk peashrub, shrub sophora, sea-buckthorn, and black locust were selected as test sites. The old world bluestem was restored via natural succession, while the other four lands were restored by artificial planting. A comprehensive soil erodibility index (CSEI) was produced by a weighted summation method to quantify the effects of vegetation restoration strategies on soil erodibility completely. The results showed that Coh, Ks, NDI, and MWD of the five restored lands were greater than those of the slope farmland. However, the PR and K of the five restored lands were less than those of the slope farmland. CSEI varied greatly under different restoration strategies, from 1 to 0.214. Compared with the control, these indices decreased on average by 68.2%, 78.6%, 72.7%, 75.8%, and 62.8% for old world bluestem, korshinsk peashrub, shrub sophora, sea-buckthorn, and black locust, respectively. The variation in soil erodibility was significantly influenced by biological crust thickness, bulk density, organic matter content, plant litter density, and root mass density. Shrub-lands via artificial planting, especially korshinsk peashrub, were considered the most effective restoration strategies to reduce soil erodibility on the Loess Plateau. The results are helpful for selecting vegetation restoration strategies and asking their benefits in controlling soil erosion. © 2018 John Wiley & Sons, Ltd.  相似文献   

14.
To study the effects of biological soil crusts (BSCs) on hydrological processes and their implications for disturbance in the Mu Us Sandland, the water infiltration, evaporation and soil moisture of high coverage (100% BSCs), middle coverage (40% BSCs) and low coverage (0% BSCs, bare sand) of moss‐dominated crusts were conducted in this study, respectively. The conclusions are as follows: (1) the main effects of moss‐dominated crusts in the Mu Us Sandland on the infiltration of rainwater were to reduce the infiltration depths and to retain the limited rainwater in shallow soil; (2) moss‐dominated crusts have no significant effects on daily evaporation when the volumetric water content at 4 cm depth in 100% BSCs (VWC4) was over 24.7%, on enhanced daily evaporation when the VWC4 ranged from 6.5% to 24.7% and on reduced daily evaporation when the VWC4 was less than 6.5%; and (3) decreasing the coverage of moss‐dominated crusts (from 100% to 40%) did not significantly change its effects on infiltration, evaporation and soil moisture. Our results demonstrated that for the growth and regeneration of shrubs, which were dominated by Artemisia ordosica in the Mu Us Sandland, high coverage of moss‐dominated crusts has negative effects on hydrological processes, and these negative effects could not be significantly reduced by decreasing the coverage of moss‐dominated crusts from 100% to 40%. Therefore, for the sustained and healthy development of shrub communities in the Mu Us Sandland, it is necessary to take appropriate measures for the well‐developed BSCs in the sites with high vegetation coverage in the rainy season. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The detachment capacity (Dc) and transport capacity (Tc) of overland flow are important variables in the assessment of soil erosion. They determine respectively the lower and upper limit of sediment transport by runoff and therefore control detachment and deposition pro‐cesses. In this study, the detachment and transport capacity of runoff was investigated by rainfall simulations and overland flow experiments on small field plots. On the bare field plots, it was found that Tc was strongly related to total runoff discharge. This was also observed for the plots covered by maize residues, but Tc was less due to the lower runoff velocity. A simple regression equation was derived to estimate Tc for both bare and covered soil. Comparing our observations with Tc equations mentioned in the literature revealed that Tc equations based on laboratory experiments overestimated, on average, our measurements. Although Tc can be assessed more easily in laboratory experiments, the applicability of the results to field conditions remains questionable. Detachment by runoff was also related to total runoff discharge. The Dc values were, however, 4–50 times smaller than the Tc at corresponding high and low runoff discharge. This indicates that detachment by runoff constitutes only part of the transported sediment. Interrill erosion supplies an important additional amount of sediment. In this study, however, only sealed soils were considered. In the case of freshly tilled, loose soils, the Dc of runoff may be larger, resulting in a larger contribution to the total soil loss. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Flume experiments simulating concentrated runoff were carried out on remolded silt loam soil samples (0·36 × 0·09 × 0·09 m3) to measure the effect of rainfall‐induced soil consolidation and soil surface sealing on soil erosion by concentrated flow for loess‐derived soils and to establish a relationship between soil erodibility and soil bulk density. Soil consolidation and sealing were simulated by successive simulated rainfall events (0–600 mm of cumulative rainfall) alternated by periods of drying. Soil detachment measurements were repeated for four different soil moisture contents (0·04, 0·14, 0·20 and 0·31 g g?1). Whereas no effect of soil consolidation and sealing is observed for critical flow shear stress (τcr), soil erodibility (Kc) decreases exponentially with increasing cumulative rainfall depth. The erosion‐reducing effect of soil consolidation and sealing decreases with a decreasing soil moisture content prior to erosion due to slaking effects occurring during rapid wetting of the dry topsoil. After about 100 mm of rainfall, Kc attains its minimum value for all moisture conditions, corresponding to a reduction of about 70% compared with the initial Kc value for the moist soil samples and only a 10% reduction for the driest soil samples. The relationship estimating relative Kc values from soil moisture content and cumulative rainfall depth predicts Kc values measured on a gradually consolidating cropland field in the Belgian Loess Belt reasonably well (MEF = 0·54). Kc is also shown to decrease linearly with increasing soil bulk density for all moisture treatments, suggesting that the compaction of thalwegs where concentrated flow erosion often occurs might be an alternative soil erosion control measure in addition to grassed waterways and double drilling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Biocrust effects on soil infiltration have