首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements were made of the water content in coastal rocks, by simulating tidal oscillations in the laboratory, and by field measurement in eastern Canada. If rapid freezing takes place upon exposure to the air, saturation levels may be high enough to permit frost weathering in fine grained rocks in the lower portions of the intertidal zone. Near the high tidal level, however, it may be dependent upon a supply of water from the ice foot and from melting snow. If freezing is slow, frost action may be inhibited by desorption of the rocks while they are exposed by the ebb tide. There was no evidence of a level of permanent sea water saturation within the intertidal zone. Ambient temperature and humidity may affect the rate of rock desorption.  相似文献   

2.
通常情况下花岗岩岩性稳定、岩石完整,是隧道工程的理想围岩.我国沿海地区花岗岩覆盖普遍,但因气候炎热,秋夏两季多台风暴雨,降雨量丰富,化学风化作用剧烈,使得花岗岩差异风化严重.风化作用不仅仅发生在近地表,而且深切入地下达数百米,常穿过隧道洞身.本文以新建厦门至深圳高速铁路(简称厦深高铁)某隧道工程勘察为例,采用探测深度大、工作方便的天然场源高频大地电磁测深法(HMT),探测花岗岩差异风化情况.四条相邻测线综合探测结果表明:根据HMT法二维反演剖面图中电阻率的差异,成功解释了已开挖段的施工塌陷范围,并预测了将要开挖段的强风化弱地质结构分布范围;通过垂向相对低阻异常特征定量推断了岩体风化带向下延伸情况,为隧道安全施工提供了科学指导.  相似文献   

3.
Weathering reduces the strength of rocks and so is a key control on the stability of rock slopes. Recent research suggests that the geotechnical response of rocks to weathering varies with ambient stress conditions resulting from overburden loading and/or stress concentrations driven by near-surface topography. In addition, the stress history experienced by the rock can influence the degree to which current weathering processes cause rock breakdown. To address the combined effect of these potential controls, we conducted a set of weathering experiments on two sedimentary lithologies in laboratory and field conditions. We firstly defined the baseline geotechnical behaviour of each lithology, characterising surface hardness and stress–strain behaviour in unconfined compression. Weathering significantly reduced intact rock strength, but this was not evident in measurements of surface hardness. The ambient compressive stress applied to samples throughout the experiments did not cause any observable differences in the geotechnical behaviour of the samples. We created a stress history effect in sub-sets of samples by generating a population of microcracks that could be exploited by weathering processes. We also geometrically modified groups of samples to cause near-surface stress concentrations that may allow greater weathering efficacy. However, even these pronounced sample modifications resulted in insignificant changes in geotechnical behaviour when compared to unmodified samples. The observed reduction in rock strength changed the nature of failure of the samples, which developed post-peak strength and underwent multiple stages of brittle failure. Although weakened, these samples could sustain greater stress and strain following exceedance of peak strength. On this basis, the multi-stage failure style exhibited by weaker weathered rock may permit smaller-magnitude, higher-frequency events to trigger fracture through intact rock bridges as well as influencing the characteristics of pre-failure deformation. These findings are consistent with patterns of behaviour observed in field monitoring results. © 2019 John Wiley & Sons, Ltd.  相似文献   

4.
