首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
This paper sheds light on the hydrodynamic conditions of transport and sedimentary effects of wind‐induced water currents produced during strong windstorms in low gradient systems. Repeated field surveys were conducted in a playa lake in central Spain to determine the impacts of major winter storms on the bed form morphology in real time. The succession of storms that passed through the area from mid‐December 2013 to early February 2014 left behind a variety of sedimentary structures: mainly ripple marks showing complex patterns and erosional structures. The latter include obstacle scours, grooves and other tool marks. In situ observations revealed that strong storm events in almost flat, extremely shallow lakes (less than 5 cm) have enough hydraulic energy to erode and remove high volumes of sediments and may also lead to large stones sliding across the bed, thus creating long grooves. Sole marks found in ancient continental successions have been typically attributed to fluvial conditions. We suggest that shallow lake basins should not be discounted when storm‐generated structures are preserved in ancient rocks. The identification of such sedimentary structures provides valuable information for reconstructing hydrodynamic conditions and paleoclimatic conditions in semi‐arid environments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Under natural conditions, barrier islands might grow vertically and migrate onshore under the influence of long‐term sea level rise. Sediment is transported onshore during storm‐induced overwash and inundation. However, on many Dutch Wadden Islands, dune openings are closed off by artificial sand‐drift dikes that prevent the influx of sediment during storms. It has been argued that creating openings in the dune row to allow regular flooding on barrier islands can have a positive effect on the sediment budget, but the dominant hydrodynamic processes and their influence on sediment transport during overwash and inundation are unknown. Here, we present an XBeach model study to investigate how sediment transport during overwash and inundation across the beach of a typical mesotidal Wadden Sea barrier island is influenced by wave, tide and storm surge conditions. Firstly, we validated the model XBeach with field data on waves and currents during island inundation. In general, the XBeach model performed well. Secondly, we studied the long‐term sediment transport across the barrier island. We distinguished six representative inundation classes, ranging from frequently occurring, low‐energy events to infrequent, high‐energy events, and simulated the hydrodynamics and sediment transport during these events. An analysis of the model simulations shows that larger storm events cause larger cross‐shore sediment transport, but the net sediment exchange during a storm levels off or even becomes smaller for the largest inundation classes because it is counteracted by larger mean water levels in the Wadden Sea that oppose or even reverse sediment transport during inundation. When taking into account the frequency of occurrence of storms we conclude that the cumulative effect of relatively mild storms on long‐term cross‐shore sediment transport is much larger than that of the large storm events. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

3.
Daily rain series from southern Sweden with records dating back to the 1870s have been analysed to investigate the trends of daily and multi‐day precipitation of different return periods with emphasis on the extremes. Probabilities of extreme storms were determined as continuously changing values based on 25 years of data. An extra set of data was used to investigate changes in Skåne, the southernmost peninsula of Sweden. Another 30‐year data set of more than 200 stations of a dense gauge network in Skåne was used to investigate the relation between very large daily rainfall and annual precipitation. The annual precipitation has increased significantly all over southern Sweden due to increased winter precipitation. There is a trend of increasing maximum annual daily precipitation at only one station, where the annual maximum often occurs in winter. The number of events with a short return period is increasing, but the number of more extreme events has not increased. Daily and multi‐daily design storms of long return periods determined from extreme value analysis with updating year by year are not higher today than during the last 100 years. The largest daily storms are not related to stations with annual rainfall but seem to occur randomly. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