attracted increasing attention in dryland ecosystems, but their seasonal variations in infiltrability have not yet been well understood. On the Chinese Loess Plateau, soil infiltrability indicated by saturated hydraulic conductivity (Ks) of biocrusts and bare soil, both on aeolian sand and loess soil, was determined by disc infiltrometer in late spring (SPR), midsummer (SUM), and early fall (FAL). Then their correlations with soil biological and physiochemical properties and water repellency index (RI) were analysed. The results showed that the biocrusts significantly decreased Ks both on sand during SPR, SUM, and FAL (by 43%, 66%, and 35%, respectively; P < .05) and on loess (by 42%, 92%, and 10%, respectively; P <.05). As compared with the bare soil, the decreased Ks in the biocrusted surfaces was mostly attributed to the microorganism biomass and also to the increasing content of fine particles and organic matter. Most importantly, both the biocrusts and bare soil exhibited significant (F ≥ 11.89, P ≤ .003) seasonal variations in Ks, but their patterns were quite different. Specifically, the Ks of bare soil gradually decreased from SPR to SUM (32% and 42% for sand and loess, respectively) and FAL (29% and 39%); the Ks of biocrusts also decreased from SPR to SUM (59% and 92%) but then increased in FAL (36% and 588%). Whereas the seasonal variations in Ks of the biocrusts were closely correlated with the seasonal variations in RI, the RI values were not high enough to point at hydrophobicity. Instead of that, the seasonal variations of Ks were principally explained by the changes in the crust biomass and possibly by the microbial exopolysaccharides. We conclude that the biocrusts significantly decreased soil infiltrability and exhibited a different seasonal variation pattern, which should be carefully considered in future analyses of hydropedological processes.  相似文献   

18.
Vegetation restoration has significant effects on soil properties and vegetation cover and thus affects soil detachment by overland flow. Few studies have been conducted to evaluate this effect in the Loess Plateau where a Great Green Project was implemented in the past decade. This study was carried out to quantify the effects of age of abandoned farmland under natural vegetation restoration on soil detachment by overland flow and soil resistance to erosion as reflected by soil erodibility and critical shear stress. The undisturbed soil samples were collected from five abandoned farmlands with natural restoration age varying from 3 to 37 years. The samples were subjected to flow scouring in a 4.0 m long by 0.35 m wide hydraulic flume under six different shear stresses ranging from 5.60 to 18.15 Pa. The results showed that the measured soil detachment capacities in currently cultivated farmland were 24.1 to 35.4 times greater than those of the abandoned farmlands. For the abandoned farmlands, soil detachment capacities fluctuated greatly due to the complex effects of root density and biological crust thickness, and could be simulated well by flow shear stress and biological crust thickness with a power function (NSE = 0.851). Soil erodibility of abandoned farmlands decreased gradually with restoration age and reached a steady stage when restoration age was greater than 28 years. The critical shear stress of the natural abandoned farmlands declined when restoration age was less than 18 years and then increased due to the episodic influences of vegetation recovery and biological crust development. More studies in the Loess Plateau are necessary to quantify the relationship between soil detachment capacity and biological crust thickness for better understanding the mechanism of soil detachment under natural vegetation restoration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Surface hydrological behaviour is important in drylands because it affects the distribution of soil moisture and vegetation and the hydrological functioning of slopes and catchments. Microplot scale run‐off can be relatively easily measured, i.e. by rainfall simulations. However, slope or catchment run‐off cannot be deduced from microplots, requiring long‐time monitoring, because run‐off coefficients decrease with increasing drainage area. Therefore, to determine the slope length covered by run‐off (run‐off length) is crucial to connect scales. Biological soil crusts (BSCs) are good model systems, and their hydrology at slope scale is insufficiently known. This study provides run‐off lengths from BSCs, by field factorial experiments using rainfall simulation, including two BSC types, three rain types, three antecedent soil moistures and four plot lengths. Data were analysed by generalized linear modelling, including vascular plant cover as covariates. Results were the following: (i) the real contributing area is almost always much smaller than the topographical contributing area; (ii) the BSC type is key to controlling run‐off; run‐off length reached 3 m on cyanobacterial crust, but hardly over 1 m on lichen crust; this pattern remained through rain type or soil moisture; (iii) run‐off decreased with BSC development because soil sealing disappears; porosity, biomass and roughness increase and some changes occur in the uppermost soil layer; and (iv) run‐off flow increased with both rain type and soil moisture but run‐off coefficient only with soil moisture (as larger rains increased both run‐off and infiltration); vascular plant cover had a slight effect on run‐off because it was low and random. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Methods for predicting unit plot soil loss for the ‘Sparacia’ Sicilian (Southern Italy) site were developed using 316 simultaneous measurements of runoff and soil loss from individual bare plots varying in length from 11 to 44 m. The event unit plot soil loss was directly proportional to an erosivity index equal to (QREI30)1·47, being QREI30 the runoff ratio (QR) times the single storm erosion index (EI30). The developed relationship represents a modified version of the USLE‐M, and therefore it was named USLE‐MM. By the USLE‐MM, a constant erodibility coefficient was deduced for plots of different lengths, suggesting that in this case the calculated erodibility factor is representative of an intrinsic soil property. Testing the USLE‐M and USLE‐MM schemes for other soils and developing simple procedures for estimating the plot runoff ratio has practical importance to develop a simple method to predict soil loss from bare plots at the erosive event temporal scale. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号