首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synthesis of pyrope-knorringite solid solution series   总被引:1,自引:0,他引:1  
The garnet solid solution series between pyrope Mg3Al2Si3O12 and knorringite Mg3Cr2Si3O12 has been synthesized from oxide mixtures at pressures of 60–80 kbars and 1400–1500°C. Lattice parameters and refractive indices of solid solutions vary linearly with (molecular) composition within the limits of measurement. The lattice parameter of pure knorringite is 11.600Åand its refractive index is 1.83. The genetic significance of mineral inclusions in natural diamonds is discussed, particularly in the light of the very high knorringite contents often found in garnet inclusions. It is suggested that the most common mineral assemblage occurring as inclusions in diamonds (olivine + knorringite-rich garnet + enstatite) might be explained in terms of subduction into the mantle of olivine + chrome-spinel + enstatite cumulates originally formed by crystallization of mafic magmas within the oceanic crust. The cumulate assemblage experienced alteration by circulating hydrothermal solutions, resulting in the introduction of some carbonate and serpentine minerals. During subduction, this assemblage was partially melted at depth below 150 km, accompanied by reduction of carbonate, to form a reconstituted assemblage consisting of olivine + knorringite-rich garnet + enstatite ± diamond.  相似文献   

2.
Pyroxene-garnet solid-solution equilibria have been studied in the pressure range 41–200 kbar and over the temperature range 850–1,450°C for the system Mg4Si4O12Mg3Al2Si3O12, and in the pressure range 30–105 kbar and over the temperature range 1,000–1,300°C for the system Fe4Si4O12Fe3Al2Si3O12. At 1,000°C, the solid solubility of enstatite (MgSiO3) in pyrope (Mg3Al2Si3O12) increases gradually to 140 kbar and then increases suddenly in the pressure range 140–175 kbar, resulting in the formation of a homogeneous garnet with composition Mg3(Al0.8Mg0.6Si0.6)Si3O12. In the MgSiO3-rich field, the three-phase assemblage of β- or γ-Mg2SiO4, stishovite and a garnet solid solution is stable at pressures above 175 kbar at 1,000°C. The system Fe4Si4O12Fe3Al2Si3O12 shows a similar trend of high-pressure transformations: the maximum solubility of ferrosilite (FeSiO3) in almandine (Fe3Al2Si3O12) forming a homogeneous garnet solid solution is 40 mol% at 93 kbar and 1,000°C.If a pyrolite mantle is assumed, from the present results, the following transformation scheme is suggested for the pyroxene-garnet assemblage in the mantle. Pyroxenes begin to react with the already present pyrope-rich garnet at depths around 150 km. Although the pyroxene-garnet transformation is spread over more than 400 km in depth, the most effective transition to a complex garnet solid solution takes place at depths between 450 and 540 km. The complex garnet solid solution is expected to be stable at depths between 540 and 590 km. At greater depths, it will decompose to a mixture of modified spinel or spinel, stishovite and garnet solid solutions with smaller amounts of a pyroxene component in solution.  相似文献   

3.
The melting curves of CaCO3 and MgCO3 have been extended to pressures of 36 kb by experiments in piston-cylinder apparatus. At 30 kb, the melting temperatures of calcite and magnesite are 1610°C and 1585°C, respectively. New data for the magnesite dissociation reaction permit the location of an invariant point for the assemblage magnesite + periclase + liquid + vapor near 26 kb-1550°C. New data are also presented for the calcite-aragonite transition at 800°C, 950°C and 1100°C. At pressures above 36–50 kb, calcite and magnesite melt at temperatures lower than the solidus of dry mantle peridotite. Natural and experimental evidence suggests that carbon dioxide in the Earth's mantle could be present in a variety of forms: (a) a free vapor phase, (b) vapor dissolved in silicate magma, (c) crystalline carbonate, (d) carbonatite liquid, (e) carbon-bearing silicate analogs, or (f) carbonato-silicates (such as scapolite, spurrite, tilleyite, and related compounds).  相似文献   

4.
Phase assemblages for five selected compositions in the system CaSiO3-Al2O3 have been investigated in the pressure range 100–300 kbar and at about 1000°C in a diamond-anvil press coupled with laser heating. At pressures below about 250 kbar, the assemblage of grossularite plus corundum is stable for compositions containing more than 25 mole% Al2O3. Above about 250 kbar, phase assemblages for the latter compositions are truncated by those in the join CaAl2O4-SiO2. Garnet solid solutions are stable between about 10 and 25 mole% Al2O3. Grossularite transforms to a new tetragonal form at pressures greater than about 250 kbar, but the stability field for the garnet solid solutions extends to pressures up to about 300 kbar. The perovskite modification appears to be stable at pressures above about 150 kbar, but is probably limited to nearly pure CaSiO3 composition. Phase behaviour for calcium-bearing silicates or aluminosilicates in the lower mantle are apparently more complicated than was suggested earlier.  相似文献   