This paper provides evidence of the recovery of a small, moorland catchment to a severe drought, the most extreme on record in the UK. We present a detailed water quality time series for the post‐drought recovery period, from the first significant storm event at the end of the drought through three very wet months during which time the catchment fully wetted up. High‐frequency observations were obtained using pump water samplers, at 15‐min intervals for storm events and 2 hourly at other times. There are significant shifts in discharge‐concentration response as the catchment wets up; initial behaviour is very different to later storms. Extreme drought may become more common in a warmer world, so it is increasingly important to understand water quality response during and after such episodes, if their impact on water resources and in‐stream ecology is to be better anticipated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The southwest coast of England was subjected to an unusually energetic sequence of Atlantic storms during the 2013/2014 winter, with the 8‐week period from mid‐December to mid‐February representing the most energetic period since at least 1953. A regional analysis of the hydrodynamic forcing and morphological response of these storms along the SW coast of England highlighted the importance of both storm‐ and site‐specific conditions. The key factor that controls the Atlantic storm wave conditions along the south coast of southwest England is the storm track. Energetic inshore wave conditions along this coast require a relatively southward storm track which enables offshore waves to propagate up the English Channel relatively unimpeded. The timing of the storm in relation to the tidal stage is also important, and coastal impacts along the macro‐tidal southwest coast of England are maximised when the peak storm waves coincide with spring high tide. The role of storm surge is limited and rarely exceeds 1 m. The geomorphic storm response along the southwest coast of England displayed considerable spatial variability; this is mainly attributed to the embayed nature of the coastline and the associated variability in coastal orientation. On west‐facing beaches typical of the north coast, the westerly Atlantic storm waves approached the coastline shore‐parallel, and the prevailing storm response was offshore sediment transport. Many of these north coast beaches experienced extensive beach and dune erosion, and some of the beaches were completely stripped of sediment, exposing a rocky shore platform. On the south coast, the westerly Atlantic storm waves refract and diffract to become southerly inshore storm waves and for the southeast‐facing beaches this results in large incident wave angles and strong eastward littoral drift. Many south coast beaches exhibited rotation, with the western part of the beaches eroding and the eastern part accreting. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

6.
The AD 1634 North Sea storm is one of the most catastrophic storms along the Wadden Sea coast of Denmark. In this study we show how pre‐1634 storm morphology exerted a strong control on the resulting post‐storm coastal morphology. Erosional responses associated with the storm were barrier breaching, dune scarping and shoreface erosion and accretionary responses were washover deposition, shoreface healing and barrier‐island formation. Local sediment sources appeared to have a particularly strong influence on post‐storm coastal evolution and allowed a very rapid formation of a barrier shoal which resulted in several kilometres of coastal progradation. Sediment budgets suggest that formation of the barrier shoal was possible, but the sediment transport rates in the decades after the 1634 storm, must have been two to three times higher than present‐day rates. The study demonstrates that catastrophic storms are capable of moving large amounts of sediments over relatively short time‐periods and can create barrier shoals, whereas moderate storms mostly rework the shoal or barrier and create more local erosion and/or landward migration. Catastrophic storms substantially influence long‐term and large‐scale coastal evolution, and storms may positively contribute to the sediment budget and promote coastal progradation in coastal areas with longshore sediment convergence. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Urban streams in the Northeastern United States have large road salt inputs during the winter, increased nonpoint sources of inorganic nitrogen and decreased short‐term and permanent storage of nutrients. Restoration activities that re‐establish connection between streams and riparian environments may be effective for improving urban stream water quality. Meadowbrook Creek, a first‐order stream in Syracuse, NY, provides a unique setting to explore impacts of stream–floodplain connection because it flows along a negative urbanization gradient, from channelized and armoured headwaters to a broad, vegetated floodplain with a riparian aquifer. In this study, we investigated how reconnection to groundwater and introduction of riparian vegetation impacted urban surface water chemistry by making biweekly longitudinal surveys of stream water chemistry in the creek from May 2012 until June 2013. We used multiple methods to measure groundwater discharge rates along the creek. Chloride concentrations in the upstream, disconnected reach were influenced by discharge of road salt during snow melt events and ranged from 161.2 to 1440 mg/l. Chloride concentrations in the downstream, connected reach had less temporal variation, ranging from 252.0 to 1049 mg/l, because of buffering by groundwater discharge, as groundwater chloride concentrations ranged from 84.0 to 655.4 mg/l. In the summer, there was little to no nitrate in the disconnected reach because of limited sources and high primary productivity, but concentrations reached over 1 mg N/l in the connected reach because of the presence of riparian vegetation. During the winter, when temperatures fell below freezing, nitrate concentrations in the disconnected reach increased to 0.58 mg N/l but were still lower than the connected reach, which averaged 0.88 mg N/l. Urban stream restoration projects that restore floodplain connection may impact water quality by storing high salinity road run‐off during winter overbank events and discharging that water year‐round, thereby attenuating seasonal fluctuations in chloride. Contrary to prior findings, we observed that floodplain connection and riparian vegetation may alter nitrate sources and sinks such that nitrate concentrations increase longitudinally in connected urban streams. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