Consideration of the mechanisms associated with the granular disintegration of rock has been limited by available data. In most instances, both the size of the transducer and the nature of the study have negated any applicability of the resulting data to the understanding of grain‐to‐grain separation within rock. The application of microthermocouples (≤0·15 mm diameter) and high‐frequency logging (20 s intervals) at a taffoni site on southern Alexander Island and from a rock outcrop on Adelaide Island (Antarctica) provide new data pertaining to the thermal conditions, at the grain scale, of the rock surface. The results show that thermal changes (ΔT/t) can be very high, with values of 22 °C min?1 being recorded. Although available data indicate that there can be differences in frequency and magnitude of ?uctuations as a function of aspect, all aspects experienced some large magnitude (≥2 °C min?1) ?uctuations. Further, in many instances, large thermal changes in more than one direction could occur within 1 min or in subsequent minutes. These data suggest that the surface grains experience rapidly changing stress ?elds that may, with time, effect fatigue at the grain boundaries; albedo differences between grains and the resulting thermal variations are thought to exacerbate this. The available data failed to show any indication of water freezing (an exotherm) and thus it is suggested that microgelivation may not play as large a role in granular breakdown as is often postulated for cold regions, and that in this dry, Antarctic region thermal stress may play a signi?cant role. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The way in which rocks and engineering materials heat‐up and dry‐out in the intertidal zone is of relevance to both weathering and ecology. These behaviours can be measured in the laboratory under controlled conditions designed to replicate those occurring in the field. Previous studies have demonstrated differences in thermal behaviours between rock types and through time as a result of soiling in terrestrial environments, but the influence of weathering and colonization on rock behaviours in the intertidal zone has not been previously assessed. We measured the warming and drying of blocks of rock (limestone and granite) and marine concrete during ‘low‐tide’ events simulated in the laboratory, before and after a period of exposure (eight months) on rock platforms in Cornwall, UK. As well as differences between the material types, temperatures of control (unexposed) and field‐exposed blocks differed in the order of 1 to 2 °C. Drying behaviours were also different after field exposure. Differences during the first few hours of exposure to air and heat were attributed to discolouration and albedo effects. Over longer periods of time, changes in the availability of near‐surface pore water as a result of micro‐scale bioerosion of limestone and the development of bio‐chemical crusts on marine concrete [observed using scanning electron microscopy (SEM)] are suggested as mechanisms enhancing and reducing, respectively, the efficiency of evaporative cooling. The retention of moisture by epilithic biofilms may also influence thermal and drying behaviours of granite. These observations represent one of the first examples of cross‐scalar biogeomorphic linkages in the intertidal zone. The significance of the results for the subsequent efficiency of weathering, and near‐surface micro‐climatic conditions experienced by colonizing organisms is discussed. The involvement of microorganisms in the creation of more (or less) ecologically stressful conditions through the alteration of substratum geomorphic properties and behaviours is suggested as an example of ‘biogeomorphic ecosystem engineering’. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Discussions regarding weathering in cold environments generally centre on mechanical processes and on the freeze–thaw mechanism in particular. Despite the almost ubiquitous assumption of freeze–thaw weathering, unequivocal proof of interstitial rock water actually freezing and thawing is singularly lacking. Equally, many studies have used the crossing of 0 °C, or values close to that, as the basis for determining the number of ‘freeze–thaw events’. In order to assess the weathering regime at a site in northern Canada, temperatures were collected at the surface, 1 cm and 3 cm depth for sets of paving bricks, with exposures both vertical and at 45°, orientated to the four cardinal directions. Temperature data were collected at 1 min intervals for 1 year. These data provide unequivocal proof for the occurrence of the freezing and thawing of water on and within the rock (freeze–thaw events). The freeze event is evidenced by the exotherm associated with the release of latent heat as the water actually freezes. This is thought to be the ?rst record of such events from a ?eld situation. More signi?cantly, it was found that the temperature at which freezing occurred varied signi?cantly through the year and that on occasion the 1 cm depth froze prior to the rock surface. The change in freeze temperature is thought to be due to the chemical weathering of the material (coupled with on‐going salt inputs via the melting of snowfall), which, it is shown, could occur throughout the winter despite air temperatures down to ?30 °C. This ?nding regarding chemical weathering is also considered to be highly signi?cant. A number of thermal stress events were also recorded, suggesting that rock weathering in cold regions is a synergistic combination of various chemical and mechanical weathering mechanisms. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Five granites from NW Spain were subjected to two salt‐spray weathering tests under controlled atmospheric conditions. Granite samples were exposed to a sodium chloride solution in the first test and to a complex solution (sea water) in the second. Subsequent examination of the rocks by light and petrographic microscopy clearly demonstrated the development of different weathering morphologies in each test. The distribution of dissolved ions in samples taken at different depths from the weathered surfaces at the end of the experiments, and the changes in weight of the samples during the tests, also differed. In our opinion, these results were determined by the nature of the solution used; although sodium chloride is the predominant salt in sea water, the presence of other ions modifies its solubility, thereby varying the dynamics of mobility and precipitation and thus the weathering morphology that develops. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Tafone‐like depressions have developed on the Aoshima sandstone blocks used for a masonry bridge pier in the coastal spray zone. A thin layer of partial granular disintegration was found on the surface in depressions. To evaluate quantitatively the strength of the thin weathered layer, the hardness was measured at the surface of the sandstone blocks using both an Equotip hardness tester and an L‐type Schmidt hammer. Comparison of the two testing results indicates that the Equotip hardness value is more sensitive in evaluating the strength of a thin layer of weathered surface rock than the Schmidt hardness value. By applying two methods, i.e. both the repeated impact method and the single impact method, the Equotip tester can evaluate the strengths of fresh internal and weathered surficial portions of rocks having a thin weathering layer. Comparison of the two strengths enables evaluation of strength reduction due to weathering. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
A saline‐spray artificial ageing test was used to simulate the effects produced in granites and sedimentary rocks (calcarenites, micrites and breccia) under conditions in coastal environments. Three main points were addressed in this study: the durability of the different kinds of rock to salt decay, the resulting weathering forms and the rock properties involved in the weathering processes. For this, mineralogical and textural characterization of each of the different rocks was carried out before and after the test. The soluble salt content at different depths from the exposed surfaces was also determined. Two different weathering mechanisms were observed in the granite and calcareous rocks. Physical processes were involved in the weathering of granite samples, whereas dissolution of calcite was also involved in the deterioration of the calcareous rocks. We also showed that microstructural characteristics (e.g. pore size distribution), play a key role in salt damage, because of their influence on saline solution transport and on the pressures developed within rocks during crystallization. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Weathering microforms associated with exfoliation were investigated on 40 granitic spheroidal boulders identified on Pricopan Ridge (M?cin Mountains) in order to establish a spatial distribution pattern. Continuous thermal monitoring allowed the frequency and intensity distribution assessment of short‐term temperature changes triggered by summer storms, of intense day–night amplitudes and frost cycles across a uniform rounded boulder. Rock strength estimated by Schmidt hammer tests differentiates a significantly weaker resistance on the southern face of the boulders (rebound values of 27 to 33) in comparison with the northern face (43–50). The lowest resistance of the north–south cross‐boulder profile corresponds to the southern gentle slopes (0°–45°) thus defining the most susceptible area to exfoliation and other weathering processes. It is argued that this low‐resistant sector fits well with the maximum frequency and intensity of thermal processes recorded on the low and mid slopes (0°–45°) of the boulders south side, with small differences from one process to another, whilst the sector of 20° to 30° south corresponds to the peak activity of all. In accordance, the overlay map of exfoliated surfaces places the high frequency area on a spherical cap developed similarly (between 5° north and 45° south). The smallest exfoliated surfaces normally appear around 30° south and are inferred to extend in time both to the boulder top and downslope. The correlations between the frequency/intensity maps of thermal processes and the frequency map of exfoliated surfaces point to a complementary action in the exfoliated surfaces development of the short‐term temperature changes and diurnal cooling and heating due to the directional insolation effect, as similarly inferred in the development of meridional cracks. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Hillslope asymmetry, i.e. variation in hillslope form as a function of slope aspect and/or mean solar insolation, has been documented in many climates and geologic contexts. Such patterns have the potential to help us better understand the hydrologic, ecologic, and geomorphologic processes and feedbacks operating on hillslopes. Here we document asymmetry in the fraction of hillslope relief accommodated by cliffs in weathering‐limited hillslopes of drainage basins incised into the East Kaibab Monocline (northern Arizona) and Raplee Ridge Monocline (southern Utah) of the southern Colorado Plateau. We document that south‐ and west‐facing hillslopes have a larger proportion of hillslope relief accommodated by cliffs compared with north‐ and east‐facing hillslopes. Cliff abundance correlates positively with mean solar insolation and, by inference, negatively with soil/rock moisture. Solar insolation control of hillslope asymmetry is an incomplete explanation, however, because it cannot account for the fact that the greatest asymmetry occurs between southwest‐ and northeast‐facing hillslopes rather than between south‐ and north‐facing hillslopes in the study sites. Modeling results suggest that southwest‐facing hillslopes are more cliff‐dominated than southeast‐facing hillslopes of the same mean solar insolation in part because potential evapotranspiration rates, which control the soil/rock moisture that drives weathering, are controlled by the product of solar insolation and a nonlinear function of surface temperature, together with the fact that southwest‐facing hillslopes receive peak solar insolation during warmer times of day compared with southeast‐facing hillslopes. The dependence of water availability on both solar insolation and surface temperature highlights the importance of the diurnal cycle in controlling water availability, and it provides a general explanation for the fact that vegetation cover tends to exhibit the greatest difference between northeast‐ and southwest‐facing hillslopes in the Northern Hemisphere and between southeast‐ and northwest‐facing hillslopes in the Southern Hemisphere. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
Fragments of weathered granitic rocks from the Kunlun Shan, Qinghai Plateau (China) were investigated to elucidate the in?uence of biotic crusts on the breakdown of granitic rocks in an alpine environment. Scanning electron microscopy with energy dispersive system and X‐ray diffractometry were used to describe the nature and properties of mineral accumulations on the rock surface. Results showed that organic salts such as calcium oxalate and calcium formate are associated with Aspicilia caesiocinera (Nyl.ex Malbr.) Arnold, Caloplaca sp., Xanthoria elegans (Link) Th.Fr., and Lecidea plana (Lahm) Nyl. Secondary accumulations of 2 : 1 clays minerals are found in A. caesiocinera while oxides of manganese are associated with X. elegans. Coatings of goethite (iron oxides) are believed to form from biological activity associated with the presence of hyphae and rodlet structures on the ?akes. Calcium oxalate crystallizes into several morphologies such as druse, hexagonal plates, and lenticular containing between 20 and 48 per cent calcium by weight. Calcium formate and iron oxide (goethite) occur together in the form of ‘red’ desert varnish. Observed ‘black’ coatings contain as much as 37 per cent manganese and 22 per cent iron. Clay accumulations have plate‐like morphology and contain c. 2 : 1 silicon to aluminium contents. We argue that organic acids from the activities of biotic crusts contribute to the breakdown of granitic rocks. Fungi accelerate the breakdown of granitic rocks through the growth of fungal hyphae along the 001 cleavage planes in primary chloritic minerals. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Broadly speaking, there is, at least within geomorphic circles, a general acceptance that rocks with low albedos will warm both faster and to higher temperatures than rocks with high albedos, reflectivity influencing radiative warming. Upon this foundation are built notions of weathering in respect of the resulting thermal differences, both at the grain scale and at the scale of rock masses. Here, a series of paving bricks painted in 20 per cent reflectivity intervals from black through to white were used to monitor albedo‐influenced temperatures at a site in northern Canada in an attempt to test this premise. Temperatures were collected, for five months, for the rock surface and the base of the rock, the blocks being set within a mass of local sediment. Resulting thermal data did indeed show that the dark bricks were warmer than the white but only when their temperatures were equal to or cooler than the air temperature. As brick temperature exceeded that of the air, so the dark and light bricks moved to parity; indeed, the white bricks frequently became warmer than the dark. It is argued that this ‘negating’ of the albedo influence on heating is a result of the necessity of the bricks, both white and black, to convect heat away to the surrounding cooler air; the darker brick, being hotter, initially convects faster than the white as a product of the temperature difference between the two media. Thus, where the bricks become significantly hotter than the air, they lose energy to that air and so their respective temperatures become closer, the albedo influence being superceded by the requirement to equilibrate with the surrounding air. It is argued that this finding will have importance to our understanding of weathering in general and to our perceptions of weathering differences between different lithologies. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Quantitative data on rock surface millimetre‐scale roughness are presented concerning the splash and spray geomorphologic domains of two coastal profiles developed on Mediterranean carbonate rocks. Differences of the roughness characteristics are attributed to rock properties, weathering agents and bioerosion. In the splash zone, roughness is related to sparsely distributed patterns of bioerosion, salt weathering and wave attack. In the spray zone, smooth surfaces seem to be the response to the solution processes that predominate, exerting a more homogenous influence on rock surface evolution. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
In‐situ gamma‐ray spectrometry (GRS) measurements were conducted at 35 sites in Hong Kong where volcanic rocks with varying extent of weathering were exposed. Elemental analyses using X‐ray fluorescence spectrometry and inductively coupled plasma–mass spectrometry were carried out on samples collected from these 35 plus 22 other locations to assess the feasibility of using the GRS method to quantify the extent of weathering. The Parker weathering index, varying within a range of 0·0–0·8 for the samples studied, was used as a geochemically based reference scheme for correlating the gamma‐ray spectrometric results with the extent of weathering. For the former 35 sites, the concentrations of the three major radioelements, K, U and Th, determined by in‐situ GRS were compared to laboratory‐determined values from the samples. The study reveals that no significant change occurs to the contents of the three radioelements during the initial state of weathering. But once the rocks become highly weathered, further progression of weathering is accompanied by a systematic removal of K and an increased dispersion of U and Th. The results show that K content, which is indicative of the extent of weathering, can be retrieved reliably with the gamma‐ray spectrometry technique. The study has given support to the potential use of the downhole spectral gamma method for evaluation of weathering grade and the detection of subsurface clay‐rich levels. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Weathering rinds, zones of alteration on the exterior surfaces of rock outcrops and coarse unconsolidated surficial debris are widely used by geomorphologists and Quaternary geologists as indicators of the relative age of landforms and landscapes. Additionally they provide unique insights into the earliest stages of rock and mineral weathering, yet the origin of these alteration zones is relatively poorly understood. This lack of understanding applies especially to the initial stages of rind formation. The study reported in this paper has two principal objectives. The first is to use lightly polished granite discs inserted in soil profiles under several different plant communities in an Arctic alpine environment for a period of four or five years to investigate the nature of incipient weathering rind development. The second is to investigate the factors responsible for spatial variability in the nature and rates of rind formation. Incipient weathering rind development on the outer edges of the granite discs is observable and measurable over a period of time as short as four years in the mild Arctic alpine environment of Swedish Lapland. The earliest stages of rind development involve the development of a porous structure consisting of a combination of pits and fractures which have been solutionally enlarged and modified. Solution appears to be preferentially concentrated on the surfaces of feldspars and, to a lesser extent, quartz. In addition, iron oxides are present along grain boundaries and in grain interiors and are interpreted to have been derived from the oxidation of ferromagnesian minerals. Spatial variability in weathering rind development appears to be particularly driven by differences in moisture but is not related to soil pH. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Fire in the natural environment is a widespread agent of geomorphological and biological change. Temperatures can exceed 1000°C. There is often a rapid rise from ambient conditions through a steep thermal gradient, promoting rock disintegration. Laboratory simulation studies have established that temperature changes which are representative of natural fires affect rock material properties, which can then be related to weathering susceptibility. This study extends previous work by more closely replicating the natural environment, (a) through the simulation of rainfall and (b) by encasing samples to reflect the exposure of a single rock face to a passing fire event. Rock samples collected on Cyprus were prepared and tested following previously reported procedures. Change in modulus of elasticity was monitored using a non-destructive ultrasonic method. The data corroborate previous work but with somewhat different degrees of change. The new results are more likely to be representative of natural conditions and real-world change. The rate of rock disintegration and effects such as case-hardening appear to be a function of rock thermal characteristics, material properties and environmental constraints such as diurnal temperature range. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
To describe temporal change in tafone development, an S‐shaped curve equation is proposed: Z = Zc [1 ? (n + 1) exp (? β t ) + n exp (? (1 + 1/n) β t )] , where Z is observed tafone depth, Zc is ultimate tafone depth, t is time, and n and β are constants. The applicability of this model is examined using tafone data selected from seven sites, which are categorized into three different salt‐weathering environments: a spray/splash‐dominant (occasionally wave‐affected) supra‐tidal zone, aerosol‐affected coastal regions, and inland desert areas. The results indicate that the equation can well describe tafone development in each of these environments. An investigation based on the values of n and β, determined through a best fit of the equation to the data, suggests that n characterizes site‐specific environmental conditions and β reflects the magnitude of factors controlling the recession mechanism of tafone surfaces. It is found that (1) the maximum rate of tafone growth dramatically decreases from supra‐tidal, through coastal, to desert environments, and (2) the growing mode of tafoni is different depending on the environmental settings. The erosional force to facilitate the development of tafoni at supra‐tidal sites is estimated to be about 400 times greater than that in the general coastal area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Erosion processes in bedrock‐floored rivers shape channel cross‐sectional geometry and the broader landscape. However, the influence of weathering on channel slope and geometry is not well understood. Weathering can produce variation in rock erodibility within channel cross‐sections. Recent numerical modeling results suggest that weathering may preferentially weaken rock on channel banks relative to the thalweg, strongly influencing channel form. Here, we present the first quantitative field study of differential weathering across channel cross‐sections. We hypothesize that average cross‐section erosion rate controls the magnitude of this contrast in weathering between the banks and the thalweg. Erosion rate, in turn, is moderated by the extent to which weathering processes increase bedrock erodibility. We test these hypotheses on tributaries to the Potomac River, Virginia, with inferred erosion rates from ~0.1 m/kyr to >0.8 m/kyr, with higher rates in knickpoints spawned by the migratory Great Falls knickzone. We selected nine channel cross‐sections on three tributaries spanning the full range of erosion rates, and at multiple flow heights we measured (1) rock compressive strength using a Schmidt hammer, (2) rock surface roughness using a contour gage combined with automated photograph analysis, and (3) crack density (crack length/area) at three cross‐sections on one channel. All cross‐sections showed significant (p < 0.01 for strength, p < 0.05 for roughness) increases in weathering by at least one metric with height above the thalweg. These results, assuming that the weathered state of rock is a proxy for erodibility, indicate that rock erodibility varies inversely with bedrock inundation frequency. Differences in weathering between the thalweg and the channel margins tend to decrease as inferred erosion rates increase, leading to variations in channel form related to the interplay of weathering and erosion rate. This observation is consistent with numerical modeling that predicts a strong influence of weathering‐related erodibility on channel morphology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
‘The wick effect’ is the upward migration of saline solutions into rocks and their subsequent crystallization. Lower Carboniferous sandstone blocks of rectangular shape have been subjected to this process in the laboratory using a range of salt types, a range of salt concentrations, and various mixtures of salts. Some treatments produced severe disintegration, notably sodium carbonate and a mixture of sodium carbonate with magnesium sulphate, whereas other salts (including sodium chloride and gypsum) were much less effective. The debris produced by this experimental salt weathering included appreciable quantities of silt-sized material, which were analysed with a laser granulometer. Such material could provide a source for desert loess.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号