5.
An experimental determination of the reaction MgCO3 + MgSiO3 = Mg2SiO4 + CO2 between 20 and 40 kbars and in the range 1000–1500°C yields an average pressure effect on the equilibrium of 44 bars/°C. This result shows that the assemblage forsterite and carbon dioxide is not stable under most pressure and temperature conditions expected in the upper mantle. Hypotheses requiring the presence of free CO2 in the low-velocity zone, CO2 as a drive mechanism for kimberlite emplacement, or action of a free CO2 phase in ultramafic rocks may need considerable revision.  相似文献   

6.
High pressure experiments have been made on the stability of richterite50-tremolite50 solid solution by the piston-cylinder type high pressure apparatus in the pressure range from 15 to 40 kb, at temperatures from 700 to 1150°C. This amphibole is stable up to 40 kb at 700°C, and the breakdown pressure gradually decreases with increasing temperatures. It is suggested that this amphibole, on the basis of high pressure experiments, may occur in the upper mantle.  相似文献   

7.
The reaction between enstatite (En95.3Fs4.7) and CaCO3 has been studied at pressures between 23 and 77 kbars and at temperatures between 800° and 1400°C. At 1000°C enstatite and CaCO3 react to form dolomite and diopside solid solutions at pressures below approximately 45 kbars and magnesite and diopside solid solutions at higher pressures. The curve for the reaction dolomitess + enstatitess ? magnesitess + diopsidess lies between 40 to 45 kbars at 1000°C and between 45 and 50 kbars at 1200°C. It is very close to the graphite-diamond transition curve. These experimental results indicate that calcite (or aragonite) is unstable in the presence of enstatite, and that dolomite and magnesite are the stable carbonates at high pressures. The forsterite + aragonite assemblage is, however, stable to at least 80 kbars at 800°C. It is suggested that in the upper mantle where enstatite is present, dolomite is stable to depths of about 150 km and magnesite is stable at greater depths in the continental regions, assuming that the partial pressure of CO2 is equal or close to the total pressure. It is also suggested that carbonate inclusions in pyroxene can be used as an indicator of the depth of their equilibration; dolomite inclusions in enstatite would be formed at depths shallower than 150 km and magnesite inclusions in diopside at greater depths. Eclogite and peridotite inclusions in kimberlite may be classified on this basis.  相似文献   

8.
Phase equilibria in a natural garnet lherzolite nodule (PHN 1611) from Lesotho kimberlite and its chemical analogue have been studied in the pressure range 45–205 kbar and in the temperature range 1050–1200°C. Partition of elements, particularly Mg2+Fe2+, among coexisting minerals at varying pressures has also been examined. High-pressure transformations of olivine(α) to spinel(γ) through modified spinel(β) were confirmed in the garnet lherzolite. The transformation behavior is quite consistent with the information previously accumulated for the simple system Mg2SiO4Fe2SiO4. At pressures of 50–150 kbar, a continuous increase in the solid solubility of the pyroxene component in garnet was demonstrated in the lherzolite system by means of microprobe analyses. At 45–75 kbar and 1200°C, the Fe2+/(Mg + Fe2+) value becomes greater in the ascending order orthopyroxene, Ca-rich clinopyroxene, olivine and garnet. At 144–146 kbar and 1200°C, garnet exhibits the highest Fe2+/(Mg + Fe2+) value; modified spinel(β) and Ca-poor clinopyroxene follow it. When the modified spinel(β)-spinel(γ) transformation occurred, a higher concentration of Fe2+ was found in spinel(γ) rather than in garnet. As a result of the change in the Mg2+Fe2+ partition relation among coexisting minerals, an increase of about 1% in the Fe2SiO4 component in (Mg,Fe)2SiO4 modified spinel and spinel was observed compared with olivine.These experimental results strongly suggest that the olivine(α)-modified spinel(β) transformation is responsible for the seismic discontinuity at depths of 380–410 km in the mantle. They also support the idea that the minor seismic discontinuity around 520 km is due to the superposition effect of two types of phase transformation, i.e. the modified spinel(β)-spinel(γ) transformation and the pyroxene-garnet transformation. Mineral assemblages in the upper mantle and the upper half of the transition zone are given as a function of depth for the following regions: 100–150, 150–380, 380–410, 410–500, 500–600 and 600–650 km.  相似文献   