We investigate a new proxy for ENSO climate variability based on particle‐size data from long‐term, coastal sediment records preserved in a barrier estuary setting. Corresponding ~4–8 year periodicities identified from Wavelet analysis of particle‐size data from Pescadero Marsh in Central Coast California and rainfall data from San Francisco reflect established ENSO periodicity, as further evidenced in the Multivariate ENSO Index (MEI), and thus confirms an important ENSO control on both precipitation and barrier regime variability. Despite the fact that barrier estuary mean particle size is influenced by coastal erosion, precipitation and streamflow, balanced against barrier morphology and volume, it is encouraging that considerable correspondence can also be observed in the time series of MEI, regional rainfall and site‐based mean particle size over the period 1871–2008. This correspondence is, however, weakened after c.1970 by temporal variation in sedimentation rate and event‐based deposition. These confounding effects are more likely when: (i) accommodation space may be a limiting factor; and (ii) particularly strong El Niños, e.g. 1982/1983 and 1997/1998, deposit discrete >cm‐thick units during winter storms. The efficacy of the sediment record of climate variability appears not to be compromised by location within the back‐barrier setting, but it is limited to those El Niños that lead to barrier breakdown. For wider application of this particle size index of ENSO variability, it is important to establish a well‐resolved chronology and to sample the record at the appropriate interval to characterize deposition at a sub‐annual scale. Further, the sample site must be selected to limit the influence of decreasing accommodation space through time (infilling) and event‐based deposition. It is concluded that particle‐size data from back‐barrier sediment records have proven potential for preserving evidence of sub‐decadal climate variability, allowing researchers to explore temporal and spatial patterns in phenomena such as ENSO. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
We examined the contributions of bedrock groundwater to the upscaling of storm‐runoff generation processes in weathered granitic headwater catchments by conducting detailed hydrochemical observations in five catchments that ranged from zero to second order. End‐member mixing analysis (EMMA) was performed to identify the geographical sources of stream water. Throughfall, hillslope groundwater, shallow bedrock groundwater, and deep bedrock groundwater were identified as end members. The contribution of each end member to storm runoff differed among the catchments because of the differing quantities of riparian groundwater, which was recharged by the bedrock groundwater prior to rainfall events. Among the five catchments, the contribution of throughfall was highest during both baseflow and storm flow in a zero‐order catchment with little contribution from the bedrock groundwater to the riparian reservoir. In zero‐order catchments with some contribution from bedrock groundwater, stream water was dominated by shallow bedrock groundwater during baseflow, but it was significantly influenced by hillslope groundwater during storms. In the first‐order catchment, stream water was dominated by shallow bedrock groundwater during storms as well as baseflow periods. In the second‐order catchment, deeper bedrock groundwater than that found in the zero‐order and first‐order catchments contributed to stream water in all periods, except during large storm events. These results suggest that bedrock groundwater influences the upscaling of storm‐runoff generation processes by affecting the linkages of geomorphic units such as hillslopes, riparian zones, and stream channels. Our results highlight the need for a three‐dimensional approach that considers bedrock groundwater flow when studying the upscaling of storm‐runoff generation processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Solar disturbances are observed to have significant effects in near-Earth space. Over the past half-century of observation, a relatively clear picture has developed of how and why the typical solar wind — as well as the most extreme solar events — drive geospace responses. It is clear that magnetospheric substorms, geomagnetic storms (both recurrent and aperiodic events), and even certain atmospheric chemical changes have their origins in the solar–terrestrial coupling arena. High-speed solar wind streams and fast coronal mass ejections (CMEs) can often have strong interplanetary shock waves and southward magnetic fields which can initiate strong storm responses. We demonstrate in this review that available modern space-observing platforms and ground facilities allow us to trace drivers from the Sun to the Earth's atmosphere. This allows us to assess quantitatively the energy transport that occurs throughout the Sun–Earth system during both typical and extreme conditions. Hence, we are continuously improving our understanding of “space weather” and its effects on human society.  相似文献   

11.
A series of airborne topographic LiDAR data were obtained from May 2008 to January 2014 over two coastal sites of northern France (Bay of Wissant and east of Dunkirk). These data were used with wind and tide gauge measurements to assess the impacts of storms on beaches and coastal dunes, and particularly of the series of major storms that hit western Europe during the fall and early winter of 2013. Our results show a high variability in shoreline response from one site to the other, but also within each coastal site. Coastal dune erosion and shoreline retreat occurred at both sites, particularly on the coast of the Bay of Wissant where shoreline retreat up to about 40 m was measured. However, stability or even shoreline advance were also observed despite the occurrence of an extreme water level with a return period >100 years during the storm Xaver in early December 2013. Comparison of shoreline change with variations of coastal dune and upper beach volumes revealed only weak relationships. Our results nevertheless showed that shoreline behavior seems to strongly depend on the initial sediment volume on the upper beach before the occurrence of the storms. According to our measurements, an upper beach volume of about 30 m3 m?1 between the dune toe and the mean high water level is sufficient at these sites to protect the coastal dunes from storm waves associated with high water levels with return periods >10 years. The identification of such thresholds in terms of upper beach width or sediment volume may represent valuable information for improving the management of shoreline change by providing an estimate of the minimum quantity of sand on the upper beach necessary to ensure shoreline stability in this region. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Erosion of hard‐rock coastal cliffs is understood to be caused by a combination of both marine and sub‐aerial processes. Beach morphology, tidal elevation and significant wave heights, especially under extreme storm conditions, can lead to variability in wave energy flux to the cliff‐toe. Wave and water level measurements in the nearshore under energetic conditions are difficult to obtain and in situ observations are rare. Here we use monthly cliff‐face volume changes detected using terrestrial laser scanning alongside beach morphological changes and modelled nearshore hydrodynamics to examine how exposed cliffs respond to changes in extreme wave conditions and beach morphology. The measurements cover the North Atlantic storms of 2013 to 2014 and consider two exposed stretches of coastline (Porthleven and Godrevy, UK) with contrasting beach morphology fronting the cliffs; a flat dissipative sandy beach at Godrevy and a steep reflective gravel beach at Porthleven. Beach slope and the elevation of the beach–cliff junction were found to influence the frequency of cliff inundation and the power of wave–cliff impacts. Numerical modelling (XBeach‐G) showed that under highly energetic wave conditions, i.e. those that occurred in the North Atlantic during winter 2013–2014, with Hs = 5.5 m (dissipative site) and 8 m (reflective site), the combination of greater wave height and steeper beach at the reflective site led to amplified wave run‐up, subjecting these cliffs to waves over four times as powerful as those impacting the cliffs at the dissipative site (39 kWm‐1 compared with 9 kWm‐1). This study highlighted the sensitivity of cliff erosion to extreme wave conditions, where the majority (over 90% of the annual value) of cliff‐face erosion ensued during the winter. The significance of these short‐term erosion rates in the context of long‐term retreat illustrates the importance of incorporating short‐term beach and wave dynamics into geomorphological studies of coastal cliff change. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

13.
Increasing dissolved organic carbon (DOC) concentrations have been reported during the last 15 years in streams from the United Kingdom, Northern Europe and North America. Identifying the sources of DOC and the controls of the delivery to the stream is important to understand the significance of these trends. This relies on the availability of observations of DOC dynamics during storm events, since much of the DOC export from soils to streams occurs during high flows. This study analyses DOC data for eight storm events during winter 2005–2006 in a small agricultural experimental catchment—the Kervidy‐Naizin experimental catchment—located in Western France. A four end‐member mixing approach was applied to the eight monitored storm events to identify DOC sources and quantify their respective contribution to DOC stream fluxes, using DOC, nitrate, sulphate and chloride as tracers. The results show that DOC concentrations in the stream at the outlet of this catchment increase markedly during storm events. The slope of the linear regression between DOC concentration and discharge was not constant for the eight events and depended on pre‐event hydrological conditions. Between 64 and 86% of the DOC that enter the stream during storms originated from the upper layers of the riparian wetland soils. The variation of the delivery of DOC seems to be controlled by hydrological processes only, the wetland soils acting as a non‐limiting store. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Severe sea states in the North Sea present a challenge to wave forecasting systems and a threat to offshore installations such as oil and gas platforms and offshore wind farms. Here, we study the ability of a third-generation spectral wave model to reproduce winter sea states in the North Sea. Measured and modeled time series of integral wave parameters and directional wave spectra are compared for a 12-day period in the winter of 2013–2014 when successive severe storms moved across the North Atlantic and the North Sea. Records were obtained from a Doppler radar and wave buoys. The hindcast was performed with the WAVEWATCH III model (Tolman 2014) with high spectral resolution both in frequency and direction. A good general agreement was obtained for integrated parameters, but discrepancies were found to occur in spectral shapes.  相似文献   

15.