9.
Samples of Ni2SiO4 in both olivine and spinel phases have been compressed to pressures above 140 kbar in a diamond-anvil cell and heated to temperatures of 1400–1800°C using a continuous YAG laser. After quenching and releasing pressure, X-ray diffraction examination indicates that the samples disproportionate to a mixture of stishovite (SiO2) and bunsenite (NiO) at pressures between 140 and 190 kbar. The exact disproportionation pressure is not certain due to transient increases in pressure during the local and rapid heating. However, thermodynamic calculations suggest that the transition pressure is about 192 ± 4 kbar at 1545°C and that the equation of the spinel-mixed oxides phase boundary isP(kbar) = 121 + (0.046 ± 0.020) T (°C).  相似文献   

10.
Viscosity of anhydrous albite melt, determined by the falling-sphere method in the solid-media, piston-cylinder apparatus, decreases with increasing pressure from 1.13 × 105 P at 1 atm to 1.8 × 104 P at 20 kbar at 1400°C. The rate of decrease in viscosity is larger between 12 and 15 kbar than in other pressure ranges examined. The density of the quenched albite melt increases with increasing pressure of quenching from 2.38 g/cm3 at 1 atm to 2.53 g/cm3 at 20 kbar. The rate of increase in density is largest at pressures between 15 and 20 kbar. The melting curve of albite shows an inflexion at about 16 kbar. These observations strongly suggest that structural changes of albite melt would take place effectively at pressures near 15 kbar. Melt of jadeite (NaAlSi2O6) composition shows very similar changes in viscosity and density and a melting curve inflexion at pressures near 10 kbar. Difference in pressure for the suggested effective structural changes of albite and jadeite melts is 5–6 kbar, which is nearly the same as that between the subsolidus reaction curves nepheline + albite= 2jadeite and albite=jadeite + quartz. The structural changes of the melts are, however, continuous and begin to take place at pressures lower than those of the crystalline phases.  相似文献   

11.
High-pressure and high temperature experiments at 20 GPa on (Mg,Fe)SiO3 have revealed stability fields of two types of aluminium-free ferromagnesian garnets; non-cubic garnet and cubic garnet (majorite). Majorite garnet is stable only within a limited compositional variation, 0.2 < Fe/(Mg + Fe)< 0.4, and in the narrow temperature interval of 200°C around 2000°C, while the stability of non-cubic garnet with more iron-deficient compositions persists up to higher temperatures. These two garnets show fractional melting into iron-deficient garnet and iron-rich liquid, and the crystallization field of cubic garnet extends over Fe/(Mg + Fe)= 0.5. The assemblage silicate spinel and stishovite is a low-temperature phase, which also occurs in the iron-rich portion of the MgSiO3—FeSiO3 system. The sequence as given by the Fe/(Mg + Fe) value for the coexisting phases with the two garnets at 2000°C and 20 GPa is: silicate modified spinel aluminium-free garnets silicate spinel.Natural majorite in shock-metamorphosed chondrites is clarified to be produced at pressures above 20 GPa and temperatures around 2000°C. Similar shock events may cause the occurrence of non-cubic garnet in iron-deficient meteorites. Non-cubic garnet could be a stable phase in the Earth's mantle if a sufficiently low concentration of aluminium is present in the layer corresponding to the stable pressure range of non-cubic garnet. The chemical differentiation by melting in the deep mantle is also discussed on the basis of the present experimental results and the observed coexistence of majorite garnet with magnesiowüstite in chondrites.  相似文献   

12.
The melting curve of forsterite has been studied by static experiment up to a pressure of 15 GPa. Forsterite melts congruently at least up to 12.7 GPa. The congruent melting temperature is expressed by the Kraut-Kennedy equation in the following form: Tm(K)=2163 (1+3.0(V0 ? V)/V0), where the volume change with pressure was calculated by the Birch-Managhan equation of state with the isothermal bulk modulus K0 = 125.4 GPa and its pressure derivative K′ = 5.33. The triple point of forsterite-β-Mg2SiO4-liquid will be located at about 2600°C and 20 GPa, assuming that congruent melting persists up to the limit of the stability field of forsterite. The extrapolation of the previous melting data on enstatite and periclase indicates that the eutectic composition of the forsterite-enstatite system should shift toward the forsterite component with increasing pressure, and there is a possibility of incongruent melting of forsterite into periclase and liquid at higher pressure, although no evidence on incongruent melting has been obtained in the present experiment.  相似文献   

13.
Wei  Lin  Masaki  Enami 《Island Arc》2006,15(4):483-502
Abstract Jadeite‐bearing eclogites and associated blueschists locally crop out in a greenschist facies area at Kuldkourla, near the Akeyazhi River in the western Chinese Tianshan region, northwestern China. Garnet in these metamorphic rocks shows prograde zoning with increasing Mg and decreasing Mn from the crystal center towards the rim, and is divided into Ca‐poor/Fe‐rich core and Ca‐rich/Fe‐poor mantle parts. The garnet cores include the assemblages of (i) jadeite/omphacite (Xjd = 0.34–0.96) + barroisite/taramite; and (ii) omphacite + barroisite/pargasite, with paragonite, epidote, rutile and quartz as major phases with rare albite. The garnet mantles rarely contain inclusions of omphacite, glaucophane, epidote, rutile and quartz. Major matrix phases of the pre‐exhumation stage are omphacite, glaucophane, paragonite, rutile and quartz. These mineral parageneses give pressure (P)‐temperature (T) conditions of 0.9 GPa/390°C?1.4 GPa/560°C for the stage of the garnet core formation, 1.8 GPa/520°C for the stage of the garnet mantle formation, and 2.2 GPa/495°C‐2.4 GPa/535°C for the peak eclogite facies assemblage in the matrix. The estimated P‐T conditions and continuous changes of mineral parageneses imply a counterclockwise P‐T path which is a combination of (i) an early prograde stage of high‐pressure/low‐temperature (HP/LT) blueschist facies and/or LP/LT eclogite facies; (ii) a later prograde stage involving compression with minimal heating; and (iii) a climax‐of‐subduction stage characterized by a slight decrease of temperature with increasing pressure. The negative dP/dT of the latest subduction stage is possibly a record of the following events after a continuous subduction and ridge approach: (i) material migration within the upper part of the subducting slab, which has an inverse thermal gradient caused by ductile flow and/or slab break during subduction; and/or (ii) temporary cooling of the wedge mantle–slab interface by continuous subduction of a relatively cold slab following subduction of a hotter ridge.  相似文献   

14.
Phase transformations in vitreous and crystalline GeO2 (rutile) have been investigated up to ~50 GPa and ~1000°C by using a diamond anvil pressure cell coupled with a YAG laser heating system and in situ x-ray diffraction techniques. The results show that whereas the vitreous GeO2 transforms into a hexagonal phase at pressures ~25 GPa, the crystalline GeO2 transforms into an orthorhombic phase at ~28 GPa; the molar volume changes for the hexagonal and orthorhombic transformations are ? 1.0% (at 25 GPa) and ? 3.0% (at 28 GPa), respectively. When unloaded to 0.1 MPa, both the hexagonal and orthorhombic phases of GeO2 are retained, and the zero-pressure molar volume is 0.7% larger and 4.5% smaller than that of the rutile-structured GeO2, respectively. These results are in good agreement with previously published data.  相似文献   

15.
The solubility of fluorapatite in a wide variety of basic magmatic liquids was experimentally determined over a range of upper mantle P-T conditions (8–25 kbar, 1275–1350°C). Fluorapatite is stable over the entire range of conditions investigated, but its solubility in melts is variable, depending negatively on SiO2 content of the melt and positively upon temperature, with relatively little sensitivity to pressure above 8 kbar. At upper mantle pressures and a temperature of 1250°C, molten basalt (50% SiO2) will dissolve 3–4 wt.% P2O5 before saturation in apatite is reached. For a magma 100°C cooler or containing 10 wt.% more SiO2, apatite saturation occurs at less than 2 wt.% dissolved P2O5. The observed high solubility of apatite in basic magmas at their normal near-liquidus temperatures virtually precludes the occurrence of residual apatite in mantle source regions. If relatively low-temperature melting conditions prevail (e.g., 1100°C), as might be possible in H2O-bearing regions of the upper mantle, apatite could remain in the residue, but only in amounts too small to have significant effects on the rare earth patterns of the liquids.Because of the high solubility of apatite in basic magmas, phosphorus can be confidently treated as an incompatible element in peridotite melting models. Such models, in combination with observed characteristics of basic lavas, indicate that the upper mantle contains ~200 ppm of phosphorus, much less than the chondritic abundance of ~900 ppm.  相似文献   

16.
High-pressure polymorphs of olivine and enstatite are major constituent minerals in the mantle transition zone(MTZ).The phase transformations of olivine and enstatite at pressure and temperature conditions corresponding to the lower part of the MTZ are import for understanding the nature of the 660 km seismic discontinuity.In this study,we determine phase transformations of olivine(MgSi2O4) and enstatite(MgSiO3) systematiclly at pressures between 21.3 and 24.4 GPa and at a constant temperature of 1600℃.The most profound discrepancy between olivine and enstatite phase transformation is the occurency of perovskite.In the olivine system,the post-spinel transformation occures at 23.8 GPa,corresponding to a depth of 660 km.In contrast,perovskite appears at 23 GPa(640 km) in the enstatite system.The ~1 GPa gap could explain the uplifting and/or splitting of the 660 km seismic discountinuity under eastern China.  相似文献   

17.
Synthetic crystalline (wollastonite) and glass forms of CaSiO3 have been compressed to loading pressures above 160 kbar and heated to about 1500° C by a laser in a diamond-anvil cell. After cooling, an X-ray diffraction study carried out whilst the sample was maintained at high pressure revealed that it had transformed to a cubic perovskite-type 3olymorph with a = 3.485 ± 0.008A?. After release of pressure, however, the sample showed a mixture of glass plus a few weak lines corresponding to ε-CaSiO3 which is thus interpreted as a retrogressive transition product. The density of the perovskite polymorph of CaSiO3 is about 9.2% greater than that of an isochemical mixture of CaO + SiO2 (stishovite) at about 160 kbar.  相似文献   

18.
Reduced silicon alloyed with Fe metal was shown to chemically react with FeCO3 siderite at pressures of 10–25 GPa and temperatures of 1700–1800 °C according to2 FeCO3 siderite+3 Si in metal=2 Fe in metal+3 SiO2 stishovite+2 CdiamondSince no carbon seeds were introduced, the only source of carbon for diamond formation was the carbonate phase. This observation provides a mechanism of diamond formation, possibly relevant to the early Earth. Thermodynamic modelling of the observed reactions shows that the stishovite/silicon oxygen fugacity buffer is far more reducing than the carbonate/diamond equilibrium, implying that, at Earth mantle conditions, no silicon-bearing metal can coexist with carbonates. Diamond formation by reactions between carbonates and highly reducing metal phases containing significant amounts of silicon might have occurred in the early Earth upon mixing of oxidized and reduced accretion components at pressures and temperature exceeding 10 GPa and 1700 °C.  相似文献   

19.
Two synthetic pyroxenes (FeSiO3, MgSiO3) and five natural pyroxenes with compositions of about Fs80En20, Fs60En40, Fs50En50, Fs40En60, and Fs20En80 have been subjected to pressures up to250 ± 50kbars at a temperature of about1500 ± 200°C in a diamond anvil cell heated by an infrared laser beam. After quenching and unloading X-ray data analysis indicates that (1) those with Mg less than 50% undergo the following reactions: 2(Mg,Fe)SiO3 (pyroxene) → (Mg,Fe)2SiO4 (spinel) + SiO2 (stishovite) → 2(Mg,Fe)O (magnesiowu¨stite) + SiO2 (stishovite) with increase of pressure, and (2) those with Mg higher than 60%, undergo the following reactions: 2(Mg,Fe)SiO3 (pyroxene) → (Mg,Fe)2SiO4 (spinel) + SiO2 (stishovite) → 2(Mg,Fe)SiO3 (hexagonal phase) → 2(Mg,Fe)O (magnesiowu¨stite) + SiO2 (stishovite) with increase of pressure.  相似文献   

20.
High-pressure phase relations in ZnSiO3 and Zn2SiO4 were investigated at about 1000°C and in the pressure range of 100–500 kbar, using a double-staged split-sphere type of high-pressure apparatus.Clinopyroxene-type ZnSiO3 transforms directly into a polymorph with the ilmenite structure at 120 kbar. The hexagonal unit cell dimensions of the ZnSiO3 ilmenite are determined to be a = 4.746 ± 0.001 A?and c = 13.755 ± 0.002 A? under ambient conditions.The following reactions are also recognized at about 1000°C:
and:
The stabilities of silicate ilmenites, especially the absence of ilmenite of transition metal silicate composition, is discussed. It is pointed out that data on phase relations in zinc silicates may be informative for the consideration on those in magnesium silicates under very high pressures. It is suggested that the silicate ilmenite may be a major constituent in the lower mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号