The impact of road‐generated runoff on the hydrological response of a zero‐order basin was monitored for a sequence of 24 storm events. The study was conducted in a zero‐order basin (C1; 0·5ha) with an unpaved mountain road; an adjacent unroaded zero‐order basin (C2; 0·2 ha) with similar topography and lithology was used to evaluate the hydrological behaviour of the affected zero‐order basin prior to construction of the road. The impact of the road at the zero‐order basin scale was highly dependent on the antecedent soil‐moisture conditions, total storm precipitation, and to some extent rainfall intensity. At the beginning of the monitoring period, during dry antecedent conditions, road runoff contributed 50% of the total runoff and 70% of the peak flow from the affected catchment (C1). The response from the unroaded catchment was almost insignificant during dry antecedent conditions. As soil moisture increased, the road exerted less influence on the total runoff from the roaded catchment. For very wet conditions, the influence of road‐generated runoff on total outflow from the roaded catchment diminished to only 5·4%. Both catchments, roaded and unroaded, produced equivalent amount of outflow during very wet antecedent conditions on a unit area basis. The lag time between the rainfall and runoff peaks observed in the unroaded catchment during the monitoring period ranged from 0 to 4 h depending on the amount of precipitation and antecedent conditions, owing mainly to much slower subsurface flow pathways in the unroaded zero‐order basin. In contrast, the lag time in the roaded zero‐order basin was virtually nil during all storms. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
This study analyses beach morphological change during six consecutive storms acting on the meso‐tidal Faro Beach (south Portugal) between 15 December 2009 and 7 January 2010. Morphological change of the sub‐aerial beach profile was monitored through frequent topographic surveys across 11 transects. Measurements of the surf/swash zone dimensions, nearshore bar dynamics, and wave run‐up were extracted from time averaged and timestack coastal images, and wave and tidal data were obtained from offshore stations. All the information combined suggests that during consecutive storm events, the antecedent morphological state can initially be the dominant controlling factor of beach response; while the hydrodynamic forcing, and especially the tide and surge levels, become more important during the later stages of a storm period. The dataset also reveals the dynamic nature of steep‐sloping beaches, since sub‐aerial beach volume reductions up to 30 m3/m were followed by intertidal area recovery (–2 < z < 3 m) with rates reaching ~10 m3/m. However, the observed cumulative dune erosion and profile pivoting imply that storms, even of regular intensity, can have a dramatic impact when they occur in groups. Nearshore bars seemed to respond to temporal scales more related to storm sequences than to individual events. The formation of a prominent crescentic offshore bar at ~200 m from the shoreline appeared to reverse the previous offshore migration trend of the inner bar, which was gradually shifted close to the seaward swash zone boundary. The partially understood nearshore bar processes appeared to be critical for storm wave attenuation in the surf zone; and were considered mainly responsible for the poor interpretation of the observed beach behaviour on the grounds of standard, non‐dimensional, morphological parameters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Statistical study on the universal time variations in the mean hourly auroral electrojet index (AE-index) has been undertaken for a 21 y period over two solar cycles (1957–1968 and 1978–1986). The analysis, applied to isolated auroral substorm onsets (inferred from rapid variations in the AE-index) and to the bulk of the AE data, indicates that the maximum in auroral activity is largely confined to 09–18 UT, with a distinct minimum at 03–06 UT. The diurnal effect was clearly present throughout all seasons in the first cycle but was mainly limited to northern winter in the second cycle. Severe storms (AE > 1000 nT) tended to occur between 9–18 UT irrespective of the seasons whereas all larger magnetic disturbances (AE > 500 nT) tended to occur in this time interval mostly in winter. On the whole the diurnal trend was strong in winter, intermediate at equinox and weak in summer. The implication of this study is that Eastern Siberia, Japan and Australia are mostly at night, during the period of maximum auroral activity whereas Europe and Eastern America are then mostly at daytime. The minimum of auroral activity coincides with near-midnight conditions in Eastern America. It appears that the diurnal UT distribution in the AE-index reflects a diurnal change between interplanetary magnetic field orientation and the Earths magnetic dipole inclination.  相似文献   

18.
Large floods are often attributed to the melting of snow during a rain event. This study tested how climate variability, snowpack presence, and basin physiography were related to storm hydrograph shape in three small (<1 km2) basins with old‐growth forest in western Oregon. Relationships between hydrograph characteristics and precipitation were tested for approximately 800 storms over a nearly 30‐year period. Analyses controlled for (1) snowpack presence/absence, (2) antecedent soil moisture, and (3) hillslope length and gradient. For small storms (<150 mm precipitation), controlling for precipitation, the presence of a snowpack on near‐saturated soil increased the threshold of precipitation before hydrograph rise, extended the start lag, centroid lag, and duration of storm hydrographs, and increased the peak discharge. The presence of a snowpack on near‐saturated soil sped up and steepened storm hydrographs in a basin with short steep slopes, but delayed storm hydrographs in basins with longer or more gentle slopes. Hydrographs of the largest events, which were extreme regional rain and rain‐on‐snow floods, were not sensitive to landform characteristics or snowpack presence/absence. Although the presence of a snowpack did not increase peak discharge in small, forested basins during large storms, it had contrasting effects on storm timing in small basins, potentially synchronizing small basin contributions to the larger basin hydrograph during large rain‐on‐snow events. By altering the relative timing of hydrographs, snowpack melting could produce extreme floods from precipitation events whose size is not extreme. Further work is needed to examine effects of canopy openings, snowpack, and climate warming on extreme rain‐on‐snow floods at the large basin scale. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Rainfall, throughfall, and stemflow were monitored at 5-min intervals for 3 years in a 120-year-old forest dominated by redwood (Sequoia sempervirens) and Douglas-fir (Pseudotsuga menziesii) at the Caspar Creek Experimental Watersheds, located in northwest California, USA. About 2.5% of annual rainfall reaches the ground as stemflow at the site, while 22.4% is stored on foliage and stems and evaporates before reaching the ground. Comparison of the timing of rainfall and throughfall indicates that about 46% of the interception loss occurs through post-storm evaporation from foliage and 54% is either evaporated during the storm or enters long-term storage in bark. Until bark storage capacity is saturated, the proportion of rainfall diverted to bark storage would be relatively constant across the range of rainfall intensities encountered, reflecting primarily the proportional incidence of rainfall on surfaces contributing to bark storage. In any case, loss rates remain high—over 15%—even during the highest-intensity storms monitored. Clearcut logging in the area would increase effective annual rainfall by 20–30% due to reduction of interception loss, and most of the increase would occur during large storms, thus potentially influencing peakflows and hillslope pore-pressures during geomorphically significant events.  相似文献   

20.
The paper focusses on connectivity in the context of infiltration‐excess overland flow and its integrated response as slope‐base overland flow hydrographs. Overland flow is simulated on a sloping surface with some minor topographic expression and spatially differing infiltration rates. In each cell of a 128 × 128 grid, water from upslope is combined with incident rainfall to generate local overland flow, which is stochastically routed downslope, partitioning the flow between downslope neighbours. Simulations show the evolution of connectivity during simple storms. As a first approximation, total storm runoff is similar everywhere, discharge increasing proportionally with drainage area. Moderate differences in plan topography appear to have only a second‐order impact on hydrograph form and runoff amount. Total storm response is expressed as total runoff, runoff coefficient or total volume infiltrated; each plotted against total storm rainfall, and allowing variations in average gradient, overland flow roughness, infiltration rate and storm duration. A one‐parameter algebraic expression is proposed that fits simulation results for total runoff, has appropriate asymptotic behaviour and responds rationally to the variables tested. Slope length is seen to influence connectivity, expressed as a scale distance that increases with storm magnitude and can be explicitly incorporated into the expression to indicate runoff response to simple events as a function of storm size, storm duration, slope length and gradient. The model has also been applied to a 10‐year rainfall record, using both hourly and daily time steps, and the implications explored for coarser scale models. Initial trails incorporating erosion continuously update topography and suggest that successive storms produce an initial increase in erosion as rilling develops, while runoff totals are only slightly modified. Other factors not yet considered include the dynamics of soil crusting and vegetation growth. